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Metrics in the Space of High Order Networks
Weiyu Huang and Alejandro Ribeiro

Abstract—This paper presents methods to compare high order
networks, defined as weighted complete hypergraphs collecting rela-
tionship functions between elements of tuples. They can be considered
as generalizations of conventional networks where only relationship
functions between pairs are defined. Important properties between
relationships of tuples of different lengths are established, particu-
larly when relationships encode dissimilarities or proximities between
nodes. Two families of distances are then introduced in the space
of high order networks. The distances measure differences between
networks. We prove that they are valid metrics in the spaces of
high order dissimilarity and proximity networks modulo permutation
isomorphisms. Practical implications are explored by comparing the
coauthorship networks of two popular signal processing researchers.
The metrics succeed in identifying their respective collaboration
patterns.

I. INTRODUCTION

We consider high order networks that describe relationships
between elements of tuples and address the problem of construct-
ing valid metric distances between them. Most often, networks
are defined as structures that describe interactions between pairs
of nodes [2], [3]. This is an indisputable appropriate model for
networks that describe binary relationships, such as communica-
tion or influence, but not so appropriate for problems in which
binary, ternary, or n-ary relationships in general, have different
implications. This is, e.g., true of coauthorship networks where
we count the number of joint publications by groups of scholars.
Papers written by pairs of authors capture information that can be
used to identify important authors and study mores of research
communities. However, there is extra information to be gleaned
from collaborations between triplets of authors, or even single
author publications. The importance of capturing tuple proximities
between groups of nodes other than pairs has been recognized
and exploited in multiple domains including coverage analysis
in sensor networks [4]–[6], cognitive learning and memory [7],
broadcasting in wireless networks [8], image ranking [9], three-
dimensional object retrieval and recognition [10], and group
relationship structure in social networks [11].

The problem of defining distances between networks, or, more
loosely, the problem of determining if two networks are similar
or not, is important even in the case of pairwise networks.
The problem is not complicated if nodes have equal labels in
both networks [12]–[15]. The problem, however, becomes very
challenging if a common labeling doesn’t exist in both networks,
as we need to consider all possible mappings between nodes of
each network. This complexity has motivated the use of network
features as alternatives to the use of distances. Examples of
features that have proved useful in particular settings are clustering
coefficients [16], neighborhood topology [17], betweenness [18],
motifs [19], wavelets [20], as well as graphlet degree distribu-
tions or signatures [21]–[23]. Although feature analysis is often
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effective, it is application-dependent, utilizes only a small portion
of the information conveyed by the networks, and networks not
isomorphic may still have zero dissimilarity as measured by
features. These drawbacks can be overcome with the definition
of valid metric distances that are universal, depend on all edge
weights, and are null if and only if the networks are isomorphic
[24]. We point out that one can think of defining distances between
networks as a generalization of the graph isomorphism problem
[25] where the question asked is whether two networks are the
same or not. When defining network distances we also want a
measure of how far the networks are and we want these measures
to be symmetric and satisfy the triangle inequality [24].

The main problem addressed in this paper is the construction of
metric distances between high order networks. Formal definitions
of high order networks are presented (Section III) as a general-
ization of pairwise networks (Section II). Dissimilarity networks
(Section IV) and proximity networks (Section V) are specific
high order networks where relationship functions are intended to
encode dissimilarities or proximities between members of tuples.
Dissimilarity networks are characterized by the order increasing
property which states that tuples become more dissimilar when
members are added to a group. Proximity networks abide to the
order decreasing property which states that tuples becomes less
similar when adding nodes to the group. Two families of proper
metric distances are then defined in the respective space of dis-
similarity (Section IV-A) and proximity (Section V-A) networks
modulo permutation isomorphisms. These distances are built as
generalizations of the pairwise distances in [24], which are them-
selves generalizations of the Gromov-Hausdorff distance between
metric spaces [26], [27]. The paper also establishes a duality
between dissimilarity and proximity networks and the different
metrics (Section V-B). We use the proximity network distances
defined in the paper to compare the coauthorship networks of two
popular signal processing researchers and show that they succeed
in discriminating their collaboration patterns (Section VI). As in
the case of pairwise networks these distances can be computed
only when the number of nodes is small. Ongoing work is focused
on the problem of finding bounds on these network distances that
are computable in networks with large numbers of nodes.

II. PAIRWISE NETWORKS

Conventionally, a network is defined as a pair NX = (X, r1X),
where X is a finite set of nodes and r1X : X2 = X ×X → R+

is a function that may encode similarity or dissimilarity between
elements. For points x, x′ ∈ X , values of this function are denoted
as r1X(x, x′). We assume that d1X(x, x′) = 0 if and only if x = x′

and we further restrict attention to symmetric networks where
r1X(x, x′) = r1X(x′, x) for all pairs of nodes x, x′ ∈ X . The set
of all such networks is denoted as N .

When defining a distance between networks we need to take
into consideration that permutations of nodes amount to rela-
belling nodes and should be considered as same entities. We there-
fore say that two networks NX = (X, r1X) and NY = (Y, r1Y ) are
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isomorphic whenever there exists a bijection φ : X → Y such
that for all points x, x′ ∈ X ,

r1X(x, x′) = r1Y (φ(x), φ(x′)). (1)

Such a map is called an isometry. Since the map φ is bijective,
(1) can only be satisfied when X is a permutation of Y . When
networks are isomorphic we write NX ∼= NY . The space of
networks where isomorphic networks NX ∼= NY are represented
by the same element is termed the set of networks modulo isomor-
phism and denoted by N mod ∼=. The space N mod ∼= can be
endowed with a valid metric [24]. The definition of this distance
requires introducing the prerequisite notion of correspondence
[28, Def. 7.3.17].

Definition 1 A correspondence between two sets X and Y is a
subset C ⊂ X × Y such that ∀ x ∈ X , there exists y ∈ Y
such that (x, y) ∈ C and ∀ y ∈ Y there exists x ∈ X such that
(x, y) ∈ C. The set of all correspondences between X and Y is
denoted as C(X,Y ).

A correspondence in the sense of Definition 1 is a map between
node sets X and Y so that every element of each set has at
least one correspondent in the other set. Correspondences include
permutations as particular cases but also allow for the mapping
of a single point in X to multiple correspondents in Y or, vice
versa. Most importantly, this allows definition of correspondences
between networks with different numbers of elements. We can
now define the distance between two networks by selecting the
correspondence that makes them most similar as we formally
define next.

Definition 2 Given two networks NX = (X, r1X) and NY =
(Y, r1Y ) and a correspondence C between the node spaces X and
Y define the network difference with respect to C as

Γ1
X,Y (C) := max

(x1,y1),(x2,y2)∈C

∣∣r1X(x1, x2)− r1Y (y1, y2)
∣∣ . (2)

The network distance between networks NX and NY is then
defined as

d1N (NX , NY ) := min
C∈C(X,Y )

{
Γ1
X,Y (C)

}
. (3)

For a given correspondence C ∈ C(X,Y ) the network
difference Γ1

X,Y (C) selects the maximum distance difference
|r1X(x1, x2) − r1Y (y1, y2)| among all pairs of correspondents –
we compare r1X(x1, x2) with r1Y (y1, y2) when the points x1 and
y1, as well as the points x2 and y2, are correspondents. The
distance in (3) is defined by selecting the correspondence that
minimizes these maximal differences. The distance in Definition
2 is a proper metric in the space of networks modulo isomorphism.
It is nonnegative, symmetric, satisfies the triangle inequality, and
is null if and only if the networks are isomorphic [24]. For future
reference, the notions of metric and pseudometric are formally
stated next.

Definition 3 Given a space S and an isomorphism ∼=, a function
d : S × S → R is a metric in S mod ∼= if for any a, b, c ∈ S
the function d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.
(ii) Symmetry. d(a, b) = d(b, a).
(iii) Identity. d(a, b) = 0 if and only if a ∼= b.

(iv) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).

The function is a pseudometric in S mod ∼= if for any a, b, c ∈ S
the function d satisfies (i), (ii), (iv), and

(iii’) Relaxed identity. d(a, b) = 0 if a ∼= b.

A metric d in S mod ∼= gives a proper notion of dis-
tance. Since zero distances imply elements being isomorphic,
the distance between elements reflects how far they are from
being isomorphic. Pseudometrics are relaxed since elements not
isomorphic may still have zero distance measured by the pseu-
dometrics. The distance in Definition 2 is a metric in space N
mod ∼=. Observe that since correspondences may be between
networks with different number of elements, Definition 2 defines
a distance d1N (NX , NY ) when the node cardinalities |X| and |Y |
are different. In the particular case when the functions r1X satisfy
the triangle inequality, the set of networks N reduces to the set of
metric spaces M. In this case the metric in Definition 2 reduces
to the Gromov-Hausdorff (GH) distance between metric spaces.
The distances d1N (NX , NY ) in (3) are valid metrics even if the
triangle inequalities are violated by r1X or r1Y [24].

In this paper we consider high order networks where the
specification of functions rkX : Xk+1 → R+ are meant to encode
similarities or dissimilarities between node (k + 1)-tuples. The
goal of this paper is to devise generalizations of Definition 2 to
high order networks and to prove that they define valid metrics
in the space of high order networks modulo isomorphism; see
Definitions 11, 12, 14, and 15.

III. HIGH ORDER NETWORKS

A network of order K over the node space X is defined as a
collection of K+1 relationship functions {rkX : Xk+1 → R+}Kk=0

from the space Xk+1 of (k + 1)-tuples to the nonnegative reals,

NK
X =

(
X, r0X , r

1
X , . . . , r

K
X

)
. (4)

A network of order K can be considered as a weighted com-
plete hypergraph [29], [30] whose weights for all hyperedges of
elements of all (k + 1) tuples with 0 ≤ k ≤ K are defined.

When some nodes are repeated in the point collection x0:k :=
(x0, x1, . . . , xk) ∈ Xk+1, the relationship function rkX(x0:k)
entails the same information as the relationship function between
the largest non-repeating subtuple of x0:k. In future definitions, it
would be important to take the number of distinct elements of a
tuple into consideration. We formalize this property by introducing
the notion of the rank of tuples as we formally specify next.

Definition 4 The rank s(x0:k) of a given tuple x0:k is the number
of unique elements in the tuple.

It follows from Definition 4 that the rank s(x, x) = 1 and
that the rank s(x′, x, x′) = 2. Moreover, the relationship function
between a tuple x0:k is identical to the relationship functions of
subtuples of x0:k that have same rank as s(x0:k) since they imply
same information. This remark along with a symmetry property
makes up the formal definition of high order networks that we
introduce next.

Definition 5 NK
X =

(
X, r0X , r

1
X , . . . , r

K
X

)
is a K-order network

if the following two properties holds:
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Symmetry. For any 0 ≤ k ≤ K and any point collections x0:k,
we have that

rkX(x[0:k]) = rkX(x0:k), (5)

where x[0:k] = ([x0], [x1], . . . , [xk]) is a reordering of x0:k :=
(x0, x1, . . . , xk).
Identity. For any 0 ≤ k ≤ K and tuple x0:k, any of its subtuple
xl0:lk̃ with s(x0:k) = s(xl0:lk̃) satisfies

rkX(x0:k) = rk̃X(xl0:lk̃). (6)

The set of all high order networks of order K is denoted as NK .

For point collections x0:k, values of their k-order relationship
functions are denoted as rkX(x0:k) and are intended to represent a
measure of similarity or dissimilarity for members of the group. In
particular, the zeroth order function r0X encodes relative weights of
different nodes and the first order function r1X represents the pair-
wise information discussed in Section II. Observe however that
pairwise networks are not particular cases of networks of order
1 because a network of order K not only requires the definition
of relationships between (K + 1)-tuples but also of relationships
between (k+ 1)-tuples for all integers 0 ≤ k ≤ K. A network of
order 0 is one in which only node weights are given, a network
of order 1 is one in which weights and pairwise relationships
are defined, a network of order 2 adds relationships between
triplets and so on. Examples for the identity property includes
r2X(x, x) = r1X(x) and r3X(x′, x, x′) = r2X(x, x′). We assume
that relationship values are normalized so that 0 ≤ rkX(x0:k) ≤ 1
for all k and x0:k. As in the case of pairwise networks we consider
K-order networks NK

X and NK
Y to be equivalent for their k-order

relationship functions if rkX is a permutation of rkY as we formally
define next.

Definition 6 We say that two networks NK
X and NK

Y are k-
isomorphic if there exists a bijection φ : X → Y such that for all
x0:k ∈ Xk+1 we have

rkY (φ(x0:k)) = rkX(x0:k), (7)

where we use the shorthand notation rkY (φ(x0:k)) :=
rkY (φ(x0), φ(x1), . . . , φ(xk)). The map φ is called a k-isometry.

When networks NK
X and NK

Y are k-isomorphic we write
NK
X
∼=k NK

Y . The space of K-order networks modulo k-
isomorphism is denoted by NK mod ∼=k. For each nonnegative
integer 0 ≤ k ≤ K, the spaceNK mod ∼=k of networks of order
K modulo k-isomorphism can be endowed with a pseudometric.
The definition of this family of pseudometrics is a generalization
of Definition 2 as we formally state next.

Definition 7 Given networks NK
X and NK

Y , a correspondence C
between the node spaces X and Y , and an integer 0 ≤ k ≤ K
define the k-order network difference with respect to C as

ΓkX,Y (C) := max
(x0:k,y0:k)∈C

∣∣rkX(x0:k)− rkY (y0:k)
∣∣ , (8)

where the notation (x0:k, y0:k) stands for
(x0, y0), (x1, y1), . . . , (xk, yk). The k-order network distance
between networks NK

X and NK
Y is then defined as

dkN (NK
X , N

K
Y ) := min

C∈C(X,Y )

{
ΓkX,Y (C)

}
. (9)

1 1

1

1

C

C

CN1
X

x1

1

x21 x3 1

N1
Y

y1 1

y2

1

Fig. 1. An example of two networks being not 1-isomorphic but having
zero 1-order network distance between them. For the given correspondence
C, r2X(x1, x2) = r2Y (y1, y2), r2X(x1, x3) = r2Y (y1, y2). r2X(x2, x3) =
r2Y (y2, y2) = r1Y (y2) where the second equality follows from the identity
property. Moreover, r2X(x1, x1) = r2Y (y1, y1), r2X(x2, x2) = r2Y (y2, y2),
r2X(x3, x3) = r2Y (y2, y2). Γ1

X,Y (C) = 0 witnesses the zero 1-order network
distance between N1

X and N1
Y . However these networks cannot be 1-isomorphic

since they possess different number of nodes.

We further define the K-order distance vector as
the K + 1 dimensional vector dKN (NK

X , N
K
Y ) =[

d0N (NK
X , N

K
Y ), . . . , dKN (NK

X , N
K
Y )
]T

that groups the k-order
distances in (9).

Both, Definition 2 and Definition 7 consider correspondences
C that map the node space X onto the node space Y , compare
dissimilarities, and set the network distance to the comparison that
yields the smallest value in terms of maximum differences. The
distinction between them is that in (2) we compare the values in
r1X(x1, x2) and r1Y (y1, y2), whereas in (8) we compare the values
in each of the k-order relationships rkX(x0:k) and rkY (y0:k) to
compute the k-order distances dkN (NK

X , N
K
Y ) that we group in the

vector dKN (NK
X , N

K
Y ). Except for this distinction, Definition 2 and

Definition 7 are analogous since ΓkX,Y (C) selects the maximum
k-order relationship difference |rkX(x0:k) − rkY (y0:k)| among all
tuples of correspondents – we compare rkX(x0:k) with rkY (y0:k)
when all the points xl ∈ x0:k and yl ∈ y0:k are correspondents.
The distance dkN (NK

X , N
K
Y ) is defined by selecting the correspon-

dence that minimizes these maximal differences.
Notice that, in general, the correspondence C minimizing

ΓkX,Y (C) is not necessarily identical to the correspondence C ′

minimizing ΓlX,Y (C ′) for k 6= l. The distance vector dKN is a
vector with each element measuring the dissimilarity between
relationship functions of a specific order, possibly using different
minimizing correspondences. We emphasize that, as in the case of
Definition 2, dkN (NK

X , N
K
Y ) and dKN (NK

X , N
K
Y ) are defined even

if the numbers of nodes in X and Y are different. We show in the
following proposition that the function dkN : NK×NK → R+ is,
indeed, a pseudometric in the space of K-order networks modulo
k-isomorphism for any integer 0 ≤ k ≤ K.

Proposition 1 Given any nonnegative integer K, for any integers
0 ≤ k ≤ K, the function dkN : NK ×NK → R+ defined in (9)
is a pseudometric in the space NK mod ∼=k.

Proof: See Appendix A. �

dkN being a pseudometric implies that two high order networks
not k-isomorphic may still have zero k-order network distance
between them. A specific example can be found in Figure 1 where
two 1-order networks not 1-isomorphic have zero dissimilarity
measured by the 1-order network distance. For each integer 0 ≤
k ≤ K, the pseudometric dkN (NK

X , N
K
Y ) defined in Definition 7

in the space NK mod ∼=k measures dissimilarity between k-
order functions rkX and rkY . We can also ask the question of how
different two networks are by considering all their order functions.
To that end we consider K-order networks to be equivalent if rkX
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is a permutation of rkX for all integers 0 ≤ k ≤ K as we formally
state next.

Definition 8 We say that two networks of order K, NK
X and NK

Y ,
are isomorphic if there exists a bijection φ : X → Y such that
(7) holds for all 0 ≤ k ≤ K and x0:k ∈ Xk+1. The map φ is
called an isometry.

When networks NK
X and NK

Y are isomorphic we write NK
X
∼=

NK
Y . The difference between k-isomorphism and isomorphism is

that the bijection in the latter case preserves relationship functions
over all orders whereas only k-order relationship functions are
preserved in the former case. That NK

X
∼= NK

Y implies that
NK
X
∼=k NK

Y for all integers 0 ≤ k ≤ K, but the opposite is
not necessarily true.

The space of K-order networks modulo isomorphism is denoted
as NK mod ∼=. A family of pseudometrics measuring the
difference between networks over all order functions as a whole
can be endowed in the space NK mod ∼=. The definition of this
family of distances can be considered as an extension of Definition
2 and an aggregation of Definition 7 as we formally state next.

Definition 9 Given networks NK
X and NK

Y , a correspondence C
between the node spaces X and Y , and some p-norm ‖ · ‖p, define
the network difference with respect to C as∥∥ΓKX,Y (C)

∥∥
p

:=

∥∥∥∥(Γ0
X,Y (C),Γ1

X,Y (C), . . . ,ΓKX,Y (C)
)T∥∥∥∥

p

, (10)

where for each integer 0 ≤ k ≤ K, ΓkX,Y (C) is the k-order
network difference with respect to C defined in (8). The p-norm
network distance between NK

X and NK
Y is then defined as

dN ,p(N
K
X , N

K
Y ) := min

C∈C(X,Y )

{∥∥ΓKX,Y (C)
∥∥
p

}
. (11)

The difference between Definition 2, Definition 7 and Definition
9 is that in the case of the network distance dN ,p(N

K
X , N

K
Y ),

we compare not only one relationship functions rkX(x0:k) and
rkY (y0:k) but also all the relationship functions of order not larger
than K. The norm over the vector ΓKX,Y (C) formed by k-order
network differences with respect to C for all integers 0 ≤ k ≤ K
is assigned as the difference between NK

X and NK
Y measured

by the correspondence C. The distance dN ,p(NK
X , N

K
Y ) is then

defined as the minimum of these differences achieved by some
correspondence. As in the cases of Definition 2 and Definition
7, dN ,p(NK

X , N
K
Y ) is defined even if the numbers of nodes in X

and Y are different. The function dN ,p : NK × NK → R+

is a pseudometric in the space of K-order networks modulo
isomorphism as we show in the following proposition.

Proposition 2 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dN ,p : NK ×NK → R+ defined in (11)
is a pseudometric in the space NK mod ∼=.

Proof: See Appendix B. �

Observe that in (11) we are only allowed to pick one corre-
spondence minimizing ‖ΓKX,Y (C)‖p whereas in (9) for each k
we are able to pick one correspondence minimizing the order
specific ΓkX,Y (C). This establishes a relationship between dN ,p
and ‖dKN ‖p that we show next.

Proposition 3 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dN ,p defined in (11) is no smaller than
‖dKN ‖p where dKN is the vector of distances defined in Definition
7. I.e., for any pair of K-order networks NK

X , N
K
Y , we have that

dN ,p(N
K
X , N

K
Y ) ≥

∥∥dKN (NK
X , N

K
Y )
∥∥
p
. (12)

Proof: Given K-order networks NK
X , N

K
Y , a correspondence C

between the node spaces X and Y , and an integer 0 ≤ k ≤ K,
it follows from (9) that

ΓkX,Y (C) ≥ dkN (NK
X , N

K
Y ). (13)

This implies that the vector dKN (NK
X , N

K
Y ) is element-wise no

greater than ΓKX,Y (C) from where it follows that∥∥ΓKX,Y (C)
∥∥
p
≥
∥∥dKN (NK

X , N
K
Y )
∥∥
p
. (14)

Since (14) applies for any correspondence C, the minimum of∥∥ΓKX,Y (C)
∥∥
p

achieved by some correspondence in the set of cor-
respondence C(X,Y ) is still not smaller than

∥∥dKN (NK
X , N

K
Y )
∥∥
p
,

min
C∈C(X,Y )

{∥∥ΓKX,Y (C)
∥∥
p

}
≥
∥∥dKN (NK

X , N
K
Y )
∥∥
p
. (15)

The result in (12) follows after noting that the minimum in the
left hand side of (15) is the distance dN ,p(NK

X , N
K
Y ) in (11). �

Definitions 7 and 9 are pseudometrics in the space of high order
networks modulo appropriate isomorphisms. To obtain proper
metrics, we restrict attention to subclasses of networks having
specific structures. To do so, observe that the k-order function
rkX of a given network NK

X does not impose constraints on
the l-order function rlX of the same network except the identity
property. In practical situations, however, it is common to observe
that adding nodes to a tuple results in either increasing or
decreasing relationships between elements of the extended tuple.
This motivates the consideration of dissimilarity networks and
proximity networks that we undertake in the next two sections.

IV. DISSIMILARITY NETWORKS

In dissimilarity networks the function rkX(x0:k) encodes a
level of dissimilarity between elements of the x0:k tuple. In this
scenario it is reasonable to assume that adding elements to a tuple
makes the group more dissimilar. This restriction along with a
generalization of the requirement that d1X(x, x′) = 0 if and only
if x = x′ in pairwise network makes up the formal definition that
we introduce next.

Definition 10 We say that the K-order network DK
X =(

X, r0X , r
1
X , . . . , r

K
X

)
is a dissimilarity network if for any order

0 ≤ k ≤ K and tuples x0:k ∈ Xk+1, its relationship function is
the summation of a dissimilarity function and the multiplication
of its rank with a small constant ε,

rkX(x0:k) = dkX(x0:k) + εs(x0:k) (16)

The dissimilarity terms satisfy the order increasing property so
that for any 1 ≤ k ≤ K and x0:k,

dkX(x0:k) ≥ dk−1X (x0:k−1), (17)

and the constant ε > 0 is a strictly positive value that satisfies

0 < ε ≤ 1− 1

K
max

x̃0:K∈XK+1
dKX(x̃0:K). (18)
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8/9 + 3ε 4/9 + 3ε

A

ε

B

1/9 + ε

C5/9 + ε D 3/9 + ε

2/9 + 2ε

5/9 + 2ε

7/9 + 2ε

4/9 + 2ε

4/9 + 2ε

Fig. 2. Temporal dynamics for the formation of a research community. The k-
order relationship function in this 2-order dissimilarity network [cf. Definition
10] incorporates the dissimilarity function – the normalized time instant at
which members of a given (k + 1)-tuple write their first joint paper – and the
multiplication of ε and the rank of the tuple. E.g., A writes her first paper at time
0, and coauthors with B, D, and C at times 2/9, 4/9, and 5/9. She also writes
jointly with B and D at time 4/9.

The set of all dissimilarity networks of order K is denoted as
DK .

To see that the order increasing property (17) in Definition 10 is
reasonable consider a network describing the temporal dynamics
of the formation of a research community – see Figure 2. The
dissimilarity term in the k-order relationship function in this
network marks the normalized time instant at which members of
a given (k+1)-tuple write their first joint paper. In particular, the
zeroth order dissimilarities d0X are the normalized time instants
when authors publish their first paper. In Figure 2 authors A, B,
C, and D publish their first papers at times 0, 1/9, 5/9, and
3/9. The first order dissimilarities d1X between pairs denote the
normalized times at which nodes become coauthors. Since authors
can’t become coauthors until after they write their first paper it
is certain that d1X(x, x′) ≥ d0X(x) and d1X(x, x′) ≥ d0X(x′) for
all x and x′. In Figure 2, A and B become coauthors at time
2/9, which occurs after they publish their respective first papers
at times 0 and 1/9. Authors A and D as well as B and D become
coauthors at time 4/9, A and C become coauthors at time 5/9.
Authors C and D never write a paper together.

Second order dissimilarities d2X for triplets denote the normal-
ized time at which a paper is coauthored by the three members of
the triplet. Since a paper can’t be coauthored by three people with-
out being at the same time coauthored by each of the three possi-
ble pairs of authors we must have that d2X(x, x′, x′′) ≥ d1X(x, x′),
d2X(x, x′, x′′) ≥ d1X(x, x′′), and d2X(x, x′, x′′) ≥ d1X(x′, x′′) for
all x, x′, and x′′. In Figure 2, authors A, B, and D publish a
joint paper at time 4/9, which is no smaller than the pairwise
coauthorship times between each two of the individual authors.
Authors A, B, and C publish a joint paper at time 8/9, which is a
time that comes after the individual paired publications that occur
at times 2/9, 5/9, and 7/9. Note that due to symmetry property a
relationship as in (17) holds if we remove an arbitrary node from
the tuple x0:k, not necessarily the last.

In pairwise dissimilarity networks we required d1X(x, x′) = 0
if and only if x = x′. Relationships between two different nodes
are strictly greater than relationships between two nodes that are
actually identical. The multiplication of ε and the rank of the
tuples in (16) in Definition 10 can be considered as a general-
ization. Consider tuples x0:k and (x0:k−1, x0) where every node
in x0:k is unique, the identity property for high order networks
forces rkX(x0:k−1, x0) = rk−1X (x0:k−1). We must then have the
relationship between k + 1 different elements rkX(x0:k) being
strictly greater than the relationship between k different elements
rkX(x0:k−1, x0) = rk−1X (x0:k−1). This is because dkX(x0:k) ≥
dk−1X (x0:k−1) follows from (17) and εs(x0:k) = (k+ 1)ε > kε =

εs(x0:k−1) follows from the definition of ranks. Therefore, the
multiplication of ε and the rank of tuples in (16) in Definition
10 forces that adding a new element to a tuple makes the set
strictly more dissimilar than it was. Or equivalently, removing an
element from a tuple makes the set strictly less dissimilar than
it was. The requirement for ε as in (18) ensures that the highest
relationship in the network maxx̃0:K∈XK+1 dKX(x̃0:K) + εs(x̃0:K)
is bounded above by 1. Since distances up to order 2 are defined
and relationship functions can be decomposed, the network in
Figure 2 is a dissimilarity network of order 2.

A. Metrics in the space of dissimilarity networks

When the input networks in Definition 7 are dissimilarity net-
works we refer to the k-order distance as the k-order dissimilarity
network distance. We state this formally in the following definition
for future reference.

Definition 11 Given dissimilarity networks DK
X , D

K
Y ∈ DK we

say that the k-order distance dkN (DK
X , D

K
Y ) = dkD(DK

X , D
K
Y ) of

Definition 7 is the k-order dissimilarity network distance between
DK
X and DK

Y .

Since DK ⊆ NK , the function dkD : DK × DK → R+ is
a pseudometric in the space of K-order dissimilarity networks
modulo k-isomorphism. The restriction, however, makes dkD not
only a pseudometric but a well-defined metric in the space
DK mod ∼=k of dissimilarity networks of order K modulo k-
isomorphism. We show this in the following theorem.

Theorem 1 The k-order dissimilarity network distance function
dkD : DK × DK → R+ of Definition 11 is a metric in the space
DK mod ∼=k for all 1 ≤ k ≤ K.

Proof: See Appendix C. �

Observe that in Theorem 1 we have that dkD is a proper metric
for all k other than 0. This caveat for d0D is because we may have
two dissimilarity networks DK

X and DK
Y with different number

of nodes but whose zeroth other relationships are equals for all
pairs of nodes, i.e., r0X(x) = r0Y (y) for all x ∈ X and y ∈ Y . In
this case we we would have d0D(DK

X , D
K
Y ) = 0, however the two

dissimilarity networks are not 0-isomorphic.
Restricting Definition 9 to dissimilarity networks also yields a

family of dissimilarity network distances as next.

Definition 12 Given dissimilarity networks DK
X , D

K
Y ∈ DK

we say that the p-norm network distance dN ,p(D
K
X , D

K
Y ) =

dD,p(D
K
X , D

K
Y ) of Definition 9 is the p-norm dissimilarity network

distance between DK
X and DK

Y .

By restricting our attention on dissimilarity networks instead
of general high order networks, dD,p also becomes a valid metric
in the space DK mod ∼= of dissimilarity networks of order K
modulo isomorphism as we state in the following theorem.

Theorem 2 Given some p-norm ‖ · ‖p, for any nonnegative inte-
ger K the function dD,p : DK ×DK → R+ in Definition 12 is a
metric in the space DK mod ∼=.

Proof: See Appendix C. �

Further note that since Proposition 3 holds for any pair of
networks, the same relationship holds true for the dissimilarity
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1/19− 3ε 2/19− 3ε

A

11/19− ε
B

9/19− ε

C2/19− ε D 5/19− ε

4/19− 2ε

2/19− 2ε

1/19− 2ε

2/19− 2ε

2/19− 2ε

Fig. 3. Collaborations between authors in a research community. The k-order
relationship function in this 2-order network [cf. Definition 13] incorporates the
proximity function – the number of publications between members of a given
(k+ 1)-tuples normalized by the total number of papers – and the multiplication
of −ε and the rank of the tuple.

network distances in Definitions 11 and 12. Observe, however,
that the norm

∥∥dKD (DK
X , D

K
Y )
∥∥
p

is not a valid metric because we
can have instances in which two dissimilarity networks are k-
isomorphic for all integers 0 ≤ k ≤ K without being isomorphic.

V. PROXIMITY NETWORKS

In proximity networks the relationship functions rkX(x0:k)
denote similarity or proximity between elements of a tuple. Thus,
large values of the proximity function rkX(x0:k) represent strong
relationship whereas small values denote weak relationships – the
exact opposite is true of dissimilarity networks. In this framework
it is reasonable to assume that adding elements to a tuple forces
the group to be less similar. This constraint makes up the formal
definition we introduce as follows.

Definition 13 We say that the K-order network PKX =(
X, r0X , r

1
X , . . . , r

K
X

)
is a proximity network if for any order

0 ≤ k ≤ K and tuples x0:k ∈ Xk+1, its relationship function
is the summation of a proximity term and the multiplication of its
rank with −ε,

rkX(x0:k) = dkX(x0:k)− εs(x0:k), (19)

The proximity terms satisfy the order increasing property that for
any 1 ≤ k ≤ K and x0:k,

pkX(x0:k) ≤ pk−1X (x0:k−1), (20)

and the constant ε > 0 is a strictly positive value that satisfies

0 < ε ≤ 1

K
min

x̃∈XK+1
pKX(x̃0:K). (21)

The set of all proximity networks of order K is denoted as PK .

To see that the order decreasing property (20) in Definition 13
is reasonable, consider a network illustrating the collaborations
between authors in a research community – See Figure 3. The
k-order proximity function in this network labels the number
of publications between members of a given (k + 1)-tuple. In
specific, the zeroth order proximities p0X are the numbers of papers
published by authors normalized by the total number of papers. In
Figure 3 authors A,B,C,D publish 11, 9, 2, 5 papers respectively
and there are 19 papers in total which implies p0X(A) = 11/19,
p0X(B) = 9/19, p0X(C) = 2/19, p0X(D) = 5/19. The first order
proximities p1X represent the number of papers co-published by
nodes. Since collaboration for a pair of authors is also a paper
for each of the individuals it is certain that p1X(x, x′) ≤ p0X(x)
and p1X(x, x′) ≤ p0X(x′) for all x and x′. In Figure 3, A and B
collaborate on 4 papers, which is less than the 11 and 9 papers
written by each of the individuals. Authors A and C as well as A

and D coauthor 2 papers in total. Authors C and D never write
a paper together.

Second order proximities p2X for triplets indicate the normalized
number of papers coauthored by the three members of the triplet.
Since a paper with three authors is also a collaboration for the
three pairs of authors we must have p2X(x, x′, x′′) ≤ p1X(x, x′),
p2X(x, x′, x′′) ≤ p1X(x, x′′), and p2X(x, x′, x′′) ≤ p1X(x′, x′′) for
all x, x′, and x′′. In Figure 3, authors A, B, and D cowrite 2 pa-
pers, which is no more than the number of pairwise collaborations
between each pair of the authors. Remark that symmetry property
inherited from high order networks [cf. Definition 5] implies (20)
if we remove an arbitrary node from the tuple x0:k not necessarily
the last.

In dissimilarity networks we required the relationship within tu-
ple x0:k of unique elements to be strictly greater than the relation-
ship between the point collection (x0:k−1, x0) where some nodes
are repeating. The multiplication of −ε and ranks in (19) in Def-
inition 13 can also be considered as a generalization. Following
the identity property of high order networks, rkX(x0:k−1, x0) =
rk−1X (x0:k−1). We must then have the function between k+1 dif-
ferent elements rkX(x0:k) being strictly smaller than the function
between k different elements rkX(x0:k−1, x0) = rk−1X (x0:k−1).
This is because in the decomposition pkX(x0:k) ≤ pk−1X (x0:k−1)
follows from (20) and −εs(x0:k) = −(k + 1)ε < −kε =
−εs(x0:k−1) follows from the definition of ranks. Therefore, the
multiplication of −ε and rank of tuples in (19) in Definition 10
forces that adding a new element to a tuple makes the set strictly
less similar than it was. Or equivalently, removing an element
from a tuple makes the set strictly more similar than it was. The
requirement for ε as in (21) ensures that the lowest relationship
function in the network minx̃0:K∈XK+1 dKX(x̃0:K)− εs(x̃0:k) is
nonnegative. Since relationships up to order 2 are defined and can
be decomposed, the network in Figure 3 is a proximity network
of order 2.

A. Metrics in the space of proximity networks

In the same way that restricting attention to dissimilarity
networks transforms the pseudometrics in Definitions 7 and 9 into
metrics, restricting attention to proximity networks also results
in the definitions of proper metrics. We state the restrictions of
Definitions 7 and 9 in the following two definitions.

Definition 14 Given proximity networks PKX , P
K
Y ∈ PK we

say that the k-order distance dkN (PKX , P
K
Y ) = dkP(PKX , P

K
Y ) of

Definition 7 is the k-order proximity network distance between
PKX and PKY .

Definition 15 Given proximity networks PKX , P
K
Y ∈ PK we

say that the p-norm network distance dN ,p(P
K
X , P

K
Y ) =

dP,p(P
K
X , P

K
Y ) of Definition 9 is the p-norm proximity network

distance between PKX and PKY .

Analogously to the definition of the dissimilarity network
distance dkD of Definition 11, the function dkP : PK ×PK → R+

is a proper metric in the space PK mod ∼=k of proximity
networks of order K modulo k-isomorphism for all integers
1 ≤ k ≤ K. Likewise, restricting the function dN ,p of Definition
9 to proximity networks as Definition 15 results in dP,p being a
proper metric. We state these facts in the following theorems.
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Theorem 3 The k-order proximity network distance function dkP :
PK × PK → R+ of Definition 14 is a metric in the space PK
mod ∼=k for all k ≥ 1.

Theorem 4 Given some p-norm ‖ · ‖p, for any nonnegative inte-
ger K the function dP,p : PK ×PK → R+ in Definition 15 is a
metric in the space PK mod ∼=.

Proof: See Appendix D. �

In Theorem 3 we require k ≥ 1 for the same reason as in
Theorem 1. We emphasize that dkP is a metric in the space of
proximity network modulo k-isomorphisms, whereas dP,p is a
metric in the space of networks modulo isomorphism. Also note
that we must have dP,p(P

K
X , P

K
Y ) ≥

∥∥dKP (PKX , P
K
Y )
∥∥
p

as per
Proposition 3 but

∥∥dKP (PKX , P
K
Y )
∥∥
p

is not necessarily a metric.

Remark 1 GH distance is the minimum across correspondences
of the maximum difference in distances between pairs of nodes for
a given correspondence. The metric definitions as in Definitions
11, 12, 14, and 15 inherit this property, which means that network
distances can be dominated by a small portion of the networks.
Put differently, the proposed distances are more sensitive to a few
large differences in a few edges than to a large number of small
differences in a large number of edges. Analogous consideration
can be found in signal processing theory of the tradeoffs between
comparing signals with averages – such as 2-norm comparisons –
and comparing signals with max-min differences – the ∞-norm
comparison. When compare networks with different number of
nodes, a max-min comparison is reasonable because it focuses
attention in the bottleneck tuple that makes it impossible to match
smaller network onto the larger.

Remark 2 Once endowed with the proposed valid metrics as in
Definitions 11, 12, 14, and 15, the space of dissimilarity networks
and the space of proximity networks become metric spaces. This
implies that a number of algorithms that are used to analyze metric
spaces can now be used to analyze high order networks.

B. Duality between dissimilarity and proximity networks

Proximity and dissimilarity networks have been defined sep-
arately for simplicity of presentation, but they are actually re-
lated entities. For any proximity network PKX with relationship
functions p̂kX(x0:k), we can construct a dissimilarity network DK

X

on the same node space by defining relationships as d̂kX(x0:k) =
1−p̂kX(x0:k) for all orders k and tuples x0:k. Likewise given a dis-
similarity network DK

X with relationship functions d̂kX(x0:k) we
can construct a proximity network PKX by defining relationships
p̂kX(x0:k) = 1− d̂kX(x0:k). We formalize this equivalence through
the introduction of dual networks in the following definition.

Definition 16 Given a node space X , the K-order proximity and
dissimilarity networks PKX =

(
X, p̂0X , p̂

1
X , . . . , p̂

K
X

)
and DK

X =(
X, d̂0X , d̂

1
X , . . . , d̂

K
X

)
are said duals if and only if

p̂kX(x0:k) = 1− d̂kX(x0:k), (22)

for all orders 0 ≤ k ≤ K and tuples x0:k.

It is ready to see that all proximity networks have a dual dis-
similarity network and that, conversely, all dissimilarity networks

18/19 + 3ε 17/19 + 3ε

1

A

8/19 + ε

B

10/19 + ε

C17/19 + ε D 14/19 + ε

15/19 + 2ε

17/19 + 2ε

18/19 + 2ε

17/19 + 2ε

17/19 + ε

1− ε

Fig. 4. Relationships between authors expressed in terms of dissimilarities
constructed from the proximity network in Figure 3. The k-order relationship
function in this 2-order network denotes the level of dissimilarities between
members of a given (k+ 1)-tuples. This is a dissimilarity network that has same
order and identical node sets as the proximity network.

have a dual proximity network. To do so we just reinterpret (22)
as a definition and observe that: (i) The decomposition of relation-
ships in the proximity network implies the valid decomposition of
relationships in the dual dissimilarity network, and vice versa. (ii)
The order decreasing property of the proximities in the proximity
network implies the order increasing property of the dissimilarities
in the dual dissimilarity network, and vice versa. An illustration
for the construction of a dual dissimilarity network is presented in
Figure 4, where we construct the corresponding dual dissimilarity
network for the coauthorship network considered in Figure 3.

Given dual networks we can compute the distances in defi-
nitions 14 and 15 for proximity networks and the distances in
definitions 11 and 12 for the dual dissimilarity networks. These
definitions have been constructed so that the resulting distances
are the same, as we formally state in the following proposition.

Proposition 4 Consider two proximity networks PKX and PKY and
their corresponding dual dissimilarity networks DK

X and DK
Y . The

k-order proximity distances dkP(PKX , P
K
Y ) [cf. Definition 14] and

k-order dissimilarity distances dkD(DK
X , D

K
Y ) [cf. Definition 11]

coincide for all 0 ≤ k ≤ K,

dkP(PKX , P
K
Y ) = dkD(DK

X , D
K
Y ). (23)

Likewise, the p-norm proximity distance dP,p(PKX , P
K
Y ) [cf. Def-

inition 15] and p-norm dissimilarity distance dD,p(DK
X , D

K
Y ) [cf.

Definition 12] coincide,

dP,p(P
K
X , P

K
Y ) = dD,p(D

K
X , D

K
Y ). (24)

Proof: See Appendix E. �

VI. COMPARISON OF COAUTHORSHIP NETWORKS

We apply the metrics defined in Section V-A to compare second
order coauthorship networks where relationship functions denote
the number of publications of single authors, pairs of authors,
and triplets. These coauthorship networks are proximity networks
because they satisfy the order decreasing property in Definition
13. Since both, Definition 14 and Definition 15, require searching
over all possible correspondences between the node spaces, we
can compute exact distances for networks with a small number
of nodes only. Thus, we consider publications in the IEEE Trans-
actions on Signal Processing (TSP) in the last decade but restrict
attention to the collaboration networks of Prof. Georgios B.
Giannakis (GG) of the University of Minnesota and Prof. Martin
Vetterli (MV) of the École Polytechnique Fédérale de Lausanne.
For each of the authors, GG and MV, we construct networks for
the 2004-2008 and 2009-2013 quinquennia. These networks are
referred as GG0408, GG0913, MV0408, and MV0913. For GG
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MV, 2004 - 2008

MV

LS

MV, 2009 - 2013

MV

OR

GG, 2004 - 2008

GG
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SR
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ZT

GG, 2009 - 2013

GG

GM
JB

Fig. 5. Quinquennial coauthorship networks representing research communities centered at Prof. Georgios Giannakis (GG) or Prof. Martin Vetterli (MV). The size of
the nodes is proportional to the zeroth order proximities, and the width of the links to the first order proximities. Second order proximities are represented by shading
the triangle enclosed by the coauthor triplet. Color intensity is proportional to the second order proximities.

GG, 2006 - 2007

GG

AR

XC

GG, 2008 - 2009

GG
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GM
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SR XW

AM

GG, 2010 - 2011

GG

VK

GM
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AD

SF

GG, 2012 - 2013
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GM
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Fig. 6. Biennial coauthorship networks representing research communities centered at Prof. Georgios Giannakis (GG).
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Fig. 7. Two dimensional Euclidean embeddings of the k-order proximity network distances d0P , d
1
P , d

2
P and the proximity network distance with respect to the

1-norm, dP,1, between the quinquennial networks. In the embeddings, denote MV0408, MV0913 as circles, GG0408, GG0913 as diamonds.

we also define networks for each of the biennia 2004-2005, 2006-
2007, 2008-2009, 2010-2011, and 2012-2013. We denote these
networks as GG0405, GG0607, GG0809, GG1011, and GG1213.
Lists of publications are queried from [31].

For each of these authors we consider all of their TSP publi-
cations in the period of interest and construct proximity networks
where the node space X is formed by the author and the respective
set of coauthors. Zeroth order proximities are defined as the total
number of publications of each member of the network, first order
proximities as the number of papers coauthored by pairs, and
second order proximities as the number of papers coauthored by
triplets. The constant ε as in Definition 13 is for technical purpose.
It can be chosen sufficiently small and for this reason we ignore
it in this section. To make networks with different numbers of
papers comparable we normalize all distances by the total number
of papers in the network. With this construction we have that the
zeroth order proximity of GG or MV are 1 in all of their respective
networks. There are papers with more than three coauthors but we
don’t record proximities of order higher than 2.

The quenquennial networks GG0408, GG0913, MV0408, and

MV0913 are shown in Figure 5 and the biennial networks
GG0607, GG0809, GG1011, and GG1213 in Figure 6. The size
of the nodes is proportional to the zeroth order distances, and
the width of the links to the first order distances. Second order
proximities are represented by shading the triangle enclosed by
the coauthor triplet and the color intensity is proportional to
the second order proximities. There are clear differences in the
collaboration patterns. We show here that proximity network
distances succeed in identifying these patterns and distinguish
between the coauthorship networks of GG and MV.

A. Quinquennial networks

Two dimensional Euclidean embeddings (respect to minimizing
the sum of squares of the interpoint distances) of the k-order
proximity network distances dkP for k ∈ {0, 1, 2} and the
proximity network distance with respect to the 1-norm, dP,1 are
shown in Figure 7. The two GG networks (diamonds) separate
clearly from the two MV networks (circles) either by considering
the individual k-order distances dkP or the aggregate distance
dP,1. The distances between the two MV networks are high
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Fig. 8. Two dimensional Euclidean embeddings of the distances d0P , d
1
P , d

2
P , dP,1 between all quinquennial and biennial networks. In the embeddings, denote

MV0408, MV0913 as circles, GG0408, GG0913 as diamonds, GG0405, GG0607, GG1011 as up triangles and GG0809, GG1213 as down triangles.

but still smaller than the distances between GG networks and
MV networks. An unsupervised classification run across all four
distances would assign all four networks correctly.

The k-order network distance dkP is defined by searching for
a correspondence such that the maximum k-order proximity dif-
ference |rkX(x0:k)− rkY (y0:k)| among all tuples of correspondents
is minimized [cf. (8) and (9)]. For the optimal correspondence
C? = argminC∈C(X,Y ) ΓkX,Y (C), define the pair of correspondent
tuples that achieve the maximum k-order difference as

(x?0:k, y
?
0:k) = argmax

(x0:k,y0:k)∈C?

∣∣rkX(x0:k)− rkY (y0:k)
∣∣ . (25)

The tuple pair (x?0:k, y
?
0:k) is the bottleneck that prevents making

the networks closer to each other. Examining these bottleneck
pairs for each k-order distance reveals what are the differences
between proximity networks to which dkP is most sensitive about.
In general, k-order bottleneck pairs tend to be pairs of tuples with
high proximity values in their respective networks. The optimal
correspondence C? map tuples with high proximity as closely as
possible. Therefore, network distances are typically determined
by large proximity values in one of the networks that can’t be
matched closely to proximity values in the other network.

In the quinquennial coauthorship networks of Figure 5 the
bottleneck pair for 0-order distances d0P , is formed by nodes with
high zero order proximities and d0P reflects the difference between
their zero order proximities. Since the networks are normalized
so that the lead nodes have size 1, d0P is determined by their
predominant coauthors, i.e., the scholars that collaborated most
prolifically with GG or VM during the period of interest. The
distances d0P between GG and VM networks are large because
these predominant collaborations are different. In GG networks
there are usually groups of 3 to 5 predominant collaborators,
whereas in MV networks there are usually one or two that
concentrate a larger fraction of the total number of publications.

Similarly, high first order proximity distances are likely due
to one of the following situations: (i) Large differences between
the numbers of papers authored by the predominant collaborators.
(ii) Different patterns in the formation of communities – defined
here as clusters of pairwise collaboration. In the latter case large
distances arise because it is impossible to match the communities
in one network to communities in the other. The distances d1P
between GG and MV networks are large because the latter contain
a smaller number of communities, which are also more strongly
connected than the communities in GG networks.

In second order distances the bottleneck pair of triplets may
reflect one of the following scenarios: (i) One network has col-
laboration between four or more authors while the other doesn’t.
(ii) There exist three authors with a strong collaboration between

them in one network whereas in the other network there does not
exist collaboration between three authors or, if such collaboration
exists, it is weak. Many papers written by MV are collaborations
of three or four scholars and the predominant coauthor in MV
networks appears in at least one collaboration of four scholars. For
GG, his 2004-2008 network has a few collaborations consisting
of four scholars however all such collaborations are weak. His
2009-2013 network has no publications written by four authors.

B. Biennial networks
The networks GG0408 and GG0913 have more nodes than the

networks MV0408 and MV0913 prompting the possibility that the
differences in distances discussed in Section VI-B are just due to
their different number of publications. This is part of the reason,
but not all. To see that this is true we consider the biennial GG
collaboration networks. Each of these networks contain numbers
of papers that are comparable to the number of papers in the
quinquennial MV networks.

Two dimensional Euclidean embeddings of the individual k-
order distances dkP for k ∈ {0, 1, 2} and the aggregate distance
dP,1 between the 4 quinquennial networks and the 5 biennial
networks are shown in Figure 8. An unsupervised classification
run across all four distances would assign 6 networks correctly to
GG and the other three networks to MV – one of them incorrectly.

We expect more variation in biennial networks because the
time for averaging behavior is reduced. E.g., we may see de-
viations from usual collaboration patterns due to the presence
of exceptional doctoral students. Still, three of the biennial net-
works, GG0405, GG0607, GG1011, (up triangles) and the two
quinquennial networks GG0408, GG0913 (diamonds) are close
to each other in every metric used and form a cluster clearly
separate from the two five-year networks MV0408 and MV0913
(circles). This is due to the fact that the distinctive features of GG
coauthorship are well reflected in GG0405, GG0607, GG1011.
These features include: (i) Multiple predominant coauthors, each
of whose collaboration with GG does not comprise a dominant
portion of GG’s scholarship during the period. (ii) Multiple small
coauthorship communities in which strong collaborations within
each community are rare. (iii) The number of publications with
four or more authors is low. These features contrast with the rather
opposite properties of the MV networks.

The networks GG0809 and GG1213 (down triangles) do not
cluster with the other five GG networks. Depending on which
distance we consider they may be closest to some of the other
GG networks or to one of the two MV networks. This is because,
likely due to random variation, GG0809 and GG1213 have some
features that resemble GG networks and some other features that
resemble MV networks. Fundamentally this happens because of
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the exceptionally prolific collaborations with Ioannis Schizas (IS)
in the 2008-2009 period and Gonzalo Mateos (GM) in the 2012-
2013 period. In the network GG0809 the IS node commands a
significant fraction of GG publications and creates strong links
between collaboration clusters that would be otherwise separate.
Both of these features are more characteristic of MV networks.
In the GG1213 network the GM node accounts for half of the
publications in which GG is an author. This is, also, a feature
more representative of MV networks than of GG networks.

In summary, proximity network distances capture features of
scholar collaboration that permit discerning networks of different
authors even when we consider networks that have very different
numbers of nodes. The zeroth order distance d0P responds primar-
ily to the number of predominant coauthors and the proportion
of collaboration between predominant coauthors and the central
scholar. The first order distance d1P is mostly determined by the
fraction of collaborations that involve predominant coauthors and
the central scholar as well as the level and number of strong
collaborations within each community in the group. The second
order distance d2P is largely given by the existence, level, and
number of collaborations between four or more scholars and the
appearance of predominant coauthors in a collaboration between
four or more scholars.

Remark 3 The proposed metrics successfully identify the distinct
collaborative behaviors of Prof. G. B. Giannakis and Prof. M.
Vetterli from incomplete subsets of their publication datasets.
The distances between Giannkis’s networks (either quinquennial
or biennial) are smaller than the distances between Giannakis’s
networks and Vetterli’s networks. This proximity can be used in
author name disambiguration or related problems, e.g., adjudicate
the biennial networks to their rightful author if only the authors
of the quinquennial networks are known.

Remark 4 As a comparison, we applied some simple and rea-
sonable methods to compare the corresponding pairwise net-
works of the coauthorship networks considered in this section.
Motifs have been shown effective in distinguishing coauthorship
networks from different scientific fields [19]. To compare high
order coauthorship networks by motifs, we restrict attention to
pairwise relationships. The dissimilarities between coauthorship
networks are assigned as the differences between the summations
of the weighted motifs in their corresponding pairwise networks.
Analysis based on triangle motifs (weighted) results in MV0408,
MV0913, GG0408, and GG0809 being closer to each other
and GG0913, GG0405, GG0607, GG1011, and GG1213 being
more proximate. Tetrahedron motif analysis (weighted) results in
MV0408, MV0913, GG0408, GG0405, GG0607, and GG0809
being closer to each other and GG0913, GG1011, and GG1213
being more proximate. Other simple and common methods to
compare pairwise networks yield similar results. Methods to com-
pare pairwise networks via features give us similar observations as
those based on the metric distances proposed in the paper. Notice
that the differences between GG0408 and GG0913 measured by
the proposed network distances are relatively small however their
differences are relatively large in terms of feature comparisons for
pairwise networks.

VII. CONCLUSION

We have considered high order networks as a generalization
of conventional pairwise networks and discussed the definition

of valid metrics to enable their comparison. High order networks
satisfy the specification of degeneracy relations that relationship
function within a tuple of repeating elements is identical to the
relationship within its largest subtuple with unique elements. The
table in Figure 9 summarizes the results derived in this paper.
The fundamental definitions are those of the k-order network
differences introduced in Definition 7 and the p-norm difference
introduced in Definition 9. Proposition 1 proves that the distances
dkN : NK × NK → R+ are pseudometrics in the space
of networks modulo k-isomorphism. Proposition 2 shows that
dN ,p : NK × NK → R+ is a pseudometric in the space of
networks modulo isomorphism.

We also introduced the space DK of dissimilarity networks of
order K in Definition 10 and the space PK of proximity networks
in Definition 13. Dissimilarity networks also satisfy the order
increasing property whereby tuples become more dissimilar when
members are added to the group. Proximity networks abide to the
order decreasing property whereby tuples becomes less similar
when adding nodes to the group.

When restricted to the space of dissimilarity networks the
distance dkD : DK×DK → R+ is termed the k-order dissimilarity
network distance [cf. Definition 11] and the distance dD,p :
DK × DK → R+ is termed the p-norm dissimilarity network
distance [cf. Definition 12]. We proved that the k-order dissim-
ilarity network distance is a metric in the space DK mod ∼=k

of dissimilarity networks modulo k-isomorphism for any integers
k ≥ 1 [cf. Theorem 1] and that the p-norm dissimilarity network
distance is a metric in the space DK mod ∼= of dissimilarity
networks modulo isomorphism [cf. Theorem 2]. Analogous results
hold true for proximity networks as summarized in the last column
of the table in Figure 9 and spelled out in Definitions 14 and
15 and Theorems 3 and 4. We have also shown that the p-
norm ‖dKN (NK

X , N
K
Y )‖p of the vector that groups the k-order

differences dkN (NK
X , N

K
Y ) lower bounds the p-norm difference

dN ,p(N
K
X , N

K
Y ) [cf. Proposition 3]. This property is inherited

when we restrict attention to proximity and dissimilarity networks
as summarized in the bottom row of the table in Figure 9.

Proximity and dissimilarity networks are equivalent construc-
tions as it follows formally from the notion of duality introduced
in Definition 16. We have shown that this duality extends to the
various distances defined in the sense that proximity distances
between two proximity networks is the same as the dissimilarity
distances between their corresponding duals [cf. Proposition 4].

We illustrated the value of our definitions by using proximity
network distances to successfully identify collaboration patterns
of Prof. Georgios B. Giannakis and Prof. Martin Vetterli. With
respect to future goals the most important limitation in the current
manuscript is that distances are difficult to compute when the
number of nodes in the network is large. For networks with large
number of nodes it is necessary to develop tools for approxi-
mate evaluation of network distances. These tools exist for the
comparison of metric spaces and their generalization to networks
is part of ongoing research. The idea is to relate high order
dissimilarity networks to simplicial complexes and filtrations
so that distances between networks can be lower bounded or
reasonably approximated by the difference between persistence
homologies of the corresponding filtrations [32].
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Input space K-order networks, NK K-order dissimilarity networks, DK K-order proximity networks, PK

k-order difference
dkN : NK ×NK → R+ [cf. Definition 7] dkD : DK ×DK → R+ [cf. Definition 11] dkP : PK × PK → R+ [cf. Definition 14]
Pseudometric in NK mod ∼=k Metric in DK mod ∼=k , for k ≥ 1 Metric in PK mod ∼=k , for k ≥ 1

p-norm difference
dN ,p : NK ×NK → R+ [cf. Definition 9] dD,p : DK ×DK → R+ [cf. Definition 12] dP,p : PK × PK → R+ [cf. Definition 15]
Pseudometric in NK mod ∼= Metric in DK mod ∼= Metric in PK mod ∼=

Relationships dN ,p(N
K
X , NK

Y ) ≥ ‖dK
N (NK

X , NK
Y )‖p dD,p(D

K
X , D

K
Y ) ≥ ‖dK

D (DK
X , D

K
Y )‖p dP,p(P

K
X , PK

Y ) ≥ ‖dK
P (PK

X , PK
Y )‖p

Fig. 9. Relationships between the spaces of high order networks, dissimilarity networks, and proximity networks. A family of pseudometrics can be defined to measure
dissimilarities between a specific order functions between high order networks. Another family of pseudometrics can be defined to quantify distinctions between high
order networks across all order functions. These two families of pseudometrics are related and become metrics in the corresponding spaces when we restrict attentions
to dissimilarity networks or proximity networks.

APPENDIX A
PROOF OF PROPOSITION 1

To prove that dkN for any integer 0 ≤ k ≤ K is a pseudometric
in the space of K-order networks modulo k-isomorphism we
prove the (i) nonnegativity, (ii) symmetry, (iii’) relaxed identity,
and (iv) triangle inequality properties in Definition 3.
Proof of nonnegativity property: For any integers 0 ≤ k ≤ K,
since |rkX(x0:k)−rkY (y0:k)| is nonnegative ΓkX,Y (C) defined in (8)
also is. The network distance must then satisfy dkN (NK

X , N
K
Y ) ≥ 0

because it is a minimum of nonnegative numbers. �

Proof of symmetry property: A correspondence C ⊂ X × Y
with elements ci = (xi, yi) results in the same associations as the
correspondence C̃ ⊂ Y × X with element c̃i = (yi, xi). Thus,
for any correspondence C and integers 0 ≤ k ≤ K, we have
a correspondence C̃ such that ΓkX,Y (C) = ΓkY,X(C̃). It follows
that the minima in (9) must coincide from where it follows that
dkN (NK

X , N
K
Y ) = dkN (NK

Y , N
K
X ). �

Proof of relaxed identity property: We need to show that for
any integers 0 ≤ k ≤ K if NK

X and NK
Y are k-isomorphic we

must have dkN (NK
X , N

K
Y ) = 0. To see that this is true recall that

for k-isomorphic networks there exists a bijection φ : X → Y
that preserves distance functions at order k [cf. (7)]. Consider then
the particular correspondence Cφ = {(x, φ(x)), x ∈ X}. For all
x0 ∈ X there is an element c = (x0, y) ∈ Cφ and for all y0 ∈ Y
there is an element c′ = (x, y0) ∈ Cφ since φ is bijective. Thus
Cφ is a valid correspondence between X and Y for which (7)
indicates that it must be

rkY (y0:k) = rkY (φ(x0:k)) = rkX(x0:k), (26)

for any (x0:k, y0:k) ∈ Cφ. This implies ΓkX,Y (C) =
∣∣rkX(x0:k)−

rkY (y0:k)
∣∣ = 0 for any (x0:k, y0:k) ∈ Cφ. Since Cφ is a particular

correspondence, taking a minimum over all correspondences as
in (9) yields

dkN (NK
X , N

K
Y ) ≤ ΓkX,Y (C) = 0. (27)

Since dkN (NK
X , N

K
Y ) ≥ 0, as already shown, it must be that

dkN (NK
X , N

K
Y ) = 0 when NK

X and NK
Y are k-isomorphic. �

Proof of triangle inequality: To show that the triangle inequality
holds, let the correspondence C1 between X and Z and the
correspondence C2 between Z and Y be the minimizing corre-
spondences in (9). We can then write

dkN (NK
X , N

K
Z )=ΓkX,Z(C1), dkN (NK

Z , N
K
Y )=ΓkZ,Y (C2). (28)

Define a correspondence C between X and Y as the one induced
by pairs (x, z) and (z, y) sharing a common node z ∈ Z,

C := {(x, y) | ∃z ∈ Z with (x, z) ∈ C1, (z, y) ∈ C2} . (29)

To show that C is a well defined correspondence we need to show
that for every x ∈ X there exists y0 ∈ Y such that (x, y0) ∈ C
and by symmetry for every y ∈ Y there exists x0 ∈ Y such
that (x0, y) ∈ C. To see this, first pick an arbitrary x ∈ X .
Because C1 is a correspondence between X and Z there must
exist z0 ∈ Z such that (x, z0) ∈ C1. There must exist y0 ∈ Y
such that (z0, y0) ∈ C2 since C2 is also a correspondence between
Y and Z. Therefore, there exists a pair (x, y0) ∈ T with y0 ∈ Y
for any x ∈ X . The second part follows by symmetry and C is a
well defined correspondence. The correspondence C may not be
the minimizing correspondence for the distance dkN (NK

X , N
K
Y ).

However since it is a valid correspondence with the definition
in (9) we can write

dkN (NK
X , N

K
Y ) ≤ ΓkX,Y (C). (30)

By the definition of C in (29), the requirement (x0:k, y0:k) ∈ C is
equivalent as (x0:k, z0:k) ∈ C1 and (z0:k, y0:k) ∈ C2 for any 0 ≤
k ≤ K. Further adding and subtracting rkZ(z0:k) in the absolute
value of ΓkX,Y (C) =

∣∣rkX(x0:k)−rkY (y0:k)
∣∣ and using the triangle

inequality of the absolute value yields

ΓkX,Y (C) ≤ max
(x0:k,z0:k)∈C1

(z0:k,y0:k)∈C2

{∣∣rkX(x0:k)− rkZ(z0:k)
∣∣

+
∣∣rkZ(z0:k)− rkY (y0:k)

∣∣}. (31)

We can further bound (31) by taking maximum over each sum-
mand,

ΓkX,Y (C) ≤ max
(x0:k,z0:k)∈C1

∣∣rkX(x0:k)− rkZ(z0:k)
∣∣ +

max
(z0:k,y0:k)∈C2

∣∣rkZ(z0:k)−rkY (y0:k)
∣∣=ΓkX,Z(C1)+ΓkZ,Y (C2). (32)

Substituting (30) and (28) into (32) yields triangle inequality. �

APPENDIX B
PROOF OF PROPOSITION 2

To prove that dN ,p is a distance in the space of K-order
networks modulo isomorphism we prove the (i) nonnegativity,
(ii) symmetry, (iii’) relaxed identity, and (iv) triangle inequality
properties in Definition 3.
Proof of nonnegativity property: Since ‖ΓKX,Y (C)‖p ≥ 0, the
network distance must then satisfy dN ,p(NK

X , N
K
Y ) ≥ 0 as it is a

minimum of nonnegative numbers. �

Proof of symmetry property: A correspondence C ⊂ X × Y
with elements ci = (xi, yi) results in the same associations as
the correspondence C̃ ⊂ Y × X with element c̃i = (yi, xi).
Thus, for any correspondence C we have a correspondence C̃
such that ΓKX,Y (C) = ΓKY,X(C̃). This implies ‖ΓKX,Y (C)‖p =
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‖ΓKY,X(C̃)‖p. It follows that the minima in (11) must coincide
and therefore dN ,p(NK

X , N
K
Y ) = dN ,p(N

K
Y , N

K
X ). �

Proof of relaxed identity property: We need to show that if
NK
X and NK

Y are isomorphic we must have dN ,p(NK
X , N

K
Y ) = 0.

To see that this is true recall that for isomorphic networks there
exists a bijection φ : X → Y that preserves distance functions at
every order [cf. (7)]. Consider then the particular correspondence
Cφ = {(x, φ(x)), x ∈ X}. We have demonstrated in Appendix
A that Cφ is a valid correspondence between X and Y . The
definition of isomorphism indicates that it must be (26) holds
true for all 0 ≤ k ≤ K and (x0:k, y0:k) ∈ Cφ. Since Cφ is a
particular correspondence, from (11) it follows that

dN ,p(N
K
X , N

K
Y ) ≤

∥∥ΓKX,Y (C)
∥∥
p
. (33)

Because rkX(x0:k) − rkY (y0:k) = 0 for any 0 ≤ k ≤ K and any
(x0:k, y0:k) ∈ Cφ by (26), we have ΓKX,Y (C) = 0. ‖ · ‖p being
a proper norm implies ‖ΓKX,Y (C)‖p = 0. Substituting this back
into (33) shows dN ,p(NK

X , N
K
Y ) ≤ 0. Since dN ,p(NK

X , N
K
Y ) ≥ 0,

as already shown, it must be that dN ,p(NK
X , N

K
Y ) = 0 when NK

X

and NK
Y are isomorphic. �

Proof of triangle inequality: To show that the triangle inequality
holds, let the correspondence C1 between X and Z and the
correspondence C2 between Z and Y be the minimizing corre-
spondences in (11). We can then write

dN ,p(N
K
X , N

K
Z ) =

∥∥ΓKX,Z(C1)
∥∥
p
,

dN ,p(N
K
Z , N

K
Y ) =

∥∥ΓKZ,Y (C2)
∥∥
p
.

(34)

Define a correspondence C between X and Y in the same way
as (29). We have demonstrated in Appendix A that C is a well
defined correspondence. Therefore with the definition in (11) we
can write

dN ,p(N
K
X , N

K
Y ) ≤

∥∥ΓKX,Y (C)
∥∥
p
. (35)

Moreover, in Appendix A we also showed for any 0 ≤ k ≤ K,

ΓkX,Y (C) ≤ ΓkX,Z(C1) + ΓkZ,Y (C2). (36)

This implies the vector ΓKX,Z(C1) + ΓKZ,Y (C2) is elementwise
no smaller than the vector ΓKX,Y (C). The definition of p-norm

‖x‖p =
(∑n

i=0 |xi|p
)1/p

guarantees that the value of ‖x‖p
is monotonically nondecreasing on each element xi in x =
(x0, x1, . . . , xn)T . Therefore,∥∥ΓkX,Y (C)

∥∥
p
≤
∥∥ΓkX,Z(C1) + ΓkZ,Y (C2)

∥∥
p
. (37)

We can further bound (37) by using the triangle inequality of the
p-norm, ∥∥ΓkX,Y (C)

∥∥
p
≤
∥∥ΓkX,Z(C1)

∥∥
p

+
∥∥ΓkZ,Y (C2)

∥∥
p
. (38)

Substituting (35) and (34) back into (38) yields the triangle
inequality. �

APPENDIX C
PROOFS IN SECTION IV-A

Proof of Theorem 1: The proof in Appendix A has demonstrated
dkD is a pseudometric in the space DK mod ∼=k. To prove that
dkD is a metric in the same space we need to show the missing
part in the (iii) identity property in Definition 3.

Proof of the second part of the identity property: We want
to prove dkD(DK

X , D
K
Y ) = 0 must imply that DK

X and DK
Y are k-

isomorphic. If dkD(DK
X , D

K
Y ) = 0, there exists a correspondence

C such that rkX(x0:k) = rkY (y0:k) for any (x0:k, y0:k) ∈ C. Define
a function φ : X → Y that associates x with an arbitrary y chosen
from the set that form a pair with x in C,

φ : x 7→ y0 ∈ {y | (x, y) ∈ C}. (39)

Since C is a correspondence the set {y | (x, y) ∈ C} is nonempty
for any x implying that φ is well-defined for any x ∈ X . Therefore
rkX(x0:k) = rkY (φ(x0:k)) for any x0:k. This implies the function
φ must be injective. If it were not, there would be a pair of nodes
x 6= x′ with φ(x) = φ(x′) = y for some y ∈ Y . Hence the k-
order relationship function between (x, . . . , x, x′) where the first
k−1 nodes in the tuple are x and the last node is x′ would satisfy

rkX(x . . . , x, x′) = rkY (φ(x, . . . , x, x′)) = rkY (y, . . . , y), (40)

follows from the definition of φ. The k-order relationship between
the tuple (x, . . . , x) of k identical node x would also satisfy

rkX(x, . . . , x) = rkY (φ(x, . . . , x)) = rkY (y, . . . , y). (41)

Combining (40) and (41) yields

rkX(x, . . . , x, x′) = rkX(x, . . . , x). (42)

Meanwhile, the identity property for high order networks [cf.
Definition 5] implies

rkX(x, . . . , x, x′) = r2X(x, x′), rkX(x, . . . , x) = r1X(x). (43)

Using the fact that for dissimilarity networks, relationship func-
tions are the summations of dissimilarity functions and the mul-
tiplication of ε and ranks, we have that

r2X(x, x′) = d2X(x, x′) + 2ε, r1X(x) = d1X(x) + ε. (44)

Moreover, the order increasing property for dissimilarity functions
implie

d2X(x, x′) ≥ d1X(x). (45)

Substituting the decompositions (44) and (45) into (43) yields

rkX(x, . . . , x, x′) > rkX(x, . . . , x). (46)

which contradicts with (42) and shows that φ must be injective.
Likewise, define the function ψ : Y → X that associates y with

an arbitrary x chosen from the set that form a pair with y in C,

ψ : y 7→ x0 ∈ {x|(x, y) ∈ C}. (47)

It follows by similar arguments that ψ must be injective. By
applying the Cantor-Bernstein-Schroeder theorem [33, Section
2.6] to the reciprocal injections φ : X → Y and ψ : Y → X ,
the existence of a bijection between X and Y is guaranteed. This
forces X and Y to have same cardinality and φ and ψ being bijec-
tions. Pick the bijection φ and it follows rkX(x0:k) = rkY (φ(x0:k)
for all nodes (k+1)-tuples x0:k ∈ X . This shows that DK

X
∼=k D

K
Y

and completes the proof of the identity statement. �

Having demonstrated all four properties in Theorem 1, the
global proof completes. �

Proof of Theorem 2: The proof in Appendix B has demonstrated
that dD,p is a pseudometric in the space DK mod ∼=. To prove
that dD,p is a metric in the same space we further demonstrate
the missing part in the (iii) identity property in Definition 3.
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Proof of the second part of the identity property: We want to
show dD,p(D

K
X , D

K
Y ) = 0 implying DK

X and DK
Y being isomor-

phic. If dD,p(DK
X , D

K
Y ) = minC∈C(X,Y ) ‖ΓKX,Y (C)‖p = 0, there

exists a correspondence C such that

‖ΓKX,Y (C)‖p = 0. (48)

The property of p-norm implies that this correspondence C
satisfies ΓkX,Y (C) = 0 for 0 ≤ k ≤ K, i.e. rkX(x0:k) = rkY (y0:k)
for any 0 ≤ k ≤ K and (x0:k, y0:k) ∈ C. Define functions
φ : X → Y as in (39) and ψ : Y → X as in (47). The analysis in
Proof of Theorem 1 has demonstrated that φ and ψ are bijections
and that X and Y have same cardinality. Pick the bijection φ
and it follows rkX(x0:k) = rkY (φ(x0:k)) for any 0 ≤ k ≤ K and
all (k + 1)-tuples x0:k ∈ X . This shows that DK

X
∼= DK

Y and
completes the proof of the identity statement. � �

APPENDIX D
PROOFS IN SECTION V-A

Proof of Theorem 3 : The proof in Appendix A has demonstrated
that dkP is a pseudometric in the space PK mod ∼=k. To prove
that dkP is a metric in the same space we need to show the missing
part in the (iii) identity property in Definition 3.
Proof of the second part of the identity property: Most parts of
the proof follow from the proof of the second part of the identity
property for Theorem 1 in Appendix C. The only difference is
in demonstrating the function φ constructed in (39) is injective.
Under the same setup where there exist a pair of nodes x 6=
x′ such that φ(x) = φ(x′) = y for some y ∈ Y , the k-order
relationship between (x, . . . , x, x′) would satisfy

rkX(x . . . , x, x′) = rkY (y, . . . , y) = rkX(x . . . , x). (49)

Meanwhile, the facts of proximities in proximity networks follow
order decreasing property p2X(x, x′) ≤ p1X(x) and r2X(x, x′) =
p2X(x, x′)− 2ε, r1X(x) = p1X(x)− ε from (19) implies

r2X(x, x′) < r1X(x). (50)

Combining (50) with the identity property inherited from
high order networks [cf. Definition 5] rkX(x, . . . , x, x′) =
r2X(x, x′), rkX(x, . . . , x) = r1X(x) gives us

rkX(x, . . . , x, x′) < rkX(x, . . . , x), (51)

which contradicts with (49) and shows that φ must be injective.
The rest of the proof follows. � �

Proof of Theorem 4: The proof in Appendix B has demonstrated
that dP,p is a pseudometric in the space PK mod ∼=. To prove
that dP,p is a metric in the same space we further demonstrate
the missing part in the (iii) identity property in Definition 3.
Proof of the second part of the identity property: We want
to show that having dP,p(P

K
X , P

K
Y ) = 0 must imply that PKX

being isomorphic to PKY . If dD,p(PKX , P
K
Y ) = 0, there exists a

correspondence C such that ‖ΓKX,Y (C)‖p = 0. The property of
p-norm implies that this correspondence C satisfies rkX(x0:k) =
rkY (y0:k) for any 0 ≤ k ≤ K and any (x0:k, y0:k) ∈ C. Define
functions φ : X → Y as in (39) and ψ : Y → X as in (47), the
analysis in Appendix D Proof of Theorem 3 has demonstrated that
φ and ψ are bijections and that X and Y have same cardinality.
Pick the bijection φ and it follows rkX(x0:k) = rkY (φ(x0:k)) for
any 0 ≤ k ≤ K and x0:k ∈ X . This shows that PKX ∼= PKY and
completes the proof of the identity statement. � �

APPENDIX E
PROOFS IN SECTION V-B

Proof of Proposition 4 : We first prove (23) by considering
proximity networks PKX and PKY and their corresponding dual
dissimilarity networks DK

X and DK
Y . Let the correspondence

C between X and Y be the minimizing correspondence in
dkP(PKX , P

K
Y ) [cf. Definition 14] so that we can write

dkP(PKX , P
K
Y ) = ΓkPX ,PY

(C). (52)

C may not be the minimizing correspondence for the distance
dkD(DK

X , D
K
Y ) [cf. Definition 11], but since it is a valid corre-

spondence, it hold true that

dkD(DK
X , D

K
Y ) ≤ ΓkDX ,DY

(C). (53)

From the definition of duality [cf. (22)], we may write

ΓkDX ,DY
(C)= max

(x0:k,y0:k)∈C

∣∣∣(1−d̂kX(x0:k)
)
−
(
1−d̂kY (y0:k)

)∣∣∣. (54)

The ones in (54) cancel out and therefore,

ΓkDX ,DY
(C) = ΓkPX ,PY

(C). (55)

Substituting (52) and (53) back to (55) implies

dkP(PKX , P
K
Y ) ≥ dkD(DK

X , D
K
Y ). (56)

Let the correspondence C ′ between X and Y be the minimizing
correspondence in dkD(DK

X , D
K
Y ). Then C ′ is also a valid corre-

spondence for the distance dKP (PKX , P
K
Y ). By symmetry, we have

dkD(DK
X , D

K
Y ) ≥ dkP(PKX , P

K
Y ). (57)

Combining (56) and (57) yields the desired result in (23).
Next we prove (24) by considering PKX and PKY and their corre-

sponding duals DK
X and DK

Y . Let the correspondence C between
X and Y be the minimizing correspondence in dP,p(P

K
X , P

K
Y )

[cf. Definition 12] so that we can write

dP,p(P
K
X , P

K
Y ) =

∥∥ΓKPX ,PY
(C)
∥∥
p
. (58)

C may not be the minimizing correspondence for the distance
dD,p(D

K
X , D

K
Y ) [cf. Definition 12], but again since it is a valid

correspondence, we may write

dD,p(D
K
X , D

K
Y ) ≤

∥∥ΓKDX ,DY
(C)
∥∥
p
. (59)

We have demonstrated in proving (23) that for any integers
0 ≤ k ≤ K, ΓkDX ,DY

(C) = ΓkPX ,PY
(C). In vector form, this

is ΓKDX ,DY
(C) = ΓKPX ,PY

(C). Therefore, the property of p-norm
implies that ∥∥ΓKDX ,DY

(C)
∥∥
p

=
∥∥ΓKPX ,PY

(C)
∥∥
p
. (60)

Substituting (58) and (59) back to (60) yields

dP,p(P
K
X , P

K
Y ) ≥ dD,p(DK

X , D
K
Y ). (61)

Let the correspondence C ′ between X and Y be the minimiz-
ing correspondence in dD,p(D

K
X , D

K
Y ). Then C ′ is also a valid

correspondence for dP,p(PKX , P
K
Y ). By symmetry, we have

dD,p(D
K
X , D

K
Y ) ≥ dP,p(PKX , PKY ). (62)

Combining (61) and (62) yields the desired result in (24). �
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