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Abstract—We consider a wireless control architecture with
multiple control loops over a shared wireless medium. A sched-
uler observes the random channel conditions that each control
system experiences over the shared medium and opportunisti-
cally selects systems to transmit at a set of non-overlapping
frequencies. The transmit power of each system also adapts to
channel conditions and determines the probability of successfully
receiving and closing the loop. We formulate the optimal design
of channel-aware scheduling and power allocation that minimize
the total power consumption while meeting control performance
requirements for all systems. In particular it is required that
for each control system a given Lyapunov function decreases
at a specified rate in expectation over the random channel
conditions. We develop an offline algorithm to find the optimal
communication design, as well as an online protocol which selects
scheduling and power variables based on a random observed
channel sequence and converges almost surely to the optimal
operating point. Simulations illustrate the power savings of our
approach compared to other non-channel-aware schemes.

Index Terms—Scheduling, networked control systems, wireless
fading channels, opportunistic adaptation, power management.

I. INTRODUCTION

With the number of wireless sensors and actuators increas-
ing in modern control environments, e.g., smart buildings or
industrial automation, a need to efficiently share the available
wireless medium between these devices arises. Such sharing
is challenging not only because it needs to guarantee some
level of control performance, but also because of the uncertain
stochastic nature of the wireless medium. This motivates us
to explore mechanisms for scheduling access to the wireless
channel in a way that is both control-aware and opportunis-
tically adapted to the channel conditions. Moreover, as the
wireless devices usually have limited power (e.g., battery)
resources, such scheduling mechanisms are desired to be also
power efficient.

The problem of scheduling with control performance objec-
tives has received a lot of attention in the past in the context
of networked control systems (either wired or wireless). The
mechanisms usually examined are either static or dynamic.
Typical examples of the first type are periodically protocols
where the wireless devices transmit in a predefined repeating
order, e.g., round-robin. Stability under such protocols can be
analyzed by a switching system approach, usually including
other network phenomena such as delays, varying transmission
times, or packet drops – see, e.g., [2]–[5]. The problem of
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designing static schedules suitable for control applications
has also been addressed. Periodic sequences leading to sta-
bility [6], controllability and observability [7], or minimizing
linear quadratic objectives [8] have been proposed. Deriving
otherwise optimal scheduling sequences is recognized as a
hard combinatorial problem [9], [10].

The second type of schedulers, the dynamic ones, do not
rely on a predefined sequence but decide access to the com-
munication medium dynamically at each step. The decision
typically depends on the current plant/control system states,
i.e., informally the subsystem with the largest state discrep-
ancy is scheduled to communicate. Examples can be found
in, e.g., [4], [11]–[13]. Recent efforts have also focused on
scheduling for event-based controllers [14], [15]. Another ap-
proach, motivated by the problem of scheduling control tasks
sharing a computation (CPU) rather than a communication
resource, is to abstract control performance requirements in
the time/frequency domain. Knowing, e.g., how often a task
needs resource access (to communicate and close the loop)
static and dynamic schedules meeting the desired requirements
can be obtained using algorithms from real-time scheduling
theory [16], [17].

In this paper we focus on the case of scheduling multiple
control tasks sharing a wireless communication medium, and
we follow an orthogonal approach with respect to the previ-
ous literature by explicitly modeling and accounting for the
wireless physical layer aspects of the problem. In particular,
time-varying channel conditions cause large unpredictable
variations in wireless channel transferences, referred to as
fading [18, Ch. 3,4]. In the context of wireless communication
networks, the problem of opportunistically adapting to these
channel fading variations in order to maximize the utility to
the users has received considerable attention [19]–[21]. The
aim in this context is to allocate the available communication
resources, e.g., medium access, power resources, channel
capacity, to guarantee desirable data rates for the users.

We propose a channel-aware mechanism that schedules
multiple independent control tasks over a number of avail-
able transmission frequencies on the shared wireless medium
(Fig. 1). The channel conditions on the medium not only
change randomly over time, but also differ among the control
systems at a given time slot. A channel-aware mechanism
can then opportunistically exploit channel information at each
time slot to, e.g., grant channel access to control loops
experiencing favorable channel conditions, or similarly avoid
closing the loop under adverse conditions. Moreover, when a
system is scheduled a transmit power is selected, which along
with channel fading determines the probability of successful
message delivery at the receiver. A related power allocation
model has been considered in our previous work for single-
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loop control systems [22], [23] and in estimation problems
elsewhere [24], [25], without however the scheduling aspects
considered here.

Our opportunistic scheduling and power policies are de-
signed to serve a set of predesigned control tasks over the
shared wireless medium. Hence a suitable abstraction of the
control system dynamics and performance requirements is
required. In this paper each control system is abstracted by
some given Lyapunov function, and control performance is
specified as a desired decrease rate for this Lyapunov function
(Section II). Since scheduling and power allocation in our
design depend on random wireless channel conditions our
control performance guarantees are expressed in a stochastic
sense. Our design is required to ensure that all Lyapunov
functions decrease at the specified rates at every time step
in expectation over the channel conditions. Note that, in
contrast to this stochastic specification, at most one loop
closes deterministically at any time step. Moreover control
performance requirements are expressed here in a single-time-
step framework unlike, e.g., timing/frequency abstractions [16]
or periodic sequences [7] which would be hard to analyze
under random wireless communication. We also point out
that previous works often construct Lyapunov functions to
prove stability under proposed communication policies [4], [6],
[14], [24], [25], while in contrast here we employ Lyapunov
functions as a control performance specification to enable
design of our scheduler.

We formulate the problem of optimal channel-aware
scheduling and power allocation that minimize the expected
total power consumption subject to the expected Lyapunov de-
crease constraints (Section II-A). Based on duality arguments,
in Section III we characterize the form of the optimal solution.
The optimal power allocation is decentralized among systems
and frequencies, hence is easy to implement in practice, while
the optimal scheduler opportunistically assigns control systems
to frequencies depending on channel conditions.

To find the optimal mechanism, we develop an offline algo-
rithm (Section III), as well as an online one (Section IV) which
does not require knowledge of the channel distribution but
utilizes only a channel sequence observed during execution.
The online algorithm bears an intuitive pricing interpretation
(Section IV-A) and guarantees that the desired Lyapunov
performance constraints are met in the limit in a strong sense
(almost surely). Finally, simulations in Section V illustrate the
opportunistic nature of our channel-aware approach as well as
the reduction in power consumption (at a magnitude of 80%
in examples) compared to non-channel-aware mechanisms. We
conclude with a discussion and future research directions in
Section VI.

Notation: We denote the real m-dimensional non-negative
orthant with Rm+ , and the comparison with respect to the
orthant with ≥, i.e., x ≥ y if and only if x − y ∈ Rm+ . The
cone of n× n real symmetric positive definite (semi-definite)
matrices is denoted by Sn++ (Sn+), and the comparison with
respect to the cone with � (�).

Plant/ Control
System 1 · · · Plant/ Control

System m

Access Point/
Channel-aware Scheduler

h1 hm

Shared
Wireless
Medium

Fig. 1. Architecture for opportunistic scheduling of control tasks over a
shared wireless medium. Independent control systems close the loop by
transmitting over the shared wireless medium to a common receiver/access
point. Assuming a single transmission frequency, each control system i
experiences random channel conditions hi. A centralized scheduler located
at the access point observes all channel states and opportunistically decides
which system is scheduled to transmit and close the loop.

II. PROBLEM DESCRIPTION

Consider the wireless control architecture of Fig. 1 consist-
ing of m independent networked control systems. Each control
loop i (i = 1, 2, ...,m) includes a wireless transmitter com-
municating to a common receiver/access point. For example
this can be a wireless sensor transmitting plant measurements
to a common controller computing the control inputs to the
plants. A centralized scheduler, implemented at the access
point, decides which control system is given access to the
shared wireless channel.

We denote the state of system i at each time k by xi,k ∈
Rni . We assume that different descriptions for the evolution
of each system i from xi,k to xi,k+1 are given depending on
whether a transmission occurs at time k or not. Let us indicate
with γi,k ∈ {0, 1} the event that a successful transmission
occurs at time k for the subsystem i. Then we describe the
system evolution by a switched linear time invariant model,

xi,k+1 =

{
Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (1)

At a successful transmission the system dynamics are de-
scribed by the matrix Ac,i ∈ Rni×ni , where ’c’ stands for
closed-loop, and otherwise by Ao,i ∈ Rni×ni , where ’o’
stands for open-loop. We assume that Ac,i is asymptotically
stable, implying that if system i were to transmit at each
slot its respective state evolution is stable. The open loop
matrix Ao,i may be unstable. The additive terms wi,k model
an independent (both across time k for each plant i, and
across plants) identically distributed (i.i.d.) noise process with
mean zero and covariance Wi � 0. Furthermore, it is worth
noting that closed-loop dynamics for all of the m systems are
fixed, meaning that adequate controllers have been already
designed. In this paper we focus on designing the wireless
communication aspects of the control system. The above
networked control system description (1) can model various
control operations, as shown in the following examples.
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Example 1. Suppose each closed loop i consists of a linear
plant of the form

xi,k+1 = Aixi,k +Biui,k + wi,k, (2)

and a wireless sensor transmitting the plant state measurement
xi,k to a controller/actuator which provides input ui,k. Let then
the controller apply a linear feedback ui,k = Kixi,k when
a measurement is received (γi,k = 1), otherwise apply for
simplicity ui,k = 0 when no measurement is received (γi,k =
0). The resulting closed loop system can be written as

xi,k+1 =

{
(Ai +BiKi)xi,k + wi,k, if γi,k = 1
Ai xi,k + wi,k, if γi,k = 0

. (3)

This is of the form (1) with Ac,i = Ai+BiKi, Ao,i = Ai.

Example 2. As a more general example consider again
the plants in (2) and wireless sensors, one for each plant,
measuring system outputs of the form

yi,k = Cixi,k + vi,k, (4)

where vi,k is some i.i.d. Gaussian measurement noise. A
dynamic control law based on this output and adapted to the
packet drops updates a local controller state according to

zi,k+1 = Fi zi,k + γi,k (Fc,i zi,k +Gi yi,k), (5)

i.e., corrects appropriately the local state whenever a mea-
surement is received. For example zi,k may represent a local
estimate of the plant state [2]. The control input applied by
the controller can similarly be modeled as

ui,k = Ki zi,k + γi,k (Kc,i zi,k + Li yi,k), (6)

The overall closed loop system is obtained by joining plant
and controller states into[

xi,k+1

zi,k+1

]
=

[
Ai + γi,kBiLiCi BiKi + γi,kBiKc,i

γi,kGiCi Fi + γi,kFc,i

]
·
[
xi,k
zi,k

]
+

[
I γi,kBiLiCi
0 γi,kGi

] [
wi,k
vi,k

]
(7)

which is again of the form (1).
Let us now describe the wireless communication system and

model how it determines the packet transmission success γi,k.
Suppose there are f different frequencies that each system may
use to communicate to the access point and let the wireless
channel conditions for a system i and frequency j at time
slot k be denoted as hij,k. Channel conditions hij,k refer to
the channel fading coefficient that system i experiences if it
transmits at time slot k over frequency j. Due to propagation
effects the channel fading hij,k changes unpredictably [18,
Ch. 3] and takes values in a subset H ⊆ R+ of the positive
reals. We adopt a block fading model [18, Ch. 4] whereby
channel states {hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f} are modeled as
constant during each transmission slot k, but independent and
identically distributed across different time slots k according to
some joint distribution φ on Hm×f . They are also independent
of the plant process noise wi,k. We assume the channel states
are available to the access point before transmission – see
Remark 1 for a practical implementation. We also make the
following technical assumption on their joint distribution to
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Fig. 2. Complementary error function for practical FEC codes. The probability
of successful decoding q for a FEC code is a sigmoid function of the received
SNR ∼ h p.

exclude the possibility of channel states becoming degenerate
random variables.

Assumption 1. The joint distribution φ of channel states
{hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f} has a probability density
function on Hm×f .

If system i transmits at time k over frequency j it selects
a transmit power level pij,k taking values in [0, pmax]. Then
channel fading and transmit power affect the probability of
successful decoding of the transmitted packet at the receiver.
In particular given the forward error-correcting code (FEC) in
use, the probability q that a packet is successfully decoded
is a function of the received signal-to-noise ratio (SNR). The
SNR is proportional to the received power level expressed by
the product h · p of channel fading and the allocated transmit
power. Overall we express the probability of success by a given
relationship of the form q(hij,k · pij,k) – for more details on
this model, the reader is referred to [22]. An illustration of
this relationship is given in Fig. 2. The following technical
assumption on the form of the function q(hp) will be helpful
in the subsequent sections.

Assumption 2. The function q(.) as a function of the product
r = h p for r ≥ 0 satisfies:
(a) q(0) = 0,
(b) q(r) is continuous, and strictly increasing when q(r) > 0,

i.e., for r′ > r it holds that q(r′) > q(r) > 0,
(c) for any µ ∈ R+ and for almost all values h ∈ H the set

argmin0≤p≤pmax
p− µ q(h p) is a singleton.

Parts (a) and (b) of this assumption state that the probability
of successful decoding q(h p) is zero when the received power
level h p is small, and it becomes positive q(h p) > 0 and
strictly increasing for larger values of h p. These properties
are verified for cases of practical interest as shown in Fig. 2.
Part (c) is more stringent but not restrictive in practice. The
function q(hp) typically has a sigmoid form with exponential
tails as shown in Fig. 2. This verifies that the power minimizer
in (c) is unique for almost all channel gains h, and is either
equal to zero or belongs to the strictly concave exponential
tail. We also note that the minimizer set in (c) exists by the
continuity assumption in (b). These properties are assumed
for technical reasons that will become clear later (see the
discussion before Theorem 1).
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To avoid packet collisions if more than one of the control
systems transmit at a given time slot on the same frequency,
we are interested in a centralized mechanism that selects
which system accesses each of the available frequencies at the
channel, i.e., which system is scheduled to transmit. We denote
with αij,k = 1 the decision to schedule system i on frequency
j at time k, and αij,k = 0 otherwise. To avoid packet collisions
we let at most one system transmit on each frequency j, that
is
∑m
i=1 αij,k ≤ 1. We allow each system i to transmit on at

most one frequency, that is
∑f
j=1 αij,k ≤ 1. Mathematically

we denote the set ∆m,f of all feasible scheduling decisions
αij,k at each time k as

∆m,f =

{
α ∈ {0, 1}m×f :

∑m
i=1 αij ≤ 1, 1 ≤ j ≤ f,∑f
j=1 αij ≤ 1, 1 ≤ i ≤ m

}
.

(8)
For compactness we group channel states, scheduling deci-
sions, and power allocations of the communication model
at time k into matrices hk ∈ Hm×f , αk ∈ ∆m,f , and
pk ∈ [0, pmax]m×f respectively. We can then model the
transmission event γi,k of system i at time k given scheduling
variables, power allocation, and channel state, as a Bernoulli
random variable with success probability

P[γi,k = 1
∣∣hk, αk, pk] =

f∑
j=1

αij,k q(hij,k, pij,k) (9)

This expression states that the probability of a message for
system i being successfully received equals the probability
that the message is correctly decoded if system i is scheduled
to transmit on any of the f available frequencies. Note that,
by design of the scheduling variables, system i uses at most
one frequency, and we make the implicit assumption that no
interferences arise from transmissions on different frequencies.

Our goal is to design the communication variables of
the shared wireless control system, i.e., the scheduling and
power allocation. Since the randomly varying channel affects
the communication process, we are interested in selecting
scheduling and power variables that adapt to channel states
hk in order to counteract or exploit these effects. Overall
we express the scheduling and power decisions at time k by
mappings αk = α(hk) and pk = p(hk) selected from the sets

A = {α : Hm×f → ∆m,f},
P = {p : Hm×f → [0, pmax]m×f}. (10)

Since channel states hk are i.i.d. over time k these mappings
do not need to change over time. Substituting the scheduling
and power allocation mappings α(.), p(.) in our communi-
cation model described by (9) the probability of successful
transmission for each system i at any given slot k becomes

P(γi,k = 1) = Ehk

{
P[γi,k = 1

∣∣hk, α(hk), p(hk)]
}

= Eh
f∑
j=1

αij(h) q(hij , pij(h)). (11)

Here the expectation is with respect to the joint distribution
φ of the channel realization hk which we assumed to be
identical for any time k, hence we drop the index k. Note

also that the communication process modeled by the sequence
{γi,k, 1 ≤ i ≤ m, k ≥ 0} depends only on variables related to
the wireless communication counterpart of the overall system,
and is in particular independent of the system evolutions
{xi,k, 1 ≤ i ≤ m, k ≥ 0}.

Our primary goal in designing the communication variables
of the system is to guarantee a level of closed loop control
performance for each subsystem. To formalize the problem
description we consider Lyapunov-like performance require-
ments for the control systems. In particular suppose that for
each system i a quadratic Lyapunov function of the form

Vi(xi) = xTi Pixi, xi ∈ Rni , (12)

with positive definite matrix Pi ∈ Sni
++ is given. A Lyapunov-

like requirement then states that these functions should de-
crease at given rates ρi < 1 during the evolution of each
subsystem i. This evolution however is random because of
the stochastic nature of the wireless communication/control
system, i.e., due to process noise, random channel states,
random channel access, and packet drops. To take these effects
into account we require that for all systems i at time k the
Lyapunov functions at the next time step decrease at the
desired rates ρi < 1 in expectation, that is

E
[
Vi(xi,k+1)

∣∣xi,k] ≤ ρi Vi(xi,k) + Tr(PiWi) (13)

for any possible value of the current plant states xi,k ∈ Rni .
The expectation over the next system state xi,k+1 on the left
hand side accounts via (1) for the randomness introduced by
the process noise wi,k as well as the transmission success
γi,k. The latter is expressed in (11) and depends on the
observed channel state hk as well as the communication
decisions αk, pk. The noise wi,k by (1) appears additively in
the next plant state independently of the current transmission
success and plant state. Since Vi(.) is quadratic and the noise
has a covariance Wi, the term E

[
Vi(xi,k+1)

∣∣xi,k] includes
a persistent noise perturbation equal to Tr(PiWi). That is
the reason the constant Tr(PiWi) is artificially added at
the right hand side of condition (13). The intuition behind
condition (13) is as follows. If (13) holds for each time step
k = 0, . . . , N , then by taking the expectation at both sides
and by iterating backwards in time we find that

EVi(xi,N ) ≤ ρi EVi(xi,N−1) + Tr(PiWi)

≤ . . . ≤ ρNi EVi(xi,0) +

N−1∑
k=0

ρki Tr(PiWi). (14)

Hence, system states have second moments that decay expo-
nentially with rate ρi with respect to initial states, and in the
limit remain bounded by Tr(PiWi)/(1 − ρi), since the sum
in (14) converges due to ρi < 1.

On the other hand, apart from control performance re-
quirements an efficient communication design should make an
efficient use of the available power resources at the devices.
The induced overall expected power consumption on each slot
k is given by

Ehk

m∑
i=1

f∑
j=1

αij,k(hk)pij,k(hk), (15)
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summing up the transmit power of each system i and fre-
quency j if the system is scheduled to transmit. The ex-
pectation here is with respect to the joint distribution φ of
channels hk. We design scheduling and power allocation (cf.
(10)) that are control-performance aware (cf. (13)) and also
energy-efficient (cf. (15)) through a stochastic optimization
framework that we present next.

Remark 1. The centralized scheduler of the multiple access
channel architecture in Fig. 1 requires channel state infor-
mation. The channel conditions for each system i can be
measured at the access point at the beginning of each time slot
by short pilot signals sent from the wireless transmitters of all
systems to the access point. Depending on the measured chan-
nel states the access point decides which plant is scheduled to
close the loop during the time slot. Our mathematical model
also applies to the case where h denotes an imperfect estimate
of the channel state. We then interpret q(h, p) as the decoding
probability conditioned on the channel state estimate h, and
the expectation Eh is taken with respect to the distribution of
the estimate – see also [22]. We additionally point out that even
though the pilot signals for the channel estimation incur some
power consumption, we assume that practically this is much
lower than the power necessary for transmitting the packets of
the control systems, especially for large packet lengths (e.g.
long headers). Hence the power for channel estimation is not
included in our objective in (15).

A. Scheduling and power allocation as stochastic optimization

We formulate the problem of designing scheduling and
power allocation in an optimization framework as follows.

Problem 1 (Optimal Scheduling and Power Allocation De-
sign). Consider a shared wireless control architecture with
f frequencies and m systems of the form (1), quadratic
Lyapunov performance requirements by (13), channel states
hk ∈ Hm×f i.i.d. with distribution φ, and communication
modeled by (9). The design of optimal scheduling and power
allocation as functions of the current channel states αk =
α(hk) and pk = p(hk) respectively is posed as

minimize
α,p∈(A,P)

Ehk

m∑
i=1

f∑
j=1

αij,k(hk)pij,k(hk) (16)

subject to E
[
Vi(xi,k+1)

∣∣xi,k] ≤ ρiVi(xi,k) + Tr(PiWi)

for all xi,k ∈ Rni , i = 1, . . . ,m.

In other words, at each time step we seek to minimize the
total expected power consumption (15) of the design while
satisfying the Lyapunov requirements (13) for all systems i
and for any value of the current plant states xi,k ∈ Rni , since
scheduling and power allocation adapt to channel states but
are independent of the plant states. To make explicit how the
functions α(.), p(.) appear in the Lyapunov constraints of the
problem, observe that by (1) we have that

E
[
Vi(xi,k+1)

∣∣xi,k] = P(γi,k = 1) xTi,kA
T
c,iPiAc,ixi,k

+ P(γi,k = 0) xTi,kA
T
o,iPiAo,ixi,k + Tr(PiWi), (17)

where we used the fact that the random variable γi,k is
independent of the system state xi,k as it depends only on the
communication variables (cf. (9)-(11)). Plugging (17) at the
left hand side of the constraints in (16) we get for xi,k 6= 0

P(γi,k = 1) ≥
xTi,k(ATo,iPiAo,i − ρiPi)xi,k

xTi,k(ATo,iPiAo,i −ATc,iPiAc,i)xi,k
. (18)

The decision variables α(.), p(.) determine P(γi = 1) at the
left hand side of this constraint by (11). Since condition (18)
needs to hold at any value of xi,k ∈ Rni , we can rewrite it as
P(γi,k = 1) ≥ ci where

ci = sup
y∈Rni ,y 6=0

yT (ATo,iPiAo,i − ρiPi)y
yT (ATo,iPiAo,i −ATc,iPiAc,i)y

. (19)

Computing ci is a simple semidefinite programming problem
which can be easily solved using available convex optimization
software. The value ci represents the minimum probability
of transmission for each system i that guarantees the desired
Lyapunov decay rate ρi – see also Remark 2. It can alterna-
tively be thought of as a minimum required utilization factor
of the shared wireless channel, analogously to a utilization of a
shared CPU in, e.g., [17]. Intuitively, large value of ci implies
that system i requires more resources, i.e., more frequent
channel access and possibly higher power expenditures.

Summarizing, the Lyapunov constraints in optimization
problem (16) can be simplified by solving the auxiliary prob-
lems (19) for each control loop i, so that the optimization
problem (16) can be equivalently written as

minimize
α,p∈(A,P)

Eh
m∑
i=1

f∑
j=1

αij(h)pij(h) (20)

subject to ci ≤ Eh
f∑
j=1

αij(h) q(hij , pij(h)), i = 1, . . . ,m

Here we have dropped the time indices k from the variables
hk since they are identically distributed over time. Finally we
make a constraint qualification assumption that is typical in
optimization theory, i.e., that a strictly feasible solution exists.

Assumption 3. There exist variables α′ ∈ A and p′ ∈ P that
satisfy the constraints of the optimization problem (20) with
strict inequality, i.e.,

ci < Eh
f∑
j=1

α′ij(h) q(hij , p
′
ij(h)), i = 1, . . . ,m (21)

By the equivalence between problems (16) and (20), con-
dition (21) can be interpreted as a feasibility/schedulability
assumption for the shared wireless control system. It requires
that there exist some channel-aware scheduling and power
allocation such that the control performance requirements (13)
of all control systems are met. This assumption however does
not provide any information on how to find such a solution.

In the rest of the paper we examine problem (20), which
is equivalent to the optimal scheduling and power allocation
for the shared wireless control architecture (Problem 1). Since
this problem is feasible (Assumption 3) we denote the optimal
value by P and an optimal solution pair by α∗(.), p∗(.). In
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the following section we characterize the form of the optimal
solution and describe a methodology to obtain it.

Remark 2. Since ci is a required lower bound on the proba-
bility of successful transmission for system i, it must be that
the value satisfies ci < 1. Equivalently the right hand side of
(19) needs to be less than one for all values of y, which in turn
is equivalent to ATc,iPiAc,i � ρiPi. This condition states that
the closed-loop part of system (1) should satisfy the required
decrease rate ρi for the given quadratic Lyapunov function Vi,
or in other words that if system i transmits all the time the
Lyapunov requirement is met.

III. OPTIMAL SCHEDULING AND POWER ALLOCATION

In this section we examine how the optimal scheduling
and power allocation for the wireless control system can be
recovered by considering the optimization problem in the dual
domain. This allows us to develop an offline algorithm to solve
the problem and provides an explicit characterization of the
form of the optimal solution.

First let us derive the Lagrange dual problem of (20).
Consider non-negative dual variables µ ∈ Rm+ corresponding
to each one of the m constraints of (20). The Lagrangian then
is defined as

L(α, p, µ) = Eh
m∑
i=1

f∑
j=1

αij(h)pij(h)

+

m∑
i=1

µi

[
ci − Eh

f∑
j=1

αij(h) q(hij , pij(h))

]
, (22)

while the dual function is defined as

g(µ) = inf
α,p∈(A,P)

L(α, p, µ). (23)

For future reference we also denote the set of functions
α(.), p(.) that minimize the Lagrangian at µ by

(A,P)(µ) = argmin
α,p∈(A,P)

L(α, p, µ), (24)

whenever the minimizers exist. This set might contain in
general multiple solutions and we denote with α(µ), p(µ) an
arbitrary element pair of the set. Since the pair itself is a
function on Hm×f (cf. (10)), we denote the value of the pair
at a point h ∈ Hm×f by α(µ;h), p(µ;h).

The Lagrange dual problem is defined as follows.

D = sup
µ∈Rm

+

g(µ). (25)

According to Lagrange duality theory the optimal dual value
D is a lower bound on the optimal cost P of problem (20).
The following proposition however establishes a strong duality
result (D = P ) for the problem under consideration and
provides a relationship between the optimal primal and dual
variables. The proofs of all the results in this paper can be
found in the Appendix.

Proposition 1. Let Assumptions 1 and 3 hold. Let P be the
optimal value of the optimization problem (20) and (α∗, p∗)

be an optimal solution, and let D be the optimal value of the
dual problem (25) and µ∗ be an optimal solution. Then
(a) P = D (strong duality)
(b) µ∗i

[
ci − Eh

∑f
j=1 α

∗
ij(h) q(hij , p

∗
ij(h))

]
= 0 for all i =

1, . . . ,m (complementary slackness)
(c) (α∗, p∗) ∈ (A,P)(µ∗)

This proposition states that strong duality holds even though
the original problem is not convex, regardless also of the
form of the function q(h, p) (Assumption 2 is not imposed).
More importantly, part (c) suggests the possibility of finding
the optimal primal variables α∗, p∗ by solving first for the
optimal point µ∗ of the dual problem, and then searching
for primal variables the minimize the Lagrangian function
at µ∗ (cf. (24)). As we present next, this direction provides
a significant advantage. The design of infinite-dimensional
scheduling and power allocation policies that meet the con-
trol performance specifications in Problem 1 is reduced to
the problem of determining finite-dimensional optimal dual
variables. A technical caveat of Proposition 1(c) is that the
optimal policies are included in a set which could in general
contain other irrelevant policies. As we show next, Assumption
2 helps overcome this issue.

A. Dual subgradient method

To solve the dual problem in (25), that is, to maximize the
dual function g(µ), we employ a dual projected subgradient
algorithm [26, Ch. 8]. We first note that function g(µ) is
concave, as a pointwise infimum over functions linear in
µ (cf. (23)). A subgradient direction for g(µ) at any point
µ ∈ Rm+ is a vector, denoted here as s(µ) ∈ Rm, that satisfies

g(µ′)− g(µ) ≤ (µ′ − µ)T s(µ) for all µ′ ∈ Rm+ . (26)

If we pick α(µ), p(µ) ∈ (A,P)(µ) by (24) then a subgra-
dient s(µ) can be found as the constraint slack of the primal
problem (20) evaluated at these points, i.e.,

si(µ) = ci − Eh
f∑
j=1

αij(µ;h) q(hij , pij(µ;h)). (27)

To show this observe that for any µ′ ∈ Rm+ in general we
have g(µ′) ≤ L(α(µ), p(µ), µ′) by the definition of the dual
function in (23). Subtracting g(µ) = L(α(µ), p(µ), µ) from
both sides of this inequality and expanding the terms of the
Lagrangian as in (22) we get

g(µ′)− g(µ) ≤
m∑
i=1

(µ′i − µi)
[
ci − Eh

f∑
j=1

αij(µ;h) q(hij , pij(µ;h))

]
. (28)

Comparing this with the property of the subgradient in (26),
we verify that (27) indeed gives a subgradient direction. We
also note for future reference that for any µ the subgradients
are bounded because at the right hand side of (27) the term ci is
bounded (cf.(19)) and the term in the expectation corresponds
to a probability (cf.(11)).

A projected dual subgradient ascent method to maximize the
concave dual function g(µ) consists of the following steps:
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1) At iteration t given µ(t) find primal optimizers of the
Lagrangian at µ(t) according to (24),

p(µ(t)), α(µ(t)) ∈ (A,P)(µ(t)) (29)

2) Evaluate the subgradient vector s(µ(t)) by (27) and
update the dual variables by an ascent step

µ(t+ 1) = [µ(t) + ε(t)s(µ(t))]+ (30)

where [ ]+ denotes the projection on the non-negative
orthant and ε(t) > 0 is the stepsize.

The stepsizes are selected to be square summable but not
summable, i.e.,∑

t≥1

ε(t)2 <∞,
∑
t≥1

ε(t) =∞. (31)

Before stating the convergence properties of the algorithm,
we note that in order to implement it we need an efficient
way to compute primal Lagrange optimizers in (29) that solve
(24). This problem also relates to our capability of finding the
optimal primal variables of interest α∗, p∗ as we have argued
by Proposition 1(c). Hence we turn our focus to problem (24).
A more convenient expression for the Lagrangian defined in
(22) can be obtained by rearranging terms to get

L(α, p,µ) = µT c+

Eh
m∑
i=1

f∑
j=1

αij(h) [pij(h)− µiq(hij , pij(h))] . (32)

This form provides a useful separation structure for the pri-
mal Lagrangian optimizers that we exploit in the following
proposition.

Proposition 2. For any µ ∈ Rm+ the following hold true:
(a) Solutions α(µ), p(µ) ∈ (A,P)(µ) of problem (24) can be

obtained at each h ∈ Hm×f as

pij(µ;h) = pij(µi;hij) = argmin
0≤p≤pmax

p−µiq(hij , p) (33)

for any i = 1, . . . ,m and j = 1, . . . , f , and

α(µ;h) = argmin
α∈Rm×f

+

m∑
i=1

f∑
j=1

αij ξ(hij , µi) (34)

subject to
m∑
i=1

αij ≤ 1,

f∑
j=1

αij ≤ 1

where

ξ(hij , µi) = min
0≤p≤pmax

p− µiq(hij , p). (35)

(b) If Assumptions 1 and 2 hold, then for any solution
α(µ), p(µ) ∈ (A,P)(µ) the vector s(µ) defined in (27)
has a unique value.

The first part of the proposition provides in (33) and (34) a
method to obtain primal Lagrange optimizers that can be used
in step (29) of the subgradient algorithm. Interestingly, the
minimizing scheduling and power allocation decisions can be
computed separately at each channel state value h ∈ Hm×f ,
hence significantly simplifying the computation. A further

separability for the power allocation across systems and fre-
quencies is revealed – see Remark 3.

The second part of the proposition relies on the properties of
the function q(h, p) by Assumption 2 in order to establish that
the subgradient vector s(µ) takes a unique value. The proof
relies on the fact that the expected value in si(µ) (cf. (27))
conditioned on the channel state h is almost surely either
zero, because system i should not be scheduled, or unique,
because the optimal Lagrange minimizers α(µ;h), p(µ;h) are
unique. For example, Assumption 2(c) ensures that the power
minimizer p(µ;h) in (33) is (almost surely) unique. Proposi-
tion 2(b) is important because it allows a stronger and more
explicit characterization of the optimal scheduling and power
allocation than the set-characterization of Proposition 1(c).
This is established in the following theorem.

Theorem 1 (Optimal Scheduling and Power Allocation).
Consider the design of channel-aware scheduling and power
allocation variables in Problem 1 for the shared wireless
control architecture of Fig. 1, and let Assumptions 1, 2, 3
hold. Then optimal scheduling α∗ and power allocation p∗

are obtained by (33)-(35) at any point µ∗ ∈ Rm+ that is an
optimal solution of the dual problem (25). Moreover a point
µ∗ can be obtained by iterating (29)-(30), i.e., µ(t)→ µ∗, for
stepsizes satisfying (31).

The theorem characterizes the optimal scheduling and power
allocation that meet the control performance specifications in
our shared wireless control architecture – see Remarks 3, 4
for more details about the form of the optimal policy. It is
worth noting that the optimal policy need not be unique. More
precisely, there might be many optimal dual solutions µ∗, each
corresponding to a different scheduling and power allocation
policy according to the theorem. However all such policies
will have the same objective value in (16).

The theorem also establishes a methodology to find the
optimal communication policy by iterating (29)-(30). This can
be viewed as an offline algorithm, and requires knowledge of
the channel distribution. In the next section we develop an
online algorithm that solves for the optimal communication
policy based instead only on a random sequence of channel
realizations observed during system execution.

Remark 3. According to Theorem 1, the optimal power
allocation can be obtained at each channel value h by solving
(33) at the point µ∗. In particular p∗ij(h) depends on the
variables µ∗i and hij pertinent only to system i and frequency
j and not on the whole vectors µ∗ or h. This implies a de-
centralized power allocation among systems and frequencies,
made explicit in (33) by the notation pij(µi;hij). Similar
separability results are also known in the context of resource
allocation for wireless communication networks [21]. This fact
can be intuitively understood from the shared wireless control
architecture of Fig. 1, since each transmitter experiences dif-
ferent channel conditions and is responsible for an independent
control task. Moreover, this optimal power allocation can
be easily implemented in practice. The transmitter of each
control system i can store its value µ∗i and adapt transmit
power, whenever scheduled, based on the channel conditions
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it currently experiences. The optimal scheduling α∗(h) in (34),
on the other hand, is centralized since it depends on the whole
vector µ∗ and all channel states h.

Remark 4. The optimal scheduling decision in (34) is posed
as a linear program by relaxing the integer constraints of
∆m,f in (8), hence the policy is computationally efficient.
As mentioned in the proof of the theorem there is no loss in
the relaxation, as the optimal solution to the linear program
is integer. It is worth noting that (34) solves a standard
assignment problem1 which opportunistically tries to match
control systems to frequencies at each time slot. A numerical
example of this opportunistic behavior is shown in Fig. 3
of Section V. Besides the linear program presented here,
integer programming algorithms with complexity polynomial
in the number of systems m and frequencies f exist [27, Ch.
7]. In the special case of a single frequency (f = 1) the
complexity of scheduling in (34) is linear in the number of
systems (O(m)), since the scheduler looks for and schedules
the system i with the minimum value ξ(hi, µi).

IV. ONLINE SCHEDULING AND POWER ALLOCATION

The algorithm presented in the previous section to ob-
tain optimal scheduling and power allocation for the shared
wireless control system of Problem 1 is hard to implement
in practice. In the primal step (29) one needs to obtain a
solution pair α(h), p(h) for a continuum of channel variables
h ∈ Hm×f , while for the dual step in (30) one needs to com-
pute the subgradient direction s(µ) in (27) by integrating over
the channel distribution φ. A practical implementation would
require drawing a large number of samples from φ and solving
for primal variables at these samples to obtain an estimate
of the actual subgradient direction. This is computationally
intensive, does not scale for a large number of systems m and
frequencies f , while also in most cases of practical interest
the channel distribution is not available.

These drawbacks motivate us to develop an online algorithm
to solve Problem 1. The algorithm is a stochastic version of the
primal/dual steps (29), (30) of the offline subgradient method
and does not rely on availability of the channel distribution. In
particular, suppose that at time k a channel realization hk is
observed, and the current power and scheduling decision are
selected by solving (33)-(34) at the current hk, i.e.,

pij,k = pij(µi,k;hij,k), i = 1, . . . ,m, j = 1, . . . , f,

αk = α(µk;hk). (36)

Then in contrast to updating the dual variables µk by (30)
after computing the vector (27), suppose only the current
channel measurement and power/scheduling choices are used.
In particular, suppose we compute

si,k = ci −
f∑
j=1

αij,k q(hij,k, pij,k), i = 1, . . . ,m, (37)

1Technically the standard assignment problem requires equal number of
systems and frequencies. This can be accomplished by introducing dummy
systems or frequencies with zero values ξ(hij , µi).

Algorithm 1 Online Scheduling and Power Allocation
Input: m, f , c ∈ [0, 1]m, q : H × [0, pmax] 7→ [0, 1], εk ∈

R+, k ≥ 0
1: Initialize µ0 ∈ Rm+ , k ← 0
2: loop
3: At time k observe channel state hk
4: Compute power allocation for all systems i and fre-

quencies j by

pij,k ← argmin
0≤p≤pmax

p− µi,kq(hij , p) (39)

ξij,k ← min
0≤p≤pmax

p− µi,kq(hij , p) (40)

5: Decide scheduling by solving

αk ← argmin
α∈∆m,f

m∑
i=1

f∑
j=1

αij ξij,k (41)

6: Compute for all i = 1, . . . ,m

si,k ← ci −
f∑
j=1

αij,k q(hij,k, pij,k) (42)

7: Update dual variables by µk+1 ← [µk + εksk]+
8: end loop

and update the variables µk by

µk+1 = [µk + εksk]+ (38)

where [ ]+ is the projection on the non-negative orthant and
εk > 0 is the stepsize.

To emphasize that this is an online algorithm we have
explicitly indexed the variables with k corresponding to real
time slots. This procedure, summarized in Algorithm 1, gives
scheduling and power variables {αk, pk, k ≥ 0} as well as
dual variables {µk, k ≥ 0} which are random because they de-
pend on the random observed channel sequence {hk, k ≥ 0}.
The main difference compared to the subgradient algorithm
of the previous section is that it follows random directions
sk in (37) instead of the exact subgradient directions s(µk)
by (27). Comparing these two expressions it is immediate that
the expected value of sk coincides with the subgradient s(µk),
so it is reasonable to conjecture that the online algorithm is
expected to move towards the maximum of the dual function,
as the subgradient method does. The following proposition
indeed establishes convergence in a strong sense.

Proposition 3. Consider the optimization problem (20) and its
dual derived in (25) and let Assumption 3 hold. Let a sequence
µk, k ≥ 0 be obtained by steps (36)-(38) based on a sequence
{hk, k ≥ 0} of i.i.d. random variables with distribution φ, and
stepsizes εk satisfying (31). Then almost surely we have that

lim
k→∞

µk = µ∗, and lim
k→∞

g(µk) = D (43)

where µ∗ is an optimal solution of the dual problem and D
is the optimal value of the dual problem.

The proposition states that the stochastic online algorithm
yields a random sequence of dual variables µk that converges
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to the optimal point µ∗ almost surely for any sequence
of channel realizations that is observed. However the real
problem of interest is the primal problem (20), or equivalently
Problem 1. This is the problem of optimal design of scheduling
and power allocation policies that satisfy the given Lyapunov
performance requirements (13) for each control system i,
while also minimizing the expected power expenditures of the
communication process. Hence, in the following theorem, we
characterize how the control systems would actually perform
if the communication variables are selected according to the
proposed online algorithm.

Theorem 2 (Online Scheduling and Power Allocation). Con-
sider a shared wireless control architecture composed of m
systems of the form (1), f frequencies, and communication
modeled by (9) depending on channel states hk ∈ Hm×f
which are i.i.d. with distribution φ, and scheduling and power
allocation variables αk ∈ ∆m,f , pk ∈ [0, pmax]m×f . Also
consider given quadratic Lyapunov performance requirements
(13) for each system and let Assumptions 1, 2, 3 hold. If
αk, pk are chosen according to (36)-(38), then almost surely
with respect to the channel sequence {hk, k ≥ 0} the control
performances for all systems i = 1, . . . ,m satisfy

lim sup
k→∞

E[Vi(xi,k+1)
∣∣xi,k = xi, h0, . . . , hk−1]

≤ ρiVi(xi) + Tr(PiWi), (44)

for any state values xi ∈ Rni . In addition, the power
consumption almost surely satisfies

lim sup
k→∞

E
[ m∑
i=1

f∑
j=1

αij,kpij,k

∣∣∣∣h0, . . . , hk−1

]
≤ P (45)

where P is the optimal value of the optimization problem (16).

According to the theorem the scheduling and power alloca-
tion variables selected by the online algorithm lead in the limit
to the desired Lyapunov requirements for all control systems
and to the optimal power expenditure, for almost all channel
sequences. We can also establish the following corollary.

Corollary 1. Consider the setup of Theorem 2. Then for any
positive constant δ > 0 there exists a time step N such that
for all times k ≥ N we have that

E
[
Vi(xi,k+1)

∣∣xi,k] ≤ (ρi + δ) Vi(xi,k) + Tr(PiWi) (46)

for any possible value of plant states xi,k ∈ Rni and for all
systems i = 1, . . . ,m.

Recall that we initially asked for a communication design
that guarantees expected control performance requirements at
each time step k in (13). According to the above corollary our
online algorithm approximately satisfy this. After a sufficiently
long time horizon the expected decrease rates of all Lyapunov
functions get arbitrarily close to the desired ones. Before
proceeding to simulations of the stochastic online algorithm,
we present an intuitive interpretation of the algorithm from an
economic resource allocation point of view.

A. Pricing interpretation of online scheduling and power
allocation algorithm

In this section we provide an interpretation of the problem
variables as well at the online Algorithm 1 in economic terms.
In particular we may view each transmitter in the wireless
control architecture as an agent that utilizes some scarce
resource, namely transmit power, to produce some ’good’,
namely the probability of successfully transmitting and closing
the corresponding control loop. Our development in Sec-
tion II-A shows that each closed loop has a Lyapunov control
performance requirement (cf. (13)) that can be translated as
requiring ci units of good (cf. (19)). Under this view, the dual
variables µi can be interpreted as the ’unit price’ at which
each agent can ’sell’ the produced good. In this context the
role of Algorithm 1 is to determine unit prices such that all
demand levels ci are met and in the most profitable manner
from the agents’ perspective.

More specifically, consider a time step k where prices are
set to µk and the current channel conditions are described
by hk. If agent i gets access to the channel at frequency j,
the agent can spend an amount pij,k to produce q(hij,k, pij,k)
units of good, which can be sold at a price of µi,k per unit.
In this case the total profit for the agent can be expressed as

µi,k q(hij,k, pij,k)− pij,k, (47)

i.e., the difference between the total revenue µi,k q(hij,k, pij,k)
and the total cost pij,k. The optimal resource allocation pij,k
is the one maximizing the profit (47), matching exactly the
optimization over power provided in (39). The optimal profit
if agent i gets access to the channel at frequency j under
conditions hij,k equals −ξij,k given in (40).

Then the role of the scheduler is to opportunistically assign
agents to the available frequencies in a way that maximizes
the total aggregated profit. In particular the scheduler observes
current conditions hij,k for all agents i and frequencies j,
computes the possible profit −ξij, k of all agent/frequency
pairs, and searches for the scheduling α ∈ ∆m,f defined by
(8) that maximizes the total profit∑

i,j

αij(−ξij, k) (48)

aggregated over all agents. This optimal scheduling matches
the one implemented by Algorithm 1 (cf. line (41)).

After the current scheduling αk and power pk decisions have
been made, the unit prices µk+1 for the next step are adjusted
depending on the current production levels. If the production
for system i exceeds the required level ci, i.e., si,k < 0 in (37),
then the unit price for system i is reduced to µi,k +εksi,k (cf.
line 7 in Algorithm 1). If on the other hand the production for
system i does not meet ci, i.e., si,k > 0, then the unit price i
increases to µi,k + εksi,k.

According to Theorem 2 the online algorithm converges
almost surely to the optimal prices µ∗, under which the
expected production meets demand. Moreover the expected
total production cost (the objective of problem (20)) becomes
optimal in the limit.

We note that Theorem 2 does not provide theoretical guaran-
tees on how fast the solution converges to the optimal one. We
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Fig. 3. Optimal channel-aware scheduling for the example presented in
Section V. System 1 has a harder Lyapunov decrease rate requirement and
is scheduled to transmit for most observed channel states h1, h2. System 2
is scheduled only if its channel conditions h2 are much more favorable that
those of system 1. When both channels are very adverse, systems select zero
transmit powers so scheduling is irrelevant.

discuss this issue along with other limitations of the algorithm
in Section VI. In the following section we present simulations
verifying our theoretical results, and also indicating that the
convergence of the algorithm is relatively fast so that online
control performance is not severely affected.

V. NUMERICAL SIMULATIONS

We first illustrate through simulations the opportunistic
nature of the communication mechanism for wireless control
systems obtained in Section III, in particular how scheduling
and power decisions adapt appropriately to channel conditions
to meet the control performance goals. Moreover we compare
the resulting performance with other simple non channel-
adaptive mechanisms. Recall that by the auxiliary problems
(19), control systems with vector states are converted to scalar
constraints in optimization problem (20). Hence without loss
of generality we consider scalar control systems.

Consider a heating system application controlling the tem-
perature in two independent rooms of a building. Assuming
the wireless control architecture of Fig. 1 with m = 2,
wireless sensors transmit the temperatures of each room to
a central location (the access point in Fig. 1) responsible for
adjusting the heating in the rooms. For simplicity suppose both
systems have identical dynamics of the form (1) with state
xi,k denoting the difference between current and some desired
temperature for room i. When system i transmits (γi,k = 1),
heating is activated for system i and results in stable dynamics
Ac,i = 0.4. Otherwise if γi,k = 0 heating is deactivated and
the system is open loop unstable with Ao,i = 1.1.

For simplicity we assume there is one (f = 1) available
frequency and for symmetry let channel states h1,k and h2,k

be independent for each system, both having an exponential
distribution with mean 1. The function q(h, p) is shown
in Fig. 2. For these scalar systems it suffices to consider
Lyapunov functions Vi(x) = x2. We require then that system 1
guarantees a high Lyapunov decrease ρ1 = 0.75 rate according
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Fig. 4. Optimal channel-aware power allocation for the example presented
in Section V. Under adverse channel conditions systems do not transmit. The
channel threshold for transmission for system 1 is lower than that of system 2
because the former has a higher Lyapunov decrease rate requirement. System
1 also requires higher transmit power.

to (13), while system 2 only requires ρ2 = 0.90. For these
choices we get a higher required success of transmission
c1 ≈ 0.44 according to (19) for system 1, compared to a
lower c2 ≈ 0.30 of system 2.

Using the offline subgradient method of Section III to
solve problem (20), the optimal channel-aware scheduling
and power allocation variables are depicted in Fig. 3 and
Fig. 4 respectively. We observe in Fig. 3 that System 1,
which requires higher transmission success c1, is scheduled to
transmit for most values of the channel states h1, h2. System 2,
which has a lower requirement, is scheduled only if its channel
h2 is sufficiently favorable and system 1 experiences an
adverse channel h1. This illustrates how the scheduler exploits
opportunistically the channel conditions to select which system
will transmit to close the loop, in order to meet the Lyapunov
constraints in a power efficient manner. Note also that when
both systems experience very adverse channels scheduling
is irrelevant because, as we will see in Fig. 4, the optimal
transmit powers then are zero (no transmission).

The optimal power allocation is decentralized as we noted
in Remark 3, i.e., the transmit power pi for system i depends
only on the channel hi that system i experiences. Thus we plot
in Fig. 4 the power allocation for both systems on same axes.
For both systems, when the channel conditions are adverse it
is not worth to spend transmit power. System 1, which has a
more demanding control constraint, requires in general higher
transmit power since, as we saw in Fig. 3, it is scheduled to
transmit even under adverse channel conditions. This is also
captured in the expected power consumption of each system
computed numerically as Ehα∗1(h)p∗1(h1) ≈ 11mW and
Ehα∗2(h)p∗2(h2) ≈ 6.5mW . Hence the minimum total power
budget required to meet the control objectives is 17.5mW .

To demonstrate the power savings obtained by the oppor-
tunistic mechanism we compare with a simple non-channel-
aware mechanism. In particular suppose that at each step a
system is scheduled randomly to access the channel/frequency.
With a slight abuse of notation systems 1 and 2 are chosen
with probabilities α1 and α2 = 1 − α1 respectively. When a
system is selected, we suppose it transmits with a constant
power level pc. The control performance requirements (cf.
(20)) in this case become αi Ehi

q(hi pc) ≥ ci for i = 1, 2 and
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Control
objective
ρ

Mean
Fading
hi1

Mean
Fading
hi2

Transmit
Rate at
Freq. 1

Transmit
Rate at
Freq. 2

Plant 1 0.8 1 1 0.46 0.40
Plant 2 0.92 1 1 0.34 0.29
Plant 3 0.92 1 2 0.16 0.29

TABLE I
SYSTEM PARAMETERS & ONLINE TRANSMISSION RATES

the total power cost is (α1 + α2) pc = pc. We are interested
then in selecting the minimum constant power pc that would
satisfy both control requirements. It can be easily argued
that a necessary and sufficient condition for the requirements
is
∑
i=1,2 αi Ehiq(hi pc) ≥ c1 + c2, which is equivalent to

Ehiq(hi pc) ≥ c1 + c2 since
∑
i=1,2 αi = 1. We compute

then numerically the minimum constant pc that satisfies this
equivalent requirement, which is pc ≈ 73mW . Note that
this transmit power is higher than the optimal opportunistic
power policy in Fig. 4. Moreover, in this example, the optimal
opportunistic scheduling and power allocation achieves almost
80% decrease in power consumption compared to an optimal
not channel-aware randomized schedule scheme.

A. Stochastic online scheduling and power allocation

Next we implement the stochastic online algorithm of
Section IV in a setup with three (m = 3) control loops
sharing two (f = 2) frequencies. For example consider again
the room heating system of the previous section including
three rooms/systems with identical dynamics, Ao,i = 1.1 and
Ac,i = 0.4 as before. The chosen desired Lyapunov decrease
rates are shown in Table I, implying that system 1 is the most
demanding. We assume channel states hij are independent
across systems i and frequencies j, and have exponential
distributions with means given in Table I. In particular we
model that system 3 experiences better channel quality (higher
channel fading gain) in the second frequency.

The evolution of the dual variables µk during Algorithm 1
is shown in Fig. 5. After a number of iterations (time k
in this example corresponds to seconds) they remain in a
small neighborhood around the optimal µ∗, as anticipated
by the theoretical a.s. convergence in Prop. 3. Consequently,
the scheduling and power allocation decisions taken online
are almost feasible for the constraints of problem (20) after
a number of iterations. We observe that the dual variable
corresponding to system 1 is the largest, consistent with the
fact that it has a harder control requirement to meet. Using
the economic interpretation of Section IV-A about the dual
variables, the price at which agent 1 can sell its produced
good is higher, giving the incentive to schedule agent 1 to
produce more often. On the other hand, systems 2 and 3 have
the same control requirements but the dual variable for system
2 is larger. The reason is that system 2 experiences worse
channel conditions than system 3 (cf. Table I), which imply
higher required transmit power, or in economic terms a higher
production cost in (47). By setting a higher selling price µ2,
system 2 becomes profitable enough so that it is scheduled to
produce at a sufficient rate to meet the requirement.
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Fig. 5. Evolution of dual variables µk over time k using the online algorithm.
After a number of steps the dual variables µk remain in a neighborhood
around the optimal values µ∗.

In Table I we show the average transmission rates se-
lected by the online algorithm, i.e., the average number
of time slots where each system i was selected to trans-
mit (with a positive power level) at each frequency j as
1/N

∑N
k=1 αij,kI (pij,k > 0). System 3 was scheduled mainly

at frequency 2, exploiting its better channel quality. This forced
systems 1 and 2 to use frequency 1 more often. Also system 1,
which has higher control requirement, transmitted more often
than the other systems. This behavior resulted from the online
algorithm using only an observed channel sequence, not any
prior knowledge on the channel quality distribution.

Finally, we examine the evolution of the three heating
control systems when the online algorithm is employed for
scheduling and power decisions. Suppose that for all systems
i the states xi, which measure deviations from reference room
temperatures, are perturbed by disturbances wi,k as in (1),
which we model as independent Gaussian with mean zero
and variance Wi = 1. We plot in Fig. 6 the evolution of the
empirical quadratic averages 1/N

∑N
k=1 x

2
i,k. Recall that when

the Lyapunov condition (13) is satisfied, we get from (14) that
the expected limit quadratic costs are bounded by Wi/(1−ρi).
We observe from Fig. 6 that after some initial transient the
online communication algorithm keeps the empirical average
quadratic costs close to the theoretical upper bounds.

VI. DISCUSSION AND CONCLUSIONS

This paper considers opportunistic channel-aware sched-
ulers for wireless control systems with multiple loops clos-
ing over a shared wireless medium. We develop a suitable
stochastic optimization formulation, and design scheduling
and transmit power policies that minimize the total expected
power expenditures while guaranteeing that given Lyapunov
functions for each control system exhibit desired expected
decrease rates for stability and performance. We develop an
offline optimization algorithm to solve the problem, as well
as an online communication algorithm that converges to the
optimal based on random observed channel sequences. An
extension of the present paper for scheduling inter-dependent
control tasks is considered in [28].

The proposed online algorithm guarantees almost sure con-
vergence, but a theoretical characterization of the convergence
rate is not provided. The online algorithm also uses decreasing
stepsizes, which limits the adaptability to an environment
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Fig. 6. Average quadratic costs during the online scheduling and power
allocation algorithm. The stochastic algorithm keeps the average quadratic
cost of each control system close to the upper bound of the limit expected
cost, shown with dashed lines, induced theoretically by the required Lyapunov
decrease rates.

with non-stationary channel distributions. These issues will
be the focus of future work. Moreover, our methodology
relies on the existence of feasible scheduling and power
allocation policies (Assumption 3), hence sufficient system
conditions for this to hold would be desirable. A different
research direction is to include, apart from channel states,
the measured plant system states when making the scheduling
decisions, as in, e.g., [11]–[13], or in the single-loop power
management paradigm of [22]. Furthermore, the problem of
joint scheduling and controller design, which would allow
control adapting to communication events as in [3], poses new
research challenges. Finally, the present development can serve
as a framework for examining decentralized channel access
mechanisms, such as random access [18, Ch. 14], which would
obviate the use of a centralized scheduler in Fig. 1.

APPENDIX

A. Proof of Proposition 1

Statement (a) under assumptions 1 and 3 follows immedi-
ately from [21, Theorem 1] where a similar optimization setup
is examined. The proof is omitted due to space limitations.

To show (b) observe that, by definition of the dual function
in (23), at the point µ∗ we have that

g(µ∗) ≤ L(α∗, p∗, µ∗) (49)

Since µ∗ is optimal for (25) and using part (a) we have for the
left hand side of (49) that g(µ∗) = D = P . On the other hand,
the right hand side of (49), by the definition of the Lagrangian
at (22), equals

L(α∗,p∗, µ∗) = P

+

m∑
i=1

µ∗i

[
ci − Eh

f∑
j=1

α∗ij(h) q(hij , p
∗
ij(h))

]
, (50)

because the objective of (20) at the optimal solution (α∗, p∗)
equals the optimal value P . These expressions for the left and

right hand sides of the inequality in (49) therefore give

P ≤ P +

m∑
i=1

µ∗i

[
ci − Eh

f∑
j=1

α∗ij(h) q(hij , p
∗
ij(h))

]
. (51)

This implies that the sum on the right hand side is non-
negative. However all summands are non-positive, because
µ∗ ≥ 0 by dual feasibility (25), and the terms in the brackets
in (51) are non-positive because (α∗, p∗) are feasible for the
primal problem (20). The only possibility is that all summands
in (51) are identically zero, which proves statement (b).

We have established that (51) holds with equality, so by
tracing back our steps, we have that (49) holds with equality
too, which, by the definition of the dual function on (23)
translates to

inf
α,p∈(A,P)

L(α, p, µ∗) = L(α∗, p∗, µ∗). (52)

This verifies statement (c).

B. Proof of Proposition 2

We first show part (a) of the proposition. Consider the
problem of minimizing the Lagrangian as given at the form
(32) over variables α(.), p(.) for some µ ∈ Rm+ . Since µT c is
constant the problem is equivalent to 2

inf
α,p∈(A,P)

Eh
∑
i,j

αij(h) [pij(h)− µiq(hij , pij(h))] . (53)

Without loss of generality we can exchange the expectation
over h and the minimization over functions α(.), p(.) in (53)
to equivalently solve for each h ∈ Hm×f

inf
α(h)∈∆m,f

p(h)∈[0,pmax]m×f

∑
i,j

αij(h) [pij(h)− µiq(hij , pij(h))] (54)

This step is valid because any pair of functions α, p that
does not minimize the objective in (54) on a set of values
of variables h with φ-positive measure must yield a strictly
larger expected value in the objective of (53). In other words,
the minimizers of (53) can only differ from the minimizers of
(54) at a set of values for h with measure zero.

Then note that at any h ∈ Hm×f and any choice for the
variable α(h) we have that αij(h) ≥ 0. Hence the optimization
over p(h) in (54) can be rearranged to

inf
α(h)∈∆m,f

∑
i,j

αij(h)

inf
pij(h)∈[0,pmax]

pij(h)− µiq(hij , pij(h)). (55)

The optimization over power variables pi,j(h) in this expres-
sion corresponds exactly to (33). Using the notation introduced
in (35), the minimization over scheduling variables α(h) in
(55) becomes

inf
α(h)∈∆m,f

∑
i,j

αij(h) ξ(hij , µi). (56)

This is an integer programming problem over αij ∈ {0, 1}
according to the set ∆m,f (cf.(8)). The expression given in

2Within this proof we denote
∑m

i=1

∑f
j=1 as

∑
i,j for compactness.
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(34) is a linear programming relaxation of (56) by assuming
αij ≥ 0. The relaxation is tight (see, e.g., [27, Th. 7.5]),
meaning that the optimal solution of (34) will be integer and
feasible with respect to ∆m,f , hence optimal for (56) too.

Now let us prove part (b) of the proposition. We need to
show that any pair α(µ), p(µ), which are functions of h, that
solves (53) gives a unique evaluation of s(µ) given in (27).
Since si(µ) involves integrating the term

f∑
j=1

αij(µ;h) q(hij , pij(µ;h)) (57)

with respect to the distribution φ of h ∈ Hm×f , it suffices to
show that (57) is unique φ-a.s.

By the argument presented already, minimizing (53) is a.s.
equivalent to minimizing (54). The latter is again equivalent
to the problem (55) since all αij(h) ≥ 0. Note that the only
case where the optimizers in (54) can differ from the ones
obtained in (55) is if αij(µ;h) = 0 for some i, j is optimal
at some values h ∈ Hm×f and the power minimizer pij(µ;h)
in (54) can be chosen arbitrarily. But this does not affect the
computation of si(µ) since (57) will equal zero. Hence we
only need to show that the minimizers α(µ;h), p(µ;h) in (55)
imply a.s. uniqueness of (57).

For values of h where the minimizers α(µ;h), p(µ;h) of
problem (55) are unique it is immediate that (57) has a unique
value, hence we only need to consider h where the minimizers
are not unique. By Assumption 2(c) the minimizer p(µ;h),
which is given in (33), is unique for almost all h, therefore
we only need to focus on the set of values for h where the
minimizer α(µ;h), described by (34), is not unique.

Let us denote by E the set of interest, i.e., the set of h ∈
Hm×f where α(µ;h) in (34) is not unique. By considering all
possible pairs of multiple solutions α′ 6= α′′ in the finite set
∆m,f , we can rewrite E as a union E =

⋃
α′ 6=α′′∈∆m,f

Eα′,α′′

where Eα′,α′′ ⊆ Hm×f such that

h ∈ Eα′,α′′ ⇔ α′, α′′ ∈ argmin
α∈∆m,f

∑
i,j

αij ξ(hij , µi). (58)

In other words, the set Eα′,α′′ is the set of values h where
both α′, α′′ are optimal for (34). The rest of the proof shows
that on any Eα′,α′′ the value of (57) is almost surely unique.

The set Eα′,α′′ depends on the shape of the function ξ
defined in (35), so next we point out two properties of
ξ(hij , µi).

Fact 1: For almost all hij where the optimal value of
problem (35) is ξ(hij , µi) = 0, the optimal solution is unique
and equals pij(µ;h) = 0.

Proof of Fact 1: First we note that for any hij , the choice
p = 0 is feasible for problem (35) and by Assumption 2(a)
it gives an objective p − µiq(hij , p) = 0. So whenever the
optimal value of problem (35) is 0, then p = 0 is an optimal
solution. This optimal solution is unique for almost all hij
because of Assumption 2(c).

Fact 2: If at some hij the optimal value of problem (35) is
ξ(hij , µi) < 0, then for h′ij > hij we have that ξ(h′ij , µi) <
ξ(hij , µi).

Proof of Fact 2: First note that at the given hij it must
be that the optimal solution pij(µ;h) of problem (35) sat-
isfies q(hij , pij(µ;h)) > 0. This is true because otherwise
q(hij , pij(µ;h)) = 0 implies ξ(hij , µi) = pij(µ;h) ≥ 0.
Second by Assumption 2(b) when q(.) > 0, it is strictly
increasing in its argument. Thus we have

ξ(hij ,µi) = pij(µ;h)− µiq(hij , pij(µ;h))

> pij(µ;h)− µiq(h′ij , pij(µ;h)) ≥ ξ(h′ij , µi) (59)

for h′ij > hij .
Let us now fix some α′ 6= α′′ ∈ ∆m,f and consider the

set Eα′,α′′ . Pick indices ı,  where α′, α′′ differ, i.e., without
loss of generality, α′ı, = 1, α′′ı, = 0. Consider first the case of
h ∈ Eα′,α′′ where ξ(hı,, µı) = 0. By Fact 1 above we know
that this implies pı,(µ;h) = 0 is almost surely the unique
optimizer of (33). But in that case q(hı,, pı,(µ;h)) = 0, and
the choice of αı,(h) does not affect the value of (57), which
is zero.

Second, we examine the set h ∈ Eα′,α′′ where ξ(hı, µı) <
0. We will show that this event happens with φ-probability
zero. In particular by Assumption 1 φ has a probability
density function on Hm×f , or more formally φ is absolutely
continuous with respect to the Lebesgue measure on Hm×f .
Hence to show that the discussed event has φ-measure zero, it
suffices to show that it has Lebesgue measure zero. Note that
we can upper bound the set as follows

Eα′,α′′
⋂
{h : ξ(hı, µı) < 0}

⊆ {h :
∑
i,j

(α′′ij − α′ij) ξ(hij , µi) = 0, ξ(hı, µı) < 0}

= {h :
∑

i6=ı,j 6=

(α′′ij − α′ij) ξ(hij , µi) = ξ(hı, µı) < 0} (60)

The subset in the first step is justified from the fact that, in
contrary to the definition of Eα′,α′′ in (58), we do not take
α′, α′′ to be optimal for problem (34). We only require that
they yield the same objective in the problem. The second step
follows by the appropriately selected indices ı, .

We will now argue that the last set in (60) has Lebesgue
measure zero. If we fix the values of all the vari-
ables/coordinates hij , i 6= ı, j 6= , there is at most one
value for the variable/coordinate hı that belongs in the set.
The reason is that for values of the hı coordinate where
ξ(hı, µı) < 0, Fact 2 above states that ξ(hı, µı) is strictly
monotonic in hı. Hence there can be at most one value hı
that equals the sum within the last set of (60). This means that
the last set in (60) can be equivalently described by a mapping
from an m ·f−1 dimensional space to the space Hm×f , or in
other words it is a lower-dimensional subset of Hm×f . Hence
it has Lebesgue measure zero. This implies that the first set
in (60) has Lebesgue (and φ) measure zero as well.

The above procedure can be iterated for any pair α′, α′′ to
conclude that in their union set E the value of the subgradient
vector is almost surely unique.

C. Proof of Theorem 1
Let µ∗ be an optimal solution of the dual problem (25).

First, we argue that every pair α(µ∗), p(µ∗) chosen from
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the set of Lagrangian minimizers (A,P)(µ∗) at the point µ∗

(cf. (24)) is an optimal solution to primal Problem 1 (equiv-
alently (20)). Under Assumptions 1 and 2, Proposition 2(b)
states that the vector s(µ∗) in (27) has the same value at any
chosen pair α(µ∗), p(µ∗). Since s(µ∗) is also the constraint
slack of the chosen pair in the primal problem (20), then any
Lagrange optimizers α(µ∗), p(µ∗) have the same constraint
slack. Moreover, under Assumptions 1 and 3, Proposition
1(c) states that the optimal primal variables α∗, p∗ are one
such pair of Lagrange optimizers at µ∗, and by definition
they have a feasible constraint slack. Hence all Lagrange
optimizers α(µ∗), p(µ∗) have the same feasible constraint
slack as α∗, p∗. Additionally all optimizers α(µ∗), p(µ∗) yield
the same minimum Lagrangian value L(α(µ∗), p(µ∗), µ∗). By
the form of the Lagrangian in (22) it follows that all optimizers
α(µ∗), p(µ∗) also give the same primal objective in (20) as
the point α∗, p∗, i.e., the minimum P . Hence any optimizer
pair α(µ∗), p(µ∗) is primal optimal. The first statement of the
theorem follows because the scheduling and power allocation
obtained by (33)-(35) at µ∗ describe one pair of Lagrange
optimizers at µ∗, i.e., are optimal solutions to Problem 1.

The convergence of iterations (29)-(30) to the optimal dual
variable µ∗ for stepsizes in (31) relies on the boundedness of
the subgradient vectors (as mentioned after (28)) and follows
from a standard subgradient method argument – for a proof
see, e.g., [26, Prop. 8.2.6].

D. Proof of Proposition 3

We begin by noting that at every time k the vector sk
computed by (37) is a stochastic subgradient for the dual
function g(µ) at the point µk, i.e.,

g(µ′)−g(µk) ≤ (µ′−µk)TE[sk
∣∣µk] for all µ′ ∈ Rm+ . (61)

To show this fact compare equations (36)-(37) of the online
algorithm with (27) to conclude that E[sk

∣∣µk] = s(µk)
because hk is i.i.d for every k. Inequality (61) then follows
directly from (26).

Then note that by Assumption 3 there exists a strictly
feasible primal solution α′, p′. Call P ′ the resulting objective
value (20) at this point, and let a positive constant ε′ > 0
denote the constraint slack of (21) at this point, i.e., ci + ε′ ≤
Eh
∑f
j=1 α

′
ij(h) q(hij , p

′
ij(h)). Then we may bound the dual

function (23) at the optimal µ∗ by

D = g(µ∗) ≤ L(α′, p′, µ∗) = P ′+

m∑
i=1

µ∗i

[
ci−Eh

f∑
j=1

α′ij(h) q(hij , p
′
ij(h))

]
≤ P ′ −

m∑
i=1

µ∗i ε
′

Rearranging the above inequality, and since µ∗ ≥ 0, it follows
that µ∗` ≤

∑m
i=1 µ

∗
i ≤ (P ′−D)/ε′ for every `, i.e., the optimal

dual variables are finite.
Since the optimal dual variables are finite, the distance

‖µk − µ∗‖ between any random µk obtained by Algorithm 1
and the set of optimal dual variables µ∗ is well-defined and
bounded. The following lemma gives an upper bound on this
distance. Here recall that as we commented after (27) the
subgradients s(µ) are always bounded in our problem.

Lemma 1. Let D be the optimal value of the dual problem
(25), µ∗ be an optimal solution, and S be the bound on the
subgradient ‖s(µ)‖ ≤ S for any µ ∈ Rm+ . Then at each step
k of Algorithm 1 the update of µk+1 satisfies

E[‖µk+1−µ∗‖2 |µk] ≤ ‖µk−µ∗‖2 + ε2
kS

2−2εk(D− g(µk))
(62)

Proof: First use the expression µk+1 = [µk + εksk]+ in
Algorithm 1 to write

‖µk+1−µ∗‖ = ‖[µk+εksk]+−µ∗‖ ≤ ‖µk+εksk−µ∗‖, (63)

where the last inequality holds because when projecting on the
positive orthant the distance from a point µ∗ in the orthant can
only decrease. Taking expectation on both sides given µk and
expanding the square norm of the right hand side, we get

E[‖µk+1 − µ∗‖2 |µk] ≤‖µk − µ∗‖2 + ε2
kS

2

+ 2εk(µk − µ∗)TE[sk
∣∣µk] (64)

where we bounded ‖E[sk
∣∣µk]‖2 < S2. Then (62) follows

from (64) by applying inequality (61) with µ′ = µ∗.
Based on (62), we will use a supermartingale convergence

argument to show that ‖µk − µ∗‖2 → 0 almost surely. Note
first that at any µk ∈ Rm+ the dual function is smaller than the
optimal value (cf. (25)), so D − g(µk) ≥ 0. Hence (62) can
be simplified to

E[‖µk+1 − µ∗‖2 |µk] ≤ ‖µk − µ∗‖2 + ε2
kS

2. (65)

Then consider the sequence of random variables

ak = ‖µk − µ∗‖2 +
∑
`≥k

ε2
l S

2. (66)

This stochastic process is: i) measurable with respect to
the sequence (filtration) Fk = {µ0:k}, ii) non-negative, iii)
integrable because µk generated by Algorithm 1 is bounded
at every k and stepsizes are square summable, iv) satisfies
E[ak+1

∣∣Fk] ≤ ak as can be seen by definition (66) and (65).
Such a stochastic process is called a supermartingale [29,

Ch. 5], and a non-negative supermartingale converges almost
surely to some limit random variable [29, Th. 5.2.9]. Observe
that the second summand

∑∞
`=k ε

2
l S

2 of ak in (66) is deter-
ministic and converges to 0 because of square summability of
the stepsizes. Hence the random variable ‖µk−µ∗‖2 converges
almost surely (to some limit random variable).

To arrive at a contradiction suppose the limit random
random variable is not identically zero. Equivalently, with
probability δ > 0 we have ‖µk − µ∗‖2 ≥ ε for some ε > 0
for all sufficiently large k. This implies that µk and g(µk) are
bounded away from the optimal µ∗ and D respectively, hence
the following expected value diverges,

E
∑
k≥0

2εk(D − g(µk)) = +∞. (67)

However taking expectation at both sides of (62) and iterating
for k = 0, . . . , N − 1 implies

E‖µN − µ∗‖2 ≤ ‖µ0 − µ∗‖2

+

N−1∑
k=0

2ε2
kS

2 − E
N−1∑
k=0

2εk(D − g(µk)). (68)
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The left hand side is non-negative, but (67) implies that in
the limit as N → ∞ the right hand side becomes negative.
This is a contradiction. Therefore it must be that ‖µk − µ∗‖2
converges to zero with probability 1.

By continuity of the concave dual function g(µ) we also
have that g(µk) converges to g(µ∗) = D a.s.

E. Proof of Theorem 2 and Corollary 1

The proofs of the two results are presented together. First
we will show that the statements (44) of Theorem 2 and (46)
of Corollary 1 hold, by converting them into equivalent ones
involving variables relating to the dual problem (25). Imitating
the steps leading from problem (16) to problem (20), the
statement (44) is equivalent to

lim sup
k→∞

ci − Ehk

[ f∑
j=1

αij,k q(hij,k, pij,k)

∣∣∣∣µk ] ≤ 0 (69)

holding a.s. with respect to the channel sequence {hk, k ≥ 0}.
Here we exploited the fact that by the online algorithm the
variables αk, pk conditioned on the value of µk are indepen-
dent of the observed channel history (but µk does depend on
the whole history). Similarly we see that the statement (46) is
equivalent to

lim sup
k→∞

ci − E
f∑
j=1

αij,k q(hij,k, pij,k) ≤ 0 (70)

The term inside the limit is the expected (i.e., unconditioned)
value of the term in (69) with respect to the random sequence
{hk, k ≥ 0}.

Condition (69) is equivalent to lim supk→∞ Ehk
[sk
∣∣µk] ≤

0 using the expression of sk given in (37). Also we already
argued in the proof of Prop. 3 that Ehk

[sk
∣∣µk] = s(µk) where

s(µk) is given by (27) and is a subgradient of the dual function
g at µk. To sum up, (44) is equivalent to

lim sup
k→∞

s(µk) ≤ 0 a.s. (71)

Similarly, condition (46) via (70) is equivalent to
lim supk→∞ Es(µk) ≤ 0. But the latter is a consequence of
(71) because lim supk→∞ Es(µk) ≤ E lim supk→∞ s(µk) ≤
0. The first inequality follows by applying Fatou’s lemma [29,
Thm. 1.6.5] to the bounded below (as we comment after (27))
random variable −s(µk). The second inequality follows by
monotonicity of expectation. Hence, to prove the statements
(44) and (46) it suffices to show (71) which we do next.

Under Assumption 3 we have established in Proposition 3
that a.s. µk → µ∗. Then we note a convex analysis fact by
[26, Prop. 4.2.3]. If g is concave, and µk → µ∗, and s(µk)
is selected as a subgradient of g at µk, then every limit point
of s(µk) is a subgradient of g at µ∗. Hence for the sequence
of µk obtained by the online algorithm we have that s(µk)
converges a.s. to a subgradient of g at µ∗.

Also, as follows from Danskin’s theorem [26, Prop. 4.5.1],
the subgradients of the dual function g at any point µ belong in
the convex hull of the vectors s(µ) obtained in (27). Hence the
sequence s(µk) converges a.s. to the convex hull of the vectors
s(µ∗). But under Assumptions 1, 2, and 3, as we argued in the

proof of Theorem 1, the vectors s(µ∗) take a unique value that
satisfies s(µ∗) ≤ 0. Hence for the sequence of µk obtained
by the online algorithm we have that lim supk→∞ s(µk) ≤ 0
a.s., which is exactly what we set out to prove in (71).

Finally let us prove (45). Recall that the dual function
equals g(µ) = L(α(µ), p(µ), µ) where α(µ), p(µ) are chosen
as Lagrange optimizers at µ according to (24). Using the
definition of the Lagrangian at (22) and the interpretation of
the subgradient s(µ) at (27) as the constraint slack, we have
that for any µk

g(µk) = L(α(µk), p(µk), µk)

= Eh
m∑
i=1

αi(µk;h)pi(µk;h) + µTk s(µk) (72)

Now observe that the expectation in (45) equals the expec-
tation given in (72) because by design of Algorithm 1 the
primal variables αk, pk are selected as Lagrange optimizers at
µk. Therefore to show that (45) holds a.s. it suffices to show
that the expectation in (72) converges a.s. to P which equals
D by strong duality.

Proposition 3 establishes that the left hand side of (72)
converges to g(µk)→ D, and also that µk → µ∗ a.s. We have
also already argued that s(µk) → s(µ∗) a.s. Therefore also
µTk s(µk) → µ∗T s(µ∗) a.s. But by Prop. 1(b) µ∗T s(µ∗) = 0.
This shows that the expectation at the right hand side of (72)
converges to D, which completes the proof.
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