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Abstract—A multi-agent system operates in an uncertain
environment about which agents have different and time varying
beliefs that, as time progresses, converge to a common belief.
A global utility function that depends on the realized state
of the environment and actions of all the agents determines
the system’s optimal behavior. We define the asymptotically
optimal action profile as an equilibrium of the potential game
defined by considering the expected utility with respect to
the asymptotic belief. At finite time, however, agents have not
entirely congruous beliefs about the state of the environment and
may select conflicting actions. This paper proposes a variation
of the fictitious play algorithm which is proven to converge to
equilibrium actions if the state beliefs converge to a common
distribution at a rate that is at least linear. In conventional
fictitious play, agents build beliefs on others’ future behavior by
computing histograms of past actions and best respond to their
expected payoffs integrated with respect to these histograms.
In the variations developed here histograms are built using
knowledge of actions taken by nearby nodes and best responses
are further integrated with respect to the local beliefs on the
state of the environment. We exemplify the use of the algorithm
in coordination and target covering games.

I. INTRODUCTION

Our model of a multi-agent autonomous system encom-
passes an underlying environment, knowledge about the state
of the environment that the agents acquire, and a state
dependent global objective that agents affect through their
individual actions. The optimal action profile maximizes this
global objective for the realized environment’s state with
the optimal action of an agent given by the corresponding
action in the profile. The problem addressed in this paper
is the determination of suitable actions when the probability
distributions that agents have on the state of the environment
are possibly different. These not entirely congruous beliefs
result in mismatches between the action profiles that different
agents deem to be optimal. As a consequence, when a given
agent chooses an action to execute, it is important for it to
reason about what the beliefs of other agents may be and
what are the consequent actions that other agents may take.
We propose a solution based on the construction of empirical
histograms of past actions and the use of best responses
to the utility expectation with respect to these histograms
and the state belief. This algorithmic behavior is shown to
be asymptotically optimal in the sense that if agents move
towards a common belief, the actions they select are optimal
with respect to the corresponding expected utility.
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While the determination of optimal behavior in multi-
agent systems can be considered from different perspectives,
the categorization between systems with complete and in-
complete information is most germane to this paper [1]. In
systems of complete information the environment is either
perfectly known or all agents have identical beliefs. In either
case, agents can compute the optimal action profile, and
determine and execute their corresponding optimal action.
This local computation of global solutions is neither scalable
nor robust but it can be used as an abstract definition
of optimal behavior. This abstraction renders the problem
equivalent to the development of distributed methodologies
to solve optimization problems [2]–[5], or, more generically,
to the determination of Nash equilibria of multiplayer games
[6]–[11]. When information is incomplete, the fact that agents
have different beliefs implies that they may end up choosing
competing actions even if they are intent on cooperating.
In a sense, agents are competing against uncertainty, but
the manifestation of that competition is in the form of
conflicting interests arising from cooperating agents. In this
inherent competition Bayesian Nash equilibria are the intrin-
sic mathematical formulation of optimal behavior [12], [13].
However, determination of these equilibria is computationally
intractable except for games with simple beliefs and utilities
[14], [15].

If determination of Bayesian equilibria is intractable, the
development of approximate methods is necessary. In fact,
determining game equilibria is also challenging in games of
complete information. This has motivated the development of
iterative methods to learn regular – as opposed to Bayesian
– equilibrium actions [11], [16]. Of relevance to this paper
is the fictitious play algorithm in which agents build beliefs
on others’ future behavior by computing histograms of past
actions and best respond to their expected payoffs integrated
with respect to these histograms [17]. When information
is complete, fictitious play converges to equilibria of zero
sum [16], some other specific games with two players [18],
and multiplayer games with aligned interests as determined
by a potential function [6]. Recent variations of fictitious
play have been developed to expand the class of games
for which equilibria can be computed [9], [19] and to
guarantee convergence to equilibria with specific properties
[8], [20], [21]. Recently, a variant of the fictitious play that
operates in a distributed setting where agents observe relevant
information from agents that are adjacent in a network is
shown to converge in potential games [7].

In this paper, we consider a network of agents with aligned
interests. Agents have different and time varying beliefs on
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the state of the environment that, as time progresses, converge
to a common belief. The asymptotic optimal behavior is
therefore formulated as the Nash equilibria of the poten-
tial game defined by the expected utility with respect to
the asymptotic belief. The goal is to design a distributed
mechanism that converges to a Nash equilibrium of this
asymptotic game (Section II). The solutions that we propose
are variations of the fictitious play algorithm that take into
account the distributed nature of the multi-agent system and
the fact that the state of the environment is not perfectly
known. In a game of incomplete information, expected payoff
computation in fictitious play consists of integrating the
payoff with respect to both the local belief on the state of the
environment and the local beliefs on the behavior of other
agents. In a networked setting only local past histories can
be available and agents need to reason about the behavior
of non-neighboring agents based on past observations of its
neighbors only.

In potential games with symmetric payoffs, which are
known to admit consensus Nash equilibria, we let agents
share their actions with their neighbors, construct empirical
histograms of the actions taken by neighbors, and best
respond assuming that all agents follow the average popu-
lation empirical distribution (Section III). This mechanism is
shown to converge to a consensus Nash equilibrium when
the convergence of individual beliefs on the state of the
environment is at least of linear order (Theorem 1). When
the potential game is not necessarily symmetric, agents
share their empirical beliefs on the behavior of other agents
with neighbors in addition to their own actions. Agents
keep histograms on the behavior of others by averaging
the histograms of neighbors with their own (Section IV).
Convergence to a Nash equilibrium follows under the same
linear convergence assumption for the beliefs on the state of
the environment (Theorem 2).

We numerically analyze the transient and asymptotic equi-
librium properties of the algorithms in the beauty contest and
the target covering games (Section V). In the beauty contest
game, a team of robots tradeoffs between moving toward a
target direction and moving in coordination with each other.
In the target covering game, a team of robots coordinates to
cover a given set of targets and receive payoffs from covering
a target that is inversely proportional to the distance to their
positions. We observe that Nash equilibrium strategies are
successfully determined in both cases.

Notation: For any finite set X , we use 4(X) to denote
the space of probability distributions over X . For a generic
vector x ∈ Xn, xi denotes the ith element and x−i denotes
the vector of elements of x except the ith element, that is,
x−i = (x1, . . . , xi−1, xi+1, . . . , xn). We use ‖ · ‖ to denote
the Euclidean norm of a space. 1n denotes a n × 1 column
vector of all ones.

II. OPTIMAL BEHAVIOR OF MULTI-AGENT SYSTEMS WITH
INCOMPLETE INFORMATION

We consider a group of n agents i ∈ N := {1, . . . , n}
that play a stage game over a discrete time index t with

simultaneous moves and incomplete information. The im-
portant features of this game are the actions ait that agents
take at time t, an underlying unknown state of the world
θ, local utility functions ui(a, θ) that determine the payoffs
that different agents receive when the group plays the joint
action a := {a1, . . . , an} and the state of the world is θ,
and time varying local beliefs µit that assign probabilities to
different realizations of the state of the world. We assume
that the state of the world is chosen by nature from a space
Θ and that actions are chosen from a common, finite, and
time invariant set so that we have ait ∈ A := {1, . . . ,m}
for all times t and agents i. Local payoffs are then formally
defined as functions ui : An × Θ → R. To emphasize the
global dependence of local payoffs we write payoff values as
ui(a, θ) = ui(ai, a−i, θ) where, we recall, a−i := {aj}j 6=i
collects the actions of all agents except i. We assume that
the utility values ui(a, θ) are finite for all actions a and
state realizations θ. The beliefs µit ∈ 4(Θ) are probability
distributions on the space Θ.

In general, we allow agent i to maintain a mixed strategy
σi ∈ 4(A) defined as a probability distribution on the
action space A such that σi(ai) is the probability that i
plays action ai ∈ A. The joint mixed strategy profile σ :=
{σ1, . . . , σn} ∈ 4n(A) is defined as the product distribution
of all individual strategies and the mixed strategy of all agents
except i is written as σ−i := {σj}j 6=i ∈ 4n−1(A). The
utility associated with the joint mixed strategy profile σ is
then given by

ui(σ, θ) = ui(σi, σ−i, θ) =
∑
a∈An

ui(a, θ)σ(a). (1)

We further assume that there exists a global potential function
u : An × θ 7→ R taking values u(a, θ) such that for all pairs
of action profiles a = {ai, a−i} and a′ = {a′i, a−i}, state
realizations θ ∈ Θ, and agents i, the local payoffs satisfy

ui(ai, a−i, θ)−ui(a′i, a−i, θ) = u(ai, a−i, θ)−u(a′i, a−i, θ).
(2)

The existence of the potential function u is a statement of
aligned interests because for a given θ the joint action that
maximizes u is a pure Nash equilibrium strategy of the game
defined by the ui utilities [6]. The motivation for considering
a potential game is to model a system in which agents play to
achieve the game equilibrium in a distributed manner and end
up finding the action a that would be selected by a central
coordination agent that maximizes the global payoff u. We
emphasize, however, that the game may have other equilibria
that are not optimal.

The fundamental problem addressed in this paper is that
the state of the world θ is unknown to the agents and that
different agents have different beliefs µit on the state of
the world. As a consequence, payoffs ui(a, θ) cannot be
evaluated but estimated and, moreover, estimates of different
agents are different. To explain the implications of this latter
observation consider the opposite situation in which the
agents aggregate their individual beliefs in a common belief
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µ. In that case, the payoff estimate

ui(σ;µ) :=

∫
θ∈Θ

ui(σ, θ) dµ, (3)

can be evaluated by all agents if we assume that the payoff
functions ui are known globally. Assuming global knowledge
of payoffs is not always reasonable and it is desirable to
devise mechanisms where agents operate without access to
the payoff functions of other agents; see, e.g., [7]. Still, an
important implication of considering the payoffs in (3) is
that optimal behavior is characterized by Nash equilibria.
Specifically, for the game defined by the utilities in (3), a
Nash equilibrium at time t is a strategy profile σ∗ such that no
agent has an interest to deviate unilaterally given the common
belief µ. I.e., a strategy σ∗ = {σ∗i , σ∗−i} such that for all
agents i it holds

ui(σ
∗
i , σ
∗
−i;µ) ≥ ui(σi, σ

∗
−i;µ), (4)

for all other possible strategies σi. Given the existence of the
potential function u as stated in (2), the Nash equilibrium
in (4) with the aggregate belief µ is a proxy for the max-
imization of the global payoff u(a;µ) :=

∫
θ∈Θ

u(a, θ) dµ.
In that sense, it represents the best action that the agents
could collectively take if they all had access to common
information. For future reference we use Γ(µ) to represent the
game with players N , action space A and payoffs ui(a;µ),

Γ(µ) := {N ,An, ui(a;µ)} . (5)

The game Γ(µ) is said to have complete information.

When agents have different beliefs, the equilibrium strate-
gies of (4) cannot be used as a target behavior because
agents lack the ability to determine if a strategy σi that they
may choose satisfies (4) or not. Indeed, while the complete
information game serves as an omniscient reference, agents
can only evaluate their expected payoffs with respect to their
local beliefs µit,

ui(σ;µit) = ui(σi, σ−i;µit) =

∫
θ∈Θ

ui(σi, σ−i, θ) dµit.

(6)
Comparing (3) and (6) we see that the fundamental problem
of having different beliefs µit at different agents is that i
lacks information needed to evaluate the expected payoff
uj(σ;µjt) of agent j and, for that reason, the game is said
to have incomplete information. A way to circumvent this
lack of information is for agent i to keep a belief νijt on
the strategy profile of player j. If we group these beliefs to
define the joint belief νi−it := {νijt}j 6=i that agent i has on
the actions of others, it follows that agent i can evaluate the
payoff he can expect of different strategies σi as

ui(σi, ν
i
−it;µit) =

∫
θ∈Θ

ui(σi, ν
i
−it, θ) dµit. (7)

It is then natural to suggest that agent i should choose the
strategy σi that maximizes the expected payoff in (7). Such
strategy can always be chosen to be an individual action that
is termed the best response to the beliefs νi−it on the actions

of others and the belief µit on the state of the world,

ait ∈ argmax
ai∈A

ui(ai, ν
i
−it;µit). (8)

For future reference we also define the corresponding best
expected utility that agent i expects to obtain at time t by
playing the best response action in (8),

vi(ν
i
−it;µit) := max

ai∈A
ui(ai, ν

i
−it;µit). (9)

We emphasize that vi(νi−it;µit) is not the utility actually
attained by agent i at time t. That utility depends on the
actual state of the world and the actions actually taken by
others and is explicitly given by ui(ait, a−it, θ).

In this paper we consider agents that select best response
actions as in (8) and focus on designing decentralized mech-
anisms to construct the beliefs νijt on the actions of others
so that the actions ait attain desirable properties.

In particular, we assume that there is an underlying state
learning process so that the local beliefs µit on the state of
the world converge to a common belief µ in terms of total
variation. I.e., we suppose that

lim
t→∞

TV(µit, µ) = 0 for all i ∈ N , (10)

where the total variation distance TV(µit, µ) :=
supB∈B(Θ) |µit(B) − µ(B)| between distributions µit
and µ is defined as the maximum absolute difference
between the respective probabilities assigned to elements B
of the Borel set B(Θ) of the space Θ.

The desirable property that we ask of the process that
builds the beliefs νijt on the actions of others is that the
actions ait approach one of the Nash equilibrium strategies
defined by (4) as the distributions µit converge to the
common distribution µ. The learning process that we propose
for the beliefs νijt is based on building empirical histograms
of past plays as we explain in sections III and IV. We will
show in sections III-A and IV-A that this procedure yields
best responses that approach a Nash equilibrium as long as
the convergence of µit to µ is sufficiently fast. We pursue
this developments after a pertinent remark.

Remark 1 The game of incomplete information defined by
the payoffs in (6) has equilibria that do not necessarily
coincide with the equilibria of the complete information game
Γ(µ). It is easy to think that the best response ait in (8) yields
the best possible utility ui for agent i. In fact, it is possible
for agent i to do better by reasoning that other agents are
also playing best response to their beliefs. Strategies that
yield an equilibrium point of this strategic reasoning are
defined as the Bayesian Nash equilibria of the incomplete
information game – see [13], [15] for a formal definition. We
utilize the best responses in (8) because determining Bayesian
Nash equilibria requires global knowledge of payoffs and
information structures.
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Fig. 1. Distributed fictitious play with observation of neighbors’ actions.
Agents form beliefs on the strategies of others by keeping a histogram of
the average empirical distribution using the observations of actions of their
neighbors. E.g., Agent 1 updates an estimate ˆ̄f it of the average empirical
distribution by observing the actions a2t−1, a3t−1, a4t−1, a5t−1 played
by agents 2, 3, 4, and 5 at time t − 1 [cf. (16)]. It then selects the best
response in (8) which assumes all other agents are playing with respect to
the mixed strategy νijt = ˆ̄f it given its belief µit on the state θ.

III. DISTRIBUTED FICTITIOUS PLAY IN SYMMETRIC
POTENTIAL GAMES

We begin by considering the particular case of symmetric
potential games to illustrate concepts, methods, and proof
techniques. In a symmetric game, agents’ payoffs are per-
mutation invariant in that we have ui(ai, aj , a−i\j , θ) =
uj(aj , ai, a−j\i, θ) for all pairs of agents i and j. It follows
from this assumption that the game admits at least one con-
sensus Nash equilibrium strategy and that, as a consequence,
we can utilize a variation of fictitious play [6], [17] in which
agents form beliefs on the actions of others by keeping a
histogram of actions they have seen taken by other agents in
past plays.

Formally, let fit ∈ Rm×1 denote the empirical histogram
of actions taken by i until time t and define the vector
indicator function Ψ(ait) = [Ψ1(ait), . . . ,Ψm(ait)] : A →
{0, 1}m such that the kth component is Ψk(ait) = 1 if
and only if ait = k and Ψk(ait) = 0 otherwise. Given the
definition of the vector indicator function Ψ(ait) it follows
that the empirical distribution fit of actions taken by i up
until time t > 1 is

fit :=
1

t− 1

t−1∑
s=1

Ψ(ais). (11)

The expression in (11) is simply a vector arrangement of the
average number of times that each of the m possible plays
k ∈ {1, . . . ,m} has been chosen by i. Since the game, being
symmetric, admits at least one symmetric Nash equilibrium,
the histogram of the empirical play of the population as a
whole is also of interest. Using the definition of the vector

indicator Ψ(ait) this empirical distribution is written as

f̄t :=
1

n

n∑
i=1

[
1

t− 1

t−1∑
s=1

Ψ(ais)

]
. (12)

In conventional fictitious play, agents play best responses to
the composite empirical distribution in (12). Here, however,
we assume that agents are part of a connected network G
with node set N and edge set E . Agent i can only interact
with neighboring agents j ∈ Ni := {j ∈ N : (j, i) ∈ E}.
At time t, the actions of neighboring agents j ∈ Ni become
known to agent i either through explicit communication or
implicit observation. In this setting, agent i cannot keep track
of the empirical distribution in (12) because it only observes
its neighbors’ actions aNit := {ajt : j ∈ Ni} – see Fig. 1.

What is possible for agent i to compute is an estimate of
(12) utilizing the information it has available. This estimate is
built by averaging the plays of neighbors so that if we write
i’s estimate of f̄t as ˆ̄f it it follows that for t ≥ 2 it holds

ˆ̄f it =
1

|Ni|
∑
j∈Ni

[
1

t− 1

t−1∑
s=1

Ψ(ajs)

]
. (13)

In the distributed fictitious play algorithm considered here,
agent i has access to the state belief µit and the estimate
on the average empirical distribution ˆ̄f it in (13). Agent i pro-
ceeds to select the best response action ait that maximizes its
expected payoff [cf. (8)] assuming that all other agents play
with respect to the estimated average empirical distribution.
I.e., the action played by agent i is computed as per (8) with
νijt = ˆ̄f it for all j 6= i.

Observe that computation of the histograms in (11) - (13)
does not require keeping the history of past plays ais for
s < t. Indeed, the empirical distribution fit in (11) can be
expressed recursively as

fit+1 = fit +
1

t

(
Ψ(ait)− fit

)
, (14)

Likewise, we can also write the population’s empirical dis-
tribution f̄t in (12) recursively as

f̄t+1 = f̄t +
1

t

[
1

n

n∑
j=1

Ψ(ajt)− f̄t
]
, (15)

and the same rearrangement permits writing the estimate ˆ̄f it
that i keeps of the population’s empirical distribution as the
recursion

ˆ̄f it+1 = ˆ̄f it +
1

t

[
1

|Ni|
∑
j∈Ni

Ψ(ajt)− ˆ̄f it

]
. (16)

In all three cases the recursions are valid for t ≥ 1 and
we have to make fi1 = f̄1 = ˆ̄f i1 = 0 for the recursions
in (14) - (16) to be equivalent to (11) - (13). However,
subsequent convergence analyses rely on (14) - (16) and
allow for arbitrary initial distributions ˆ̄f i1. This is important
because, in general, agent i may have side information on
the actions aj1 that other agents are to chose at time t = 1.

We can now summarize the behavior of agent i as follows:
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(i) At time t update the state’s belief to µit. (ii) Play
the best response action ait in (8) with νijt = ˆ̄f it for all
j 6= i, (iii) Learn the actions ait of neighbors, either through
observation or communication, and update ˆ̄f it+1 as per (16)
– with the empirical histogram ˆ̄f i1 initialized to an arbitrary
distribution. We show in the following that when all agents
follow this behavior, their strategies converge to a consensus
Nash equilibrium of the symmetric potential game Γ(µ) [cf.
(5)].

A. Convergence

Game equilibria are not unique in general. Consider then
the stage game Γ(µ) with a given common belief µ on the
state of the world θ. The the set of Nash equilibria of the
game Γ(µ) contains all the strategies that satisfy (4),

K(µ) = {σ∗ : ui(σ
∗;µ) ≥ ui(σi, σ∗−i;µ), for all i, σi}.

(17)

In the distributed fictitious play process described by (8)
and (16) agents assume that all other agents select actions
from the same distribution. Therefore, it is reasonable to
expect convergence not to an arbitrary equilibrium but to
a consensus equilibrium in which all agents play the same
strategy. Define then the set of consensus equilibria of the
game Γ(µ) as the subset of the Nash equilibria set K(µ)
defined in (17) for which all agents play according to the
same strategy,

C(µ) = {σ∗ = {σ∗1 , . . . , σ∗n} ∈ K(µ) : σ∗1 = . . . = σ∗n}.
(18)

We emphasize that not all potential games admit consensus
Nash equilibria, but the symmetric potential games consid-
ered in this section do have a nonempty set of consensus
Nash equilibria; see e.g., [7].

We prove here that the best response actions in (8) are
eventually drawn from a consensus equilibrium strategy if
the local empirical histograms ˆ̄f it+1 are updated according to
(16) and the local state beliefs µit converge to the common
belief µ in the sense stated in (10). In the proof of this result
we make use of the following assumptions on the network
topology and the state learning process.

Assumption 1 The network G(N , E) is strongly connected.

Assumption 2 For all agents i ∈ N , the local beliefs µit
converge to a common belief µ at a rate faster than log t/t,

TV (µit, µ) = O

(
log t

t

)
. (19)

Assumption 1 is a simple connectivity requirement to
ensure that the actions taken by any node eventually become
known to all other agents. Assumption 2 requires that agents
reach the common belief µ fast enough. This assumption
is fundamental to subsequent proofs but is not difficult to
satisfy – see Remark 2. We note that the common belief µ is
an arbitrary belief on the state θ to which all agents converge

but is not necessarily the optimal Bayesian aggregate of
the information that different agents acquire about the state
of the world. Validity of these two assumptions guarantees
convergence of the best response actions in (8) as we formally
state next.

Theorem 1 Consider a symmetric potential game Γ(µ) and
the distributed fictitious play updates where at each stage
agents best respond as in (8) with local beliefs νijt = ˆ̄f it for
all j 6= i formed using (16) and belief µit. If Assumptions 1
and 2 are satisfied and the initial estimated average beliefs
are the same for all agents, i.e., if ˆ̄f i1 = ˆ̄f j1 for all i ∈ N and
j ∈ N , then the average empirical distribution f̄t ∈ 4(A)
converges to a strategy that is an element σ∗i ∈ 4(A) of
a strategy profile σ∗ ∈ 4n(A) that belongs to the set of
consensus Nash equilibria C(µ) of the symmetric potential
game Γ(µ). I.e.,

lim
t→∞

‖f̄t − σ∗i ‖ = 0 (20)

where σ∗i ∈ σ∗, σ∗ ∈ C(µ), and ‖ · ‖ denotes the L2 norm
on the Euclidean space.

Proof: See Appendix B.

Since in a consensus Nash equilibrium all agents play
according to the same strategy, σ∗i = σ∗j for all i and j,
Theorem 1 also means that the n-tuple of the population’s
average empirical distribution f̄t is a consensus Nash equilib-
rium strategy profile σ∗ ∈ C(µ). Notice that this result is not
equivalent to showing that each agent’s empirical frequency
fit is a consensus Nash equilibrium strategy. However, i’s
model of other agents ˆ̄f it converges to the average empirical
distribution f̄t. In particular, we have ‖ ˆ̄f it − f̄t‖ = O(log t/t)
by Lemma 5. Hence, agents do learn to best respond to
the consensus equilibrium strategy f̄t. In order for agent
i’s individual empirical frequency fit to converge to the
consensus Nash equilibrium strategy f̄t, the utility function
should be such that agents are not indifferent between two
actions when they best respond in (8) to the equilibrium
strategies of others as we show next.

Corollary 1 In a distributed fictitious play with action shar-
ing, if the potential function u(·) is such that for νijt = f̄t
for all j 6= i the maximizing action is unique asymptotically,
that is, there exists a∗ ∈ A such that

lim
t→∞

u(a∗, νi−it;µ)− u(a, νi−it;µ) ≥ ε (21)

for ε > 0 and for all a ∈ A \ a∗ then each agent
learns to play according to an empirical frequency that is
in equilibrium with others’ empirical frequencies for any
symmetric potential game Γ(µ), that is,

lim
t→∞

‖fit − f̄t‖ = 0. (22)

Proof: See Appendix C.

The condition in (21) says that there exists a single distinct
action a∗ that strictly maximizes the expected utility asymp-
totically when other agents follow f̄t. We obtain the result
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in (22) by leveraging the fact that asymptotically agents’
estimates of the average empirical distribution ˆ̄f it converge to
f̄t and there exists a finite time after which action a∗ will be
chosen. The result above implies that agents eventually play
according to a consensus Nash equilibrium action. Note that
the responses of agents during the distributed fictitious play
depend on both the state learning process and the process
of agents forming their estimates on the average empirical
distribution. The results in this section reveal that these two
processes can be designed independently as long as both
processes converge at a fast enough rate. We make use of this
separation in the next section to design a distributed fictitious
play process that converges to an equilibrium strategy of any
potential game.

Remark 2 The log t/t convergence rate in Assumption 2 is
satisfied by various distributed learning methods including
averaging, e.g., [22], [23]; decentralized estimation, e.g.,
[5], [24]–[28]; social learning models, e.g., [29], [30]; and
Bayesian learning, e.g., [31]–[34]. In the way of illustration,
averaging models have agent i sharing its previous belief
on the state with its neighbors and updating its belief by a
weighted averaging of observed distributions that follow the
recursion

µit(θ) =
∑
j∈Ni

wijµjt−1(θ), (23)

for some set of doubly stochastic weights wij . Convergence
to a common distribution follows an exponential rate O(ct) if
all the information available to agents are private observations
at time t = 1 [23], [35]. In Bayesian learning we can do away
with communication altogether and assume that agents keep
acquiring private information on θ that they incorporate in
the local beliefs µit using Bayes’ law. If the local signals
are informative, all agents converge to an atomic belief
with all probability in the true state of the world. Linear
– meaning O(1/t) – rates of convergence can be achieved
with mild assumptions on the rate of novel information
[31]. Bayesian updates utilizing neighbors’ beliefs are also
possible, if computationally cumbersome, and also achieves
O(1/t) convergence with mild assumptions [32]–[34].

IV. DISTRIBUTED FICTITIOUS PLAY IN GENERIC
POTENTIAL GAMES

For generic potential games we consider a distributed
fictitious play process in which agents communicate the
histograms they keep on the other agents with their neighbors.
I.e., Agent i shares its entire belief νi−it with its neighbors at
each time step in addition to its action ait. When compared
to the distributed fictitious play with action observations, the
additional information communicated allows agents to keep
distinct beliefs on other agents as we explain in the following.

Agent i can keep track of the individual empirical his-
tograms of its neighbors {fjt}j∈Ni by (14) using obser-
vations of the actions of its neighbors {ajt}j∈Ni

, that is,
νijt+1 = fjt+1 for j ∈ Ni. Otherwise, agent i can keep
an estimate of the empirical histogram of its non-neighbors

j /∈ Ni by averaging the estimates of its neighbors on the
non-neighboring agent j {νkjt}k∈Ni . I.e. the estimate of agent
i on j /∈ Ni is given by

νijt+1 =
∑
k∈N

wijkν
k
jt (24)

where wijk > 0 if and only if k ∈ Ni and
∑
k∈N w

i
jk = 1.

Note that in this belief formation, agent i keeps a separate
belief on each individual and has the correct estimate of the
empirical frequency of its neighbors.

Besides the difference in belief updates the distributed
fictitious play is identical to the behavior described in Section
III. To summarize, at time t agent i updates its belief on
the state µit, plays with respect to the best response action
ait in (8) with beliefs νi−it, observe actions and beliefs of
neighbors {ajt, νj−jt}j∈Ni

, and update νijt+1 for j 6= i by
(14) if j ∈ Ni or by (24) if j /∈ Ni. In the following,
we show the convergence of the empirical frequencies to a
Nash equilibrium strategy for any potential game when agents
follow the behavior described above.

A. Convergence

Next, we present the main result of the paper that shows
that the best responses in the distributed fictitious play with
histogram sharing converge to a Nash equilibrium strategy
(17) of any potential game Γ(µ) given the same assumptions
on network connectivity and on convergence of the state
learning process as in Theorem 1.

Theorem 2 Consider a potential game Γ(µ) and the dis-
tributed fictitious play updates where at each stage agents
best respond as in (8) with local beliefs νi−it formed using
(14) if j ∈ Ni or using (24) if j /∈ Ni, and state belief
µit. If Assumptions 1 and 2 are satisfied then the empirical
frequencies of agents ft := {fjt}j∈N ∈ 4n(A) defined in
(11) converge to a Nash equilibrium strategy of the potential
game with common state of the world beliefs µ, that is,

min
σ∗∈K(µ)

‖ft − σ∗‖ → 0 (25)

where K(µ) is the set of Nash equilibria of the game Γ(µ)
(17).

Proof: See Appendix D.

The above result implies that when agents share their
beliefs on others’ histograms and based on this information
keep an estimate of the empirical distribution of each agent,
their responses converge to a Nash equilibrium of the poten-
tial game as long as their beliefs on the state reach consensus
at a belief µ fast enough. Theorem 2 generalizes Theorem 1
to the class of potential games given that agents in addition
to their actions communicate their beliefs on others with their
neighbors.

V. SIMULATIONS

We explore the effects of the network connectivity, the
state learning process and the payoff structure on the per-
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Fig. 2. Position of robots over time for the geometric (a) and small world networks (b). Initial positions and network is illustrated with gray lines. Robots’
actions are best responses to their estimates of the state and of the centroid empirical distribution for the payoff in (27). Robots recursively compute their
estimates of the state by sharing their estimates of θ with each other and averaging their observations. Their estimates on the centroid empirical distribution
is recursively computed using (16). Agents align their movement at the direction 95◦ while the target direction is θ = 90◦.
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Fig. 3. Distributed fictitious play actions of robots over time for the geometric (a) and small world networks (b). Solid lines correspond to each robots’
actions over time. The dotted dashed line is equal to value of the state of the world θ = 90◦ and the dashed line is the optimal estimate of the state given
all of the signals which is equal to 96.1◦. Agents reach consensus in the movement direction 95◦ faster in the small-world network than the geometric
network.

formance of the algorithm in two games named the beauty
contest game, and the target covering game.

A. Beauty contest game

A network of n = 50 autonomous robots want to move in
coordination and at the same time follow a target direction
θ = [0◦, 180◦] in a two dimensional topology. Each robot
receives an initial noisy signal related to the target direction
θ,

πi(θ) = θ + εi (26)

where εi is drawn from a zero mean normal distribution
with standard deviation equal to 20◦. Actions of robots
determine their direction of movement and belong to the
same space as θ but are discretized in increments of 5◦,
i.e., A = (0◦, 5◦, 10◦, . . . , 180◦). The estimation and coor-
dination payoff of robot i is given by the following utility

function

ui(a, θ) = −λ(ai−θ)2−(1−λ)

(
ai−

1

n− 1

∑
j 6=i

aj

)2

(27)

where λ ∈ (0, 1) gauges the relative importance of estimation
and coordination. The game is a symmetric potential game
and hence admits a consensus equilibrium for any common
belief on θ [14].

In the following numerical setup, we choose θ to be equal
to 90◦. We assume that all robots start with a common prior
on the centroid empirical distribution in which they believe
that each action is drawn with equal probability. They follow
the distributed fictitious play updates with action sharing
described in Section III. State learning process is chosen as
the averaging model in which robots update their beliefs on
the state θ using (23) with initial beliefs formed based on the
initial private signal with signal generating function in (26).

In Figs. 2 and 3, we plot robots’ positions and their actions,
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Fig. 4. Locations (a) and actions (b) of robots over time for the star network. There are n = 5 robots and targets. In (a), the initial positions of the robots
are marked with squares. The robots’ final positions at the end of 100 steps are marked with a diamond. The positions of the targets are indicated by ‘×’.
Robots follow the histogram sharing distributed fictitious play presented in Section IV. The stars in (a) represent the position of the robots at each step of
the algorithm. The solid lines in (b) correspond to the actions of robots over time. All targets are covered by a single robot before 100 steps.

respectively. In Fig. 2, we assume that robot i moves with
a displacement of 0.01 meters in the chosen direction ait
at stage t. Figs. 2(a) and 3(a) correspond to the behavior
in a geometric network when robots are placed on a 1
meter × 1 meter square randomly and connecting pairs with
distance less than 0.3 meter between them. Figs. 2(b) and
3(b) correspond to the behavior in a small-world network
when the edges of the geometric network are rewired with
random nodes with probability 0.2. The geometric network
illustrated in Fig. 2(a) has a diameter of ∆g = 5 with an
average length among users equal to 2.51. The small world
network illustrated in Fig. 2(b) has a diameter of ∆r = 4 with
an average length among users equal to 2. We observe that
the agents reach consensus at the action 95◦ in both networks
but the convergence is faster in the small-world network (39
steps) than the geometric network (78 steps).

We further investigate the effect of the network structure
in convergence time by considering 50 realizations of the
geometric network and 50 small-world networks generated
from the realized geometric networks with rewire probability
of 0.2. The average diameter of the realized geometric
networks was 5.1 and the average diameter of the realized
small-world networks was 4.1. The mean of the average
length of the realized geometric networks was 2.27 while the
same value was 1.96 for the realized small-world networks.
We considered a maximum of 500 iterations for each net-
work. Among 50 realizations of the geometric network, the
distributed fictitious play behavior failed to reach consensus
in action within 500 steps in 18 realizations while for small-
world networks the number of failures was 5. The average
time to convergence among the 50 realizations was 228 steps
for the geometric network whereas the convergence took 100
steps for the small-world network on average. In addition,

1Diameter is the longest shortest path among all pairs of nodes in the
network. The average length is the average number of steps along the shortest
path for all pairs of nodes in the network.

convergence time for the small-world network is observed to
be shorter than the corresponding geometric network in all
of the runs except one.

B. Target covering game

n autonomous robots want to cover n targets. The position
of a target k ∈ T := {1, . . . , n} on the two dimensional
space is denoted by θk ∈ R2 and are not known by the
robots. Robot i starts from an initial location xi ∈ R2 and
makes noisy observations sik0 of the location of target k
coming from normal distribution with mean θk and standard
deviation equal to σI where I is the 2×2 identity matrix and
σ > 0 for all k ∈ T . At each stage robots choose one of the
targets, that is, A = T and receives a payoff from covering
that target that is inversely proportional to its distance from
the target if no other robot is covering it, that is, the payoff of
robot i from covering target k ∈ (1, . . . , n) ai = k is given
by

ui(ai = k, a−i, θ) = 1

∑
j 6=i

1 (aj = k) = 0

h(xi, θk)

(28)

where 1(·) is the indicator function and h(·) is a reward
function inversely proportional to the distance between the
target and the robot’s initial position xi, e.g., ‖xi − θk‖−2.
The first term in the multiplication above is one if no one
else chooses target k otherwise it is zero. The second term in
the multiplication decreases with growing distance between
robot i’s initial position xi and the target k’s position θk.

When all of the robots start from the same location, that
is, xi = x for all i ∈ N , the game with payoffs above can
be shown to be a potential game by using the definition of
potential games in (2). Furthermore, the game is symmetric.
In this setup, we would like each robot to assign itself to
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a single target different from the rest of the robots, that is,
we are interested in convergence to a pure strategy Nash
equilibrium in which each robot picks a single action similar
to the target assignment games considered in [20]. Observe
that the target covering game can not have a pure consensus
equilibrium strategy. To see this, assume that all robots
cover the same target then they all receive a payoff of zero.
Any robot that deviates to another target receives a positive
payoff. Therefore, there cannot be a pure consensus strategy
equilibrium. As a result, instead of the action sharing scheme,
we consider the histogram sharing distributed fictitious play
by which it is possible but not guaranteed that the robots
converge to a pure strategy Nash equilibrium.

In the numerical setup, we consider n = 5 robots with the
payoffs in (28) and n targets. The locations of targets are
respectively given as follows θ1 = (−1,−1), θ2 = (1, 1),
θ3 = (−1, 1), θ4 = (1,−1), θ5 = (0, 1). We consider the
case that the initial positions of robots are different from
each other with the reward function h(xi, θk) = ‖xi−θk‖−2.
Specifically, the initial positions of the robots equal to
x1 = (−0.1,−0.1), x2 = (0.1, 0.1), x3 = (−0.1, 0.1),
x4 = (0.1,−0.1), and x5 = (0, 0.1). Robots make noisy ob-
servations sikt for all k ∈ T after each step. The observations
have the same distribution as sik0 with σ = 0.2 meters. We
assume that the robots update their beliefs on the positions
of targets using the Bayes’ rule based on the observations.

Figs. 4(a)-(b) shows the movement of robots and actions
of robots over time, respectively, for the star network. We
assume that robots move by a distance of 0.02 meters
along the estimated direction of the target they choose at
each step of the distributed fictitious play. The estimated
direction is a straight line from the current position to the
estimated position of the chosen target. I.e., the robots make
observations and decisions in every 0.02 meters. Finally, we
assume that the robot covers the target if it is 0.05 meters
away from a target and no other robot covers it. In figs.
4(a)-(b), we observe that each robot comes to 0.05 meters
neighborhood of a target within 100 steps. Furthermore, the
robots cover all of the targets, that is, they converge to a pure
Nash equilibrium.

Next, we compare the distributed fictitious play algorithm
to the centralized (optimal) algorithm. In the centralized
algorithm, at the beginning of each step agents aggregate their
signals and then take the action to maximize the expected
global objective defined as the sum of the utilities of all
(28). Since there exists multiple equilibria in the complete
information target coverage game, it is not guaranteed that the
distributed fictitious play algorithm converges to the optimal
equilibrium at each run. For this purpose, we considered 50
runs of the algorithm where in each run signals are generated
from different seeds. We assume that the algorithm has
converged when each target is covered by a robot within 0.05
meters from the target. In Fig. 5, we plot the evolution of the
global utility with respect to time for the distributed fictitious
play algorithm runs with the best and the worst final payoff,
and for the centralized algorithm. The best final configuration
overlaps with the final centralized solution which is given by
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Fig. 5. Comparison of the distributed fictitious play algorithm with the
centralized optimal solution. Best and worst correspond to the runs with the
highest and lowest global utility in the distributed fictitious play algorithm.
The algorithm converges to the global optimal point in 40 runs out of a total
of 50 runs.

a = [1, 2, 3, 4, 5] resulting in a global objective value of 4.25.
The worst final configuration is given by a = [1, 5, 3, 4, 2]
resulting in a global objective value of 4.20.

VI. CONCLUSION

This paper considered the optimal behavior of multi-agent
systems with uncertainty on the state of the world. The
fundamental problem of interest was to have a model of
optimal agent behavior given a global objective that depends
on the state and actions of all the agents when agents have
different beliefs on the state. We posed the setup as a potential
game with the global objective as the common utility of the
multi-agent system and set the optimal behavior as a Nash
equilibrium strategy of the game when agents have common
beliefs on the state of the environment. We presented a
class of distributed algorithms based on the fictitious play
algorithm in which agents reach an agreement on their state
beliefs asymptotically through an exogenous process, build
beliefs on the behavior of others based on information from
neighbors and best respond to their expected utility given
their beliefs on the state and others.

We considered two information exchange scenarios for the
algorithm where in the first scenario agents communicated
their actions. For this scenario we showed that when the
agents keep track of the population’s average empirical
frequency of actions as a belief on the behavior of every other
individual, their behavior converges to a consensus Nash
equilibrium of any symmetric potential game with common
beliefs on the state. In the second scenario we considered
agents exchanging their entire beliefs on others in addition
to their actions. For this scenario we proposed averaging
of the observed histograms as a model for keeping beliefs
on the behavior of others and showed that their empirical
frequency converges to a Nash equilibrium of any potential
game. We exemplified the algorithm in a coordination game
– a symmetric potential game – and a target covering game
– a potential game. In these examples, we observed that the
diameter of the network is influential in convergence rate
where the shorter the diameter is, the faster the convergence
is.
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APPENDIX A
DEFINITIONS AND INTERMEDIATE CONVERGENCE

RESULTS

We define notions that relate closeness of a strategy to the
set of consensus Nash equilibria of the game Γ(µ).

The distance of a strategy σ ∈ 4n(A) from the set of
consensus Nash equilibria C(µ) is given by

d(σ,C(µ)) = min
g∈C(µ)

‖σ − g‖. (29)

The set of consensus strategies that are ε away from the
consensus Nash equilibrium set (18) is the ε-consensus Nash
equilibrium strategy set, that is,

Cε(µ) = {σ∗ ∈ 4n(A) : ui(σ
∗;µ) ≥ ui(σi, σ∗−i;µ)− ε,

for all σi ∈ 4(A), for all i, σ1 = σ2 = · · · = σn}
(30)

for ε > 0.
We define the δ-consensus neighborhood of C(µ) as

Bδ(C(µ)) =
{
σ ∈ 4n(A) : d(σ,C(µ)) < δ,

σ1 = σ2 = · · · = σn
}
. (31)

Note that the δ consensus neighborhood is defined as the set
of consensus strategies that are close to the set C(µ). We
can similarly define the ε Nash equilibrium set Kε(µ) and
δ neighborhood of K(µ) in (17) as Bδ(K(µ)) by removing
the agreement constraint on the equilibrium strategies [7].

The following intermediate results can be found in Ap-
pendix B in [7]. They are stated here for completeness.

Lemma 1 If the processes gt ∈ 4n(A) and ht ∈ 4n(A)
are such that ‖g−it − h−it‖ = O(log t/t) for all i ∈ N and
the state learning process for all i ∈ N generates estimate
beliefs {{µit}∞t=0}i∈N that satisfy Assumption 2, then for a
potential payoff u in (2) the following is true for the expected
utility of best response behavior v(·) in (9),

‖v(g−it;µit)− v(h−it;µ)‖ = O(
log t

t
). (32)

Proof: The proof is detailed in Lemma 4 in [7]. The proof
follows by first making the observation that the expected
utility defined in (1) for the potential function is Lipschitz
continuous, and second using the definition of the Lipschitz
continuity to bound the difference between the best response
expected utilities in (9) for g−it, µit and h−it, µ by the
distance between g−it, µit and h−it, µ multiplied by the
Lipschitz constant.

Lemma 2 If
∑T
t=1

αt

t < ∞ for all T > 0, ‖αt − βt‖ =

O( log t
t ) and βt+1 ≥ 0 then

∑T
t=1

βt

t <∞ as T →∞.

Proof: Refer to the proof of Lemma 5 in [7].

Lemma 3 Denote the n-tuple of the average empirical dis-
tribution with f̄nt := {f̄t, . . . , f̄t}. If for any ε > 0 the

following holds

lim
T→∞

#{1 ≤ t ≤ T : f̄nt /∈ Cε(µ)}
T

= 0 (33)

then limt→∞ d(f̄nt , C(µ)) = 0 where d(·, ·) is the distance
defined in (29).

Proof : By Lemma 7 in [7], (33) implies that for a given
δ > 0 there exists an ε > 0 such that

lim
T→∞

#{1 ≤ t ≤ T : f̄nt /∈ Bδ(C(µ))}
T

= 0 (34)

Using above equation, the result follows by Lemma 1 in [36].

Lemma 4 For the potential game with function u(·) in
(2) and expected best response utility v(·) (9), consider a
sequence of distributions ft ∈ 4n(A) for t = 1, 2, . . . and
a common belief on the state µ ∈ 4(Θ). Define the process
βt :=

∑n
i=1 v(f−it;µ)− u(fit, f−it;µ) for t = 1, 2, . . . . If

lim
T→∞

1

T

T∑
t=1

βt
t

= 0 (35)

then limt→∞ d(ft,K(µ)) = 0 where ft = {f1t, . . . , fnt}.

Proof: By Lemma 6 in [7], the condition (35) implies that
for all ε > 0

lim
T→∞

#{1 ≤ t ≤ T : ft /∈ Kε(µ)}
T

= 0. (36)

By Lemma 7 in [7], (36) implies that for all δ > 0 the
following is true

lim
T→∞

#{1 ≤ t ≤ T : ft /∈ Bδ(K(µ))}
T

= 0 (37)

The above convergence result yields desired convergence
result by Lemma 1 in [36].

APPENDIX B
PROOF OF THEOREM 1

Before we prove the theorem, we present an intermediate
result that shows the convergence rate of the belief of agent
i on the population’s average empirical distribution ˆ̄f it to the
true average empirical distribution of the population f̄ it .

Lemma 5 Consider the distributed fictitious play in which
the centroid empirical distribution of the population f̄t
evolves according to (15) and agents update their estimates
on the empirical play of the population ˆ̄f it according to (16).
If the network satisfies Assumption 1 and the initial beliefs
are the same for all agents, i.e., ˆ̄f i1 = f̄1 for all i ∈ N , then
ˆ̄f it converges in norm to f̄t at the rate O(log t/t), that is,
‖ ˆ̄f it − f̄t‖ = O( log t

t )

Proof: See Appendix A in [7] for a proof.

Observe that the above result is true irrespective of the
game that the agents are playing and uncertainty in the state.
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The proof leverages on the fact that the change in the centroid
empirical distribution is at most 1/t by the recursion in
(15). Then by averaging observed actions of neighbors in
a strongly connected network the beliefs of agent i on the
centroid empirical distribution evolves faster than the change
in the centroid empirical distribution.

Proof Theorem 1: Given the recursion for the average
empirical distribution in (15), we can write the expected
utility for the potential function u(·) when all agents follow
the centroid empirical distribution f̄t+1 and have identical
beliefs µ as follows

u(f̄nt+1; µ) = u

(
f̄nt +

1

t

(
1

n

n∑
i=1

Ψ(ait)− f̄nt

)
; µ

)
(38)

where f̄nt := {f̄t, . . . , f̄t} ∈ 4n(A) is the n-tuple of the
average population empirical distribution. Define the average
best response strategy at time t Ψ̄(at) := 1

n

∑n
i=1 Ψ(ait).

By the multi-linearity of the expected utility, we expand the
above expected utility as follows [36]

u(f̄nt+1;µ) = u(f̄nt ;µ)+

1

t

n∑
i=1

u(Ψ̄(at), f̄
n−1
t ;µ)− u(f̄t, f̄

n−1
t ;µ) +

δ

t2

(39)

where the first order terms of the expansion are explicitly
written and the remaining higher order terms are collected to
the term δ/t2.

Consider the total utility term in (39) where agent i is
playing with respect to the average best response strategy
at time t + 1 Ψ̄(at) and remaining agents use the average
empirical distribution f̄n−1

t ,
∑n
i=1 u(Ψ̄(at), f̄

n−1
t ;µ). By the

definition of the average best response strategy, we write the
term in consideration as
n∑
i=1

u
(
Ψ̄(at), f̄

n−1
t ;µ

)
=

n∑
i=1

u

(
1

n

n∑
i=1

Ψ(ait), f̄
n−1
t ;µ

)
.

(40)

The following equality can be shown by using the multi-
linearity of expectation and permutation invariance of the
utility [7],

n∑
i=1

u(Ψ̄(at), f̄
n−1
t ;µ) =

n∑
i=1

u(Ψ(ait), f̄
n−1
t ;µ). (41)

The above equality means that the total expected utility when
agents play with the average best response strategy at time
t Ψ̄(at) against the average empirical distribution f̄n−1

t at
time t is equal to the total expected utility when agents best
respond to the average population empirical distribution at
time t.

We substitute in the above equality (41) for the correspond-
ing term in (39) to get the following

u(f̄nt+1;µ) = u(f̄nt ;µ)+

1

t

n∑
i=1

u(Ψ(ait), f̄
n−1
t ;µ)− u(f̄t, f̄

n−1
t ;µ) +

δ

t2
.

(42)

We can upper bound the right hand side by adding |δ|/t2 to
the left hand side.

u(f̄nt+1;µ)− u(f̄nt ;µ) +
|δ|
t2
≥

1

t

n∑
i=1

u(Ψ(ait), f̄
n−1
t ;µ)− u(f̄t, f̄

n−1
t ;µ) (43)

Define Lit := vi(ν
i
−it;µit) − u(Ψ(ait), f̄

n−1
t ;µ) where

νijt = ˆ̄f it for j 6= i. Note that since agents have identical
payoffs, we can drop the subindex of the expected utility of
agent i when it best responds to the strategy profile of others
vi(·) defined in Section II to write it as v(·). Now we add
and subtract

∑n
i=1 Lit/t to both sides of the above equation

to get the following inequality,

u(f̄nt+1;µ)− u(f̄nt ;µ) +
|δ|
t2

+
1

t

n∑
i=1

v(νi−it;µit)− u(Ψ(ait), f̄
n−1
t ;µ)

≥ 1

t

n∑
i=1

v(νi−it;µit)− u(f̄t, f̄
n−1
t ;µ). (44)

Summing the inequalities above from time t = 1 to time
t = T , we get

u(f̄nT+1;µ)− u(f̄n1 ;µ) +

T+1∑
t=1

|δ|
t2

+

T+1∑
t=1

n∑
i=1

Lit
t

≥
T+1∑
t=1

1

t

n∑
i=1

v(νi−it;µit)− u(f̄t, f̄
n−1
t ;µ). (45)

Next we define the following term that corresponds to
the inside summation on the right hand side of the above
inequality,

αt :=

n∑
i=1

v(νi−it;µit)− u(f̄t, f̄
n−1
t ;µ). (46)

The term αt captures the total difference between expected
utility when agents best respond to their beliefs on the
average population empirical distribution νijt = ˆ̄f it and
their beliefs on θ µit, and when they follow the current
centroid empirical distribution f̄t with common beliefs on
the state µ. Note that by Lemma 5 and Assumption 2 the
conditions of Lemma 1 are satisfied, that is, ‖v(νi−it;µit)−
u(f̄t, f̄

n−1
t ;µ)‖ = O(log t/t). By the assumption that utility

value is finite and Lemma 1, the left hand side of (45) is



12

finite. That is, there exists a B̄ > 0 such that

B̄ ≥
T+1∑
t=1

αt
t
. (47)

for all T > 0. Next, we define the following term

βt :=

n∑
i=1

v(f̄n−1
t ;µ)− u(f̄t, f̄

n−1
t ;µ) (48)

that captures the difference in expected payoffs when agents
best respond to the centroid empirical distribution f̄n−1

t for
others given the common asymptotic belief µ, and when
everyone follows the current centroid empirical distribution
f̄t with common beliefs on the state µ. When we consider
the difference between αt and βt, the following equality is
true by Lemma 1,

‖αt − βt‖ = ‖
n∑
i=1

v(νi−it;µit)− v(f̄n−1
t ;µ)‖ = O(

log t

t
).

(49)

Further βt ≥ 0. Hence, the conditions of Lemma 2 are
satisfied which implies that the following holds

T∑
t=1

βt
t
<∞. (50)

From the above equation it follows by the Kronecker’s
Lemma that [37, Thm. 2.5.5]

lim
T→∞

1

T

T∑
t=1

βt = 0. (51)

The above convergence result implies that by Lemma 6 in [7],
for any ε > 0, the number of centroid empirical frequencies
away from the ε consensus NE is finite for any time T , that
is,

lim
T→∞

#{1 ≤ t ≤ T : f̄nt /∈ Cε(µ)}
T

= 0. (52)

The relation above implies that the distance between the em-
pirical frequencies and the set of symmetric NE diminishes
by Lemma 3, that is,

lim
t→∞

d(f̄nt , C(µ)) = 0. (53)

where d(·, ·) is the distance defined in (29). The result in (20)
follows from above.

APPENDIX C
PROOF OF COROLLARY 1

Denote the n − 1 tuple of the average empirical dis-
tribution f̄t by f̄n−1

t . By the Lipschitz continuity of the
multilinear utility expectation we have that ‖u(ai, f̄

n−1
t ;µ)−

u(ai, ν
i
−it;µit)‖ ≤ K‖(f̄n−1

t , µ) − (νi−it, µit)‖ for all ai
where νijt = ˆ̄f it for all j 6= i and K ≥ 0 is the
Lipschitz constant. By Lemma 5 and Assumption 2, we have
‖(f̄n−1

t , µ)− (νi−it, µit)‖ = O(log t/t). Then using (21), we
have for all a ∈ A \ a∗

u(a∗, νi−it;µit)− u(a, νi−it;µit) ≥ ε− δt (54)

for νijt = ˆ̄f it for all j 6= i, δt ≥ 0 and δt = O(log t/t).
Therefore, there exists a finite time T > 0 such that ε−δt > 0
for all t > T . This means that a∗ is the best response action
of i after time T . Then the empirical frequency of i ∈ N fit
converges to Ψ(a∗) which implies (22).

APPENDIX D
PROOF OF THEOREM 2

Before we prove the theorem, we first analyze the conver-
gence rate of the histogram sharing presented in Section IV
where we defined νijt = fjt if j ∈ Ni or νijt is given by (24)
if j /∈ Ni.

Denote the lth element of νijt by νijt(l). Define the matrix
that captures population’s estimate on j’s empirical distribu-
tion, F̂jt := [ν1

jt, . . . , ν
n
jt]
T ∈ Rn×m. The lth column of F̂jt

represents the population’s estimate on j’s lth local action
denoted by F̂jt(l) := [ν1

jt(l), . . . , ν
n
jt(l)]

T ∈ Rn×1.
Observe that j’s estimate of the frequency of its own

action l is correct, that is, νjjt(l) = fjt(l). Define the
vector xjlt ∈ Rn×1 where its jth element is equal to the
empirical frequency of agent j taking action l ∈ A, that is,
xjlt(j) = fjt(l), and its other elements are zero. Further
define the weighted adjacency matrix for belief update on
the frequency of agent j’s lth action Wjl ∈ Rn×n with
Wjl(i, k) = wijk for all i and k. We remind that wijk is
the weight that i uses to mix agent j ∈ Ni’s belief on agent
k /∈ Ni’s empirical distribution in (24). Also note that there
are m weight matrices Wjl each corresponding to one action
l ∈ A.

The matrix Wjl is row stochastic, that is, the sum of
row elements of Wjl is equal to one for each row by∑
k∈Ni

wijk = 1 and we have that Wjl(i, j) = 1 for
j ∈ Ni

⋃
i. The latter condition on Wjl is by the fact that

if j ∈ Ni, j sends its action to its neighbor i and hence
νijt = fjt. Given these definitions we can write a linear
recursion for population’s estimate of j’s empirical frequency
of its lth action

F̂jt+1(l) = Wjl(F̂jt(l) + xjlt+1 − xjlt). (55)

Note that if the above linear system converges to the true
empirical frequency of fjt(l) in all of its elements then it
implies that all agents learned its true value.

Next, we analyze the linear update in (55) and show the
convergence of the belief of agent i on the population’s
empirical distribution νi−it to the true average empirical dis-
tribution of the rest of the population f−it at rate O(log t/t).

Lemma 6 Consider the distributed fictitious play in which
the empirical distribution of agent j fjt evolves according to
(14) and agent i updates its estimate on the empirical play
of the population νi−it according (14) if j ∈ Ni or using
(24) if j /∈ Ni. If the network satisfies Assumption 1 and
the initial beliefs are the same for all agents, i.e., νij1 = fj1
for all i ∈ N , then νijt converges in norm to fjt at the rate
O(log t/t), that is, ‖νijt − fjt‖ = O( log t

t ) for all j ∈ N .
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Proof: We consider the difference between the population’s
estimate of the empirical frequency of j taking action l ∈
A and j’s true empirical distribution fjt(l)1 by subtracting
fjt+1(l)1 from both sides of (55) to get

F̂jt+1(l)−fjt+1(l)1 = Wjl(F̂jt(l)+xjlt+1−xjlt)−fjt+1(l)1.
(56)

Since Wjl is row stochastic, we can move the last term on
the right hand side inside the matrix multiplication,

F̂jt+1(l)−fjt+1(l)1 = Wjl(F̂jt(l)+xjlt+1−xjlt−fjt+1(l)1).
(57)

We can equivalently express fjt+1(l) = fjt(l) +xjlt+1(j)−
xjlt(j) by the definition of the vector xjlt. Substituting this
expression for the fjt+1(l) on the right hand side of the above
equation we have

F̂jt+1(l)−fjt+1(l)1 = Wjl

(
F̂jt(l) + xjlt+1 − xjlt

− (fjt(l) + xjlt+1(j)− xjlt(j))1
)
. (58)

Let yt := F̂jt(l)− fjt(l)1, then

yt+1 = Wjl(yt + xjlt+1 − xjlt − (xjlt+1(j)− xjlt(j))1).
(59)

Let δt := xjlt+1 − xjlt − (xjlt+1(j) − xjlt(j))1. Next,
we provide an upper bound for ‖δt‖ by using the triangle
inequality and observing the fact that recursion for fictitious
play in (14) can change only the jth element of the vector xjlt
by 1/t, that is, xjlt+1(j)− xjlt(j) = 1

t (Ψ(ajt)(l)− fjt(l)),
as follows

‖δt‖ = ‖xjlt+1 − xjlt − (xjlt+1(j)− xjlt(j))1‖ (60)
≤ ‖xjlt+1 − xjlt‖+ ‖xjlt+1(j)1− xjlt(j)1‖ (61)

≤ 1

t
+
n

t
=
n+ 1

t
= O(

1

t
). (62)

Now consider the row stochastic matrix Wjl. Its largest
eigenvalue is λ1 = 1 and its right eigenvector is equal to col-
umn vector of ones 1 by the Perron-Frobenius theorem [38,
Ch. 2.2]. The left eigenvector associated with the eigenvalue
λ1 is given by eTj . This is easy to see when we interpret Wjl

as representing a Markov chain where state j is an absorbing
state and there is a positive transition probability from any
other state to state j. Note that once a state i that is a neighbor
of j is reached, the transition to state j is with probability
1 due to the update rule. Because the graph G is strongly
connected, for any i /∈ Nj there exists a path to a node
k ∈ Nj

⋃
j. As a result the absorbing state j is reached with

positive probability which implies the stationary distribution
of the Markov chain is given by ej , that is, with probability
1 the state is j. Moreover, limt→∞W t

jl → 1eTj .
Now define the matrix W jl = Wjl − 1eTj . By the fact

that the limiting power sequence of the matrix is 1eTj ,
limt→∞W

t

jl → 0. By its construction the sum of the row
elements of W jl is zero for any row, that is, W jl1 = 0n×1.
Further note that the jth row of W jl is all zeros as well as
all the rows k such that j ∈ Nk.

By using the definition of δt, we can equivalently write

(59) as

yt+1 = Wjl(yt + δt) =

t∑
s=0

W s+1
jl δt−s +W t

jly1 (63)

for t = 1, 2, . . . . The second equality follows by writing the
first equality for {ys}s=1,...,t and iteratively substituting each
term. Note that by the assumption νij1 = fj1, y1 = 0. So
when we consider the norm of yt+1, ‖yt+1‖, we are left with

‖yt+1‖ = ‖
t∑

s=0

W s+1
jl δt−s‖ ≤

t∑
s=0

‖W s+1
jl δt−s‖ (64)

Now use the decomposition Wjl = W jl + 1eTj in the above
line to get

‖yt+1‖ ≤
t∑

s=0

‖(W jl + 1eTj )s+1δt−s‖ (65)

Since W jl1 = 0, eTj W jl = 0 and 1eTj = (1eTj )s for any
s = 1, 2, . . . , we have W s

jl = W
s

jl+1eTj . Then we can upper
bound ‖yt+1‖ by using the triangle inequality as follows

‖yt+1‖ ≤
t∑

s=0

‖W s+1

jl δt−s‖+ ‖(1eTj )s+1δt−s‖ (66)

Further note δt(j) = 0 for any t = 1, 2, . . . by the definition
of xjlt+1 and xjlt, and therefore eTj δt = 0, which means the
second term on the right hand side of the inequality is zero,
that is,

‖yt+1‖ ≤
t∑

s=0

‖W s+1

jl δt−s‖. (67)

Furthermore, the spectral radius of W jl is strictly less than
1, that is, λ̄1 := ρ(W jl) < 1 because limt→∞W

t

jl = 0 [39,
Thm. 1.10]. As a result, we have

‖yt+1‖ ≤
t∑

s=0

‖W s+1

jl δt−s‖ ≤
t∑

s=0

ρ(W jl)
s+1‖δt−s‖ (68)

Note that by (62), we have ‖δt−s‖ = n + 1/t − s. Define
δavg(t) := 1

t

∑t
s=1

n+1
s . By Chebychev’s sum inequality

[40] (p. 43-44), we have

‖yt+1‖ ≤ δavg(t)
t∑

s=0

λ̄s+1
1 (69)

= δavg(t)(λ̄1
1− λ̄t+1

1

1− λ̄1
) ≤ δavg(t)

1− λ̄1
(70)

Noting that δavg(t) := 1
t

∑t
s=1

n+1
s = O( log t

t ), we have
‖yt+1‖ = ‖F̂jt(l) − fjt(l)1‖ = O( log t

t ) for any l ∈ A.
Consequently, ‖νijt − fjt‖ = O( log t

t ).

Similar to Lemma 5 the above result is true irrespective
of the game that the agents are playing. The result leverages
on the fact that the change in the empirical distribution of
agent j is at most 1/t by the recursion in (14) and the belief
updates of i on j’s empirical frequency evolves faster than
the change in agent j’s empirical distribution. We continue
with the proof of the Theorem.
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Proof of Theorem 2: Proof follows the same proof outline
in Theorem 1. Start by exploiting the multi-linearity of the
expected utility when all individuals play with respect to their
empirical distributions [36], that is,

u(ft+1;µ) = u(ft;µ)

+
1

t

n∑
i=1

u(Ψ(ait), f−it;µ)− u(fit, f−it;µ) +
δ

t2
.

(71)

for some δ > 0 which we collect higher order terms. We
move the first term of the RHS to the left and add |δ|/t2 to
the left hand side and get rid of the last term on the right
hand side,

u(ft+1;µ)− u(ft;µ) +
|δ|
t2
≥

1

t

n∑
i=1

u(Ψ(ait), f−it;µ)− u(fit, f−it;µ). (72)

Now define Lit := v(νi−it;µit) − u(Ψ(ait), f−it;µ). Add∑n
i=1 Lit/t to both sides of the above equation to get

u(ft+1;µ)− u(ft;µ) +
|δ|
t2

+
1

t

n∑
i=1

Lit

≥ 1

t

n∑
i=1

v(νi−it;µit)− u(fit, f−it;µ). (73)

Now we sum up the terms above from time t = 1 to T ,

u(fT+1;µ)− u(f1;µ) +

T+1∑
t=1

|δ|
t2

+

T+1∑
t=1

1

t

n∑
i=1

Lit

≥
T+1∑
t=1

1

t

n∑
i=1

v(νi−it;µit)− u(fit, f−it;µ). (74)

Consider the left hand side of the above equation. The utility
and therefore the expected utility is bounded. The third term
is summable. By Lemma 6 and Assumption 2, the conditions
of Lemma 1 are satisfied. Lemma 1 yields that the last term
on the left hand side of (74) is summable. Hence, the left
hand side of (74) is bounded.

Define αt :=
∑n
i=1 v(νi−it;µit) − u(fit, f−it;µ). Using

the definition of αt and the boundedness of the left hand
side of the above equation, it follows from (74) that there
exists some bounded parameter 0 < B̄ <∞ such that

B̄ >

∞∑
t=1

αt
t
. (75)

Define βt :=
∑n
i=1 v(f−it;µ)− u(fit, f−it;µ) and consider

the difference between αt+1 and βt+1

‖αt − βt‖ = ‖
n∑
i=1

v(νi−it;µit)− v(f−it;µ)‖ (76)

Lemma 1 implies that the above equality is equal to ‖αt −
βt‖ = O(log t/t). By noting that βt ≥ 0, the conditions of

Lemma 2 are satisfied which implies that
T∑
t=1

βt
t
<∞ (77)

for any T > 0. As a result the time average of the above sum
converges to zero by Kronecker’s Lemma [37, Thm. 2.5.5],
that is,

lim
T→∞

1

T

T∑
t=1

βt
t

= 0. (78)

We remark that βt captures the difference in expected payoffs
when agent i best responds to others’ empirical distribution
f−it given the common asymptotic belief µ, and when agent
i follows its own empirical distribution fit with common
beliefs on the state µ. The convergence in (25) follows from
the above equation by Lemma 4.
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