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Persistent Homology Lower Bounds on
High Order Network Distances

Weiyu Huang and Alejandro Ribeiro

Abstract—This paper presents methods to compare high order
networks using persistent homology. High order networks are
weighted complete hypergraphs collecting relationship functions
between elements of tuples. They can be considered as generaliza-
tions of conventional networks where only relationship functions
between pairs are defined. Valid metric distances between high
order networks have been defined but they are inherently difficult
to compute when the number of nodes is large. We relate high
order networks to the filtrations of simplicial complexes and show
that the difference between networks can be lower bounded by
the difference between the homological features of their respective
filtrations. Practical implications are explored by comparing the
coauthorship networks of engineering and mathematics academic
journals. The lower bounds succeed in discriminating engineering
communities from mathematics communities and in differentiating
engineering communities with different research interests.

I. INTRODUCTION

We consider high order networks that describe relationships
between elements of tuples and address the problem of computing
an approximate value for their distance. While networks are more
often defined as structures describing relationships between pairs
of nodes [2], [3], there are many applications in which higher
order relationships between triplets, quadruplets, and generic n-
tuples are also important. For example, in coauthorship networks
where relationships detail the number of joint publications by
groups of scholars, apart from collaboration between pairs of au-
thors, there is extra information to be gleaned from collaborations
between triplets of authors, or even single author publications.
The importance of expressing tuple relationships between groups
of nodes in addition to pairs has been utilized in multiple domains
including sensor networks [4], [5], cognitive learning [6], wireless
networks [7], image ranking [8], object recognition [9], and social
networks [10].

The problem of defining distances between networks is im-
portant even in the case of pairwise networks. However, while
distances are not difficult to define, they are certainly difficult to
compute. This has motivated the use of feature comparisons in
which the difference between specific properties of the network
is used as a tractable alternative. Examples of feature comparisons
are clustering coefficients [11], neighborhood topologies [12],
betweenness [13], motifs [14], wavelets [15], and graphlet degree
distributions [16], [17]. While tractable, the use of features is
application dependent, utilizes only a small portion of the in-
formation conveyed by the networks, and may yield conflicting
comparative judgements – like two networks being close to a third
but far from each other – because the triangle inequality is not
necessarily valid. A proper distance between pairwise and high
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order networks overcomes these drawbacks. This is the motivation
for the definition of metrics that generalize the Gromov-Hausdorff
distance between metric spaces [18], [19] to pairwise [20] and
high order networks [21].

The metric distances between high order networks defined in
[21] have been applied to compare networks with small number
of nodes and have succeeded in identifying collaboration patterns
of coauthorship networks. However, because they have to con-
sider all possible node correspondences (Definition 2), network
distances are difficult to compute when the number of nodes in
the networks is large. The goal of this paper is to find lower
bounds on the network distances that are computable in networks
with large numbers of nodes. We achieve this using persistent
homology. It has to be acknowledged that the computation of
distance lower bounds suffers from some of the same problems
associated with feature comparison. Still, distance lower bounds
do have important properties such as the facts that a large lower
bound entails a large distance and they can be used to estimate
distance intervals because upper bounds are easy to determine
using specific correspondences (see Definition 3).

The paper begins with a brief review of high order networks
and high order network distances [21] (Section II). Concepts from
persistence topology [22], [23] are then discussed and connec-
tions between high order networks and simplicial complexes as
well as between tuple relationships and homological features are
established (Section III). The difference between networks can
therefore be estimated by the difference between the respective
sets of homological features. We prove that the two families
of network distances can be lower bounded using homological
features (Theorems 1 and 2 in Section IV). We illustrate that all
the information conveyed by non-trivial relationship functions of
a network can be found in homological features (Proposition 4)
and that the lower bounds established in Theorems 1 and 2 are
tight. Presented are also examples where the differences between
the homological features equate the metrics between networks.
Since persistent homology can be computed efficiently for large
networks [24], [25], we use these lower bounds to compare the
coauthorship networks constructed from the publications of a
number of academic journals from engineering and mathemat-
ics communities. The lower bounds succeed in discriminating
engineering communities from mathematics communities and in
differentiating the engineering communities of signal processing,
automatic control, and wireless communications (Section V). The
paper closes with concluding remarks (Section VI).

II. HIGH ORDER NETWORKS

A network NK
X of order K over the node space X is defined

as a collection of K + 1 relationship functions {rkX : Xk+1 →
R+}Kk=0 from the space Xk+1 of (k+1)-tuples to the nonnegative
reals. NK

X can be considered as a weighted complete hypergraph
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[26] whose weights for all hyperedges of elements of (k + 1)
tuples with 0 ≤ k ≤ K are defined. The rank s(x0:k) of a given
tuple x0:k := (x0, x1, . . . , xk) ∈ Xk+1 is the number of unique
elements in the tuple. We say that a tuple x0:k is full rank if its
rank equals its cardinality s(x0:k) = |x0:k| = k + 1. For tuples
that are not full rank, the relationship function between a tuple
x0:k is identical to the relationship functions of subtuples of x0:k
that have rank s(x0:k) since they contain the same information.
This remark along with a symmetry property makes up the formal
definition of high order networks.

Definition 1 NK
X =

(
X, r0X , r

1
X , . . . , r

K
X

)
is a K-order network

if the following two properties hold:

Symmetry. For any 0 ≤ k ≤ K and any point collections
x0:k, we have that rkX(x[0:k]) = rkX(x0:k), where x[0:k] =
([x0], [x1], . . . , [xk]) is a reordering of x0:k.
Identity. For any 0 ≤ k ≤ K and tuple x0:k, any of the subtuples
xl0:lk̃ with s(x0:k) = s(xl0:lk̃) satisfies rkX(x0:k) = rk̃X(xl0:lk̃).

The set of all high order networks of order K is denoted as NK .

For point collections x0:k, the values rkX(x0:k) of their k-
order relationship functions are intended to represent a measure
of similarity or dissimilarity for members of the group. Exam-
ples for the identity property include r2X(x, x) = r1X(x) and
r3X(x′, x, x′) = r2X(x, x′). We assume that relationship values are
normalized so that 0 ≤ rkX(x0:k) ≤ 1 for all k and x0:k. We say
that two networks NK

X and NK
Y are k-isomorphic if there exists

a bijection π : X → Y such that for all x0:k ∈ Xk+1 we have

rkY (π(x0:k)) = rkX(x0:k), (1)

where we use the shorthand notation rkY (π(x0:k)) :=
rkY (π(x0), π(x1), . . . , π(xk)). Since the map π is bijective, (1)
can only be satisfied when X is a permutation of Y . When
networks NK

X and NK
Y are k-isomorphic we write NK

X
∼=k N

K
Y .

The space of K-order networks where k-isomorphic networks
are represented by the same element is termed the set of K-
networks modulo k-isomorphism and denoted by NK mod ∼=k.
For each 0 ≤ k ≤ K, the space NK mod ∼=k can be endowed
with a pseudometric [21]. The definition of this distance requires
introducing the notion of correspondence [27, Def. 7.3.17].

Definition 2 A correspondence between two sets X and Y is a
subset C ⊆ X × Y such that ∀ x ∈ X , there exists y ∈ Y
such that (x, y) ∈ C and ∀ y ∈ Y there exists x ∈ X such that
(x, y) ∈ C. The set of all correspondences between X and Y is
denoted as C(X,Y ).

A correspondence in the sense of Definition 2 is a map between
node sets X and Y so that every element of each set has at least
one correspondent in the other set. Most importantly, this allows
definition of correspondences between networks with different
numbers of elements. We can now define the distance between
two networks by selecting the correspondence that makes them
most similar as we formally define next.

Definition 3 Given networks NK
X and NK

Y , a correspondence C
between the node spaces X and Y , and an integer 0 ≤ k ≤ K
define the k-order network difference with respect to C as

ΓkX,Y (C) := max
(x0:k,y0:k)∈C

∣∣rkX(x0:k)− rkY (y0:k)
∣∣ , (2)

where the notation (x0:k, y0:k) stands for
(x0, y0), (x1, y1), . . . , (xk, yk). The k-order network distance
between networks NK

X and NK
Y is then defined as

dkN (NK
X , N

K
Y ) := min

C∈C(X,Y )

{
ΓkX,Y (C)

}
. (3)

For a given correspondence C ∈ C(X,Y ) the network
difference ΓkX,Y (C) selects the maximum distance difference
|rkX(x0:k) − rkY (y0:k)| among all pairs of correspondents – we
compare rkX(x0:k) with rkY (y0:k) when all the points xl ∈ x0:k
and yl ∈ y0:k are correspondents. The distance in (3) is defined
by selecting the correspondence that minimizes these maximal
differences. The distance in Definition 3 is a pseudometric in NK

mod ∼=k [21]. For future reference, the notions of metric and
pseudometric are formally stated next.

Definition 4 Given a space S and an isomorphism ∼=, a function
d : S × S → R is a metric in S mod ∼= if for any a, b, c ∈ S
the function d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.
(ii) Symmetry. d(a, b) = d(b, a).
(iii) Identity. d(a, b) = 0 if and only if a ∼= b.
(iv) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).

The function is a pseudometric in S mod ∼= if for any a, b, c ∈ S
the function d satisfies (i), (ii), (iv), and

(iii’) Relaxed identity. d(a, b) = 0 if a ∼= b.

A metric d in S mod ∼= gives a proper notion of distance.
Since zero distances imply elements being isomorphic, the dis-
tance between elements reflects how far they are from being iso-
morphic. Pseudometrics are relaxed since elements not isomorphic
may still have zero distances measured by the pseudometrics.
Observe that since correspondences may be between networks
with different number of elements, dkN (NK

X , N
K
Y ) is defined when

the node cardinalities |X| and |Y | are different.
We say that two K-order networks NK

X and NK
Y are isomorphic

if there exists a bijection π : X → Y such that (1) holds for all
0 ≤ k ≤ K and x0:k ∈ Xk+1. When networks NK

X and NK
Y are

isomorphic we write NK
X
∼= NK

Y . The space of K-order networks
modulo isomorphism is denoted as NK mod ∼=. A family of
pseudometrics measuring the difference over all order functions
can be endowed to NK mod ∼= as we formally state next.

Definition 5 Given networks NK
X and NK

Y , a correspondence C
between the node spaces X and Y , and some vector p-norm ‖ · ‖p,
define the network difference with respect to C as∥∥ΓKX,Y (C)

∥∥
p

:=

∥∥∥∥(Γ0
X,Y (C),Γ1

X,Y (C), . . . ,ΓKX,Y (C)
)T∥∥∥∥

p

, (4)

where for each integer 0 ≤ k ≤ K, ΓkX,Y (C) is the k-order
network difference with respect to C defined in (2). The p-norm
network distance between NK

X and NK
Y is then defined as

dN ,p(N
K
X , N

K
Y ) := min

C∈C(X,Y )

{∥∥ΓKX,Y (C)
∥∥
p

}
. (5)

In Definition 5 we compare relationship functions of all orders
no higher than K. The norm ‖ΓKX,Y (C)‖p is assigned as the
difference between NK

X and NK
Y measured by the correspondence

C. The distance dN ,p(NK
X , N

K
Y ) is then the minimum of these
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Fig. 1. Temporal dynamics for the formation of a research community. The k-order
relationship in this 2-order dissimilarity network [cf. Definition 6] incorporates the
dissimilarity term – the normalized time instant when members of (k + 1)-tuple
write their first joint paper – and the multiplication of ε with the rank of the tuple.
E.g., A writes her first paper at time 0, and coauthors with B, D, C at times
2/9, 4/9, 5/9, respectively. She also writes jointly with B and D at time 4/9.

differences achieved by some correspondence. As was the case
for Definition 3, dN ,p(NK

X , N
K
Y ) is defined even if the numbers

of nodes in X and Y are different.
Observe that the k-order function rkX of a network NK

X does not
impose constraints on the l-order function rlX of the same network
except the identity property. In practical situations, however, it is
common to observe that adding nodes to a tuple results in either
increasing or decreasing relationships between elements of the
extended tuple. This motivates the consideration of dissimilarity
networks and proximity networks that we undertake next.

A. Dissimilarity and Proximity Networks

In dissimilarity networks, rkX(x0:k) encodes a level of dis-
similarity between elements. In this scenario it is reasonable that
adding elements to a tuple makes the group more dissimilar
and results in a higher value in the relationship function. This
restriction makes up the formal definition that we introduce next.

Definition 6 We say that the K-order network DK
X is a dis-

similarity network if for any 0 ≤ k ≤ K and tuples x0:k ∈ Xk+1,
its relationship function is the summation of a dissimilarity term
and the multiplication of its rank with a small constant ε,

rkX(x0:k) = dkX(x0:k) + εs(x0:k). (6)

The dissimilarity terms satisfy the order increasing property that
for any 1 ≤ k ≤ K and x0:k,

dkX(x0:k) ≥ dk−1X (x0:k−1), (7)

and the constant ε is a strictly positive value that satisfies 0 <
ε ≤ 1 − (K + 1)−1 maxx̃0:K∈XK+1 dKX(x̃0:K). Denote the set of
all dissimilarity networks of order K as DK .

In dissimilarity networks, adding a new element to a tuple
makes the set strictly more dissimilar than it was. Figure 1
illustrates a dissimilarity network where dissimilarities mark the
normalized time instants when members become coauthors. The
rank correction term εs(x0:k) is a technical modification to
distinguish between full rank (proper) k-tuples and rank deficient
(degenerate) tuples. In practice it is set to a sufficiently small
positive quantity compared to dissimilarities.

In proximity networks, the function rkX(x0:k) encodes a level of
similarity or proximity between elements. Under this circumstance
it is reasonable to assume that adding elements to a tuple makes
the group less similar, resulting in a lower value in the relationship
function. We formally introduce a definition next.

Definition 7 We say that the K-order network PKX is a proximity
network if for any 0 ≤ k ≤ K and tuples x0:k ∈ Xk+1, its

1/19− 3ε 2/19− 3ε

A

11/19− ε
B

9/19− ε

C2/19− ε D 5/19− ε

4/19− 2ε

2/19− 2ε

1/19− 2ε

2/19− 2ε

2/19− 2ε

Fig. 2. Collaborations between authors in a research community. The k-order
relationship in this 2-order network [cf. Definition 7] incorporates the proximity
term – the number of publications between members of (k+1)-tuples normalized
by the total number of papers – and the multiplication of −ε with the rank of
the tuple. E.g., A writes 11 papers in total, and coauthors 4, 2, and 2 papers
respectively with B, D, and C. She also writes 1 paper jointly with B and C.

relationship function is the summation of a proximity term and
the multiplication of its rank with −ε,

rkX(x0:k) = pkX(x0:k)− εs(x0:k), (8)

The proximity terms satisfy the order increasing property that for
any 1 ≤ k ≤ K and x0:k,

pkX(x0:k) ≤ pk−1X (x0:k−1), (9)

and the constant ε is a strictly positive value that satisfies 0 < ε ≤
(K+ 1)−1 minx̃∈XK+1 pKX(x̃0:K). Denote the set of all proximity
networks of order K as PK .

In proximity networks, adding a new element to a tuple makes
the set strictly less similar than it was. Figure 2 exemplifies a prox-
imity network where proximities describe the normalized number
of publications between members in a research community.

When the input networks to Definitions 3 and 5 are dissimilarity
or proximity networks, we refer to the respective distances as
the dissimilarity or proximity network distances. We state this
formally in the following definition for future reference.

Definition 8 Given dissimilarity networks DK
X , D

K
Y ∈ DK we

say that the k-order distance dkD(DK
X , D

K
Y ) = dkN (DK

X , D
K
Y )

of Definition 3 is the k-order dissimilarity network distance
between DK

X and DK
Y and that p-norm distance dD,p(DK

X , D
K
Y ) =

dN ,p(D
K
X , D

K
Y ) of Definition 5 is the p-norm dissimilarity

network distance. The k-order proximity network distance
dkP(PKX , P

K
Y ) and the p-norm proximity network distance

dP,p(P
K
X , P

K
Y ) are defined similarly.

The restrictions to dissimilarities or proximities make the dis-
tances in Definition 8 well-defined metrics in the respective space
[21]. Proximity and dissimilarity networks are related entities.
We formalize this relationship through the introduction of dual
networks in the following definition.

Definition 9 Given a node space X , the K-order proximity and
dissimilarity networks PKX = (X, p̂0X , p̂

1
X , . . . , p̂

K
X) and DK

X =
(X, d̂0X , d̂

1
X , . . . , d̂

K
X) are said duals if and only if p̂kX(x0:k) =

1− d̂kX(x0:k) for all orders 0 ≤ k ≤ K and tuples x0:k.

Given two networks, the distance between them is equal to the
distance between their respective duals. We formally state this in
the following proposition.

Proposition 1 Consider proximity networks PKX and PKY and
their corresponding dual dissimilarity networks DK

X and DK
Y .

The k-order proximity distances dkP(PKX , P
K
Y ) and k-order dis-

similarity distances dkD(DK
X , D

K
Y ) coincide for all 0 ≤ k ≤ K.
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Fig. 3. k-simplices in Rk+1 for 0 ≤ k ≤ 3.

Likewise, the p-norm proximity distance dP,p(P
K
X , P

K
Y ) and p-

norm dissimilarity distance dD,p(DK
X , D

K
Y ) coincide.

The metrics defined in Definition 8 provide us well-founded
methods to compare high order networks. However, the combi-
natorial nature in searching for the optimal correspondence in
(3) and (5) makes it impossible to find the exact solution when
the number of nodes in the networks is large. This motivates the
development of reasonable and computationally tractable lower
bounds. These bounds will be obtained by relating dissimilarity
networks to filtrations in computational homology [22], [23]. The
mapping between high order networks and filtrations is discussed
in the following section.

III. RELATING DISSIMILARITY NETWORKS TO FILTRATIONS

In topology, given k + 1 unique points x0:k, it is common to
consider them living in some Rk+1 space where the coordinates of
point xi are all zero except unity on the i-th axis. The k-simplex
generated by the set of non-repeating points x0:k, φ = [x0:k], is
defined as the convex hull of the set of points, conv{x0:k}. See
Figure 3 for examples of k-simplex with 0 ≤ k ≤ 3.

For all k ≥ 1, removing a point xl from the set x0:k yields a
set with k points that we denote as x0:l̂:k := x0:k\xl. Each of the
k+ 1 convex hulls [x0:l̂:k] = conv{x0:k\xl} formed by removing
the point xl from the original set is a (k − 1)-simplex. A face
of φ is the convex hull of a non-empty subset of x0:k and it is a
proper face if the subset is not the entire set. For example, the set
of proper faces for the 1-simplex [a, b] and the 2-simplex [a, b, c]
in Figure 3 are {[a], [b]} and {[a, b], [a, c], [b, c], [a], [b], [c]}, re-
spectively. Given the simplex φ = [x0:k], the boundary ∂kφ
of the simplex is the collection of all (k − 1)-dimensional
faces considering orientations. Orientations are generalizations of
directed edges in conventional pairwise graphs. For 1-simplices,
[a, b] denotes the edges from a to b and [a, b] = −[b, a]. For the 2-
simplex [a, b, c] in Figure 3, the orientation is either clockwise or
counter-clockwise and [a, b, c] = [b, c, a] = [c, a, b] = −[a, c, b] =
−[b, a, c] = −[c, b, a]. The boundary of a simplex φ is written as

∂kφ =

k∑
l=0

(−1)l[x0:l̂:k], (10)

The (−1)l ensures faces appear alternatively in the summation and
therefore yields a well-defined orientation. Observe that since a 0-
simplex φ has no faces, ∂0φ = 0. For the k-simplices in Figure 3,
∂0[a] = 0, ∂1[a, b] = [b]− [a], ∂2[a, b, c] = [b, c]− [a, c]+[a, b] and
∂3[a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c]. A simplicial
complex L is a finite collection of simplices such that every face
of a simplex of L is also in L and the intersection of any two
simplices is either empty or a shared face. See Figure 4 (a) for
two connected bow ties as an example of a simplicial complex of
dimension 2.

Simplicial complexes are high dimensional generalizations of
conventional unweighted undirected graphs. The 1-skeleton of any
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Fig. 4. (a): Two connected bow ties as an example of a simplicial complex L which
consists of 8 0-simplices, 11 1-simplices, and 3 2-simplices. The intersection
of the two 2-simplices [b, f, g] and [b, d, f ] is a 1-simplex [b, f ], a shared
face of the two 2-simplices. The intersection of the 2-simplices [a, g, h] and
[b, f, g] is the 0-simplex [g]. (b): The 1-skeleton of L. Observe that it is a well-
defined undirected unweighted graph. (c): A weighted high order network can
be represented equivalently as a simplicial complex with weights. The weight of
a simplex is the time instant the simplex appears in the simplicial complex. In
the original network, r1X(a, g) = 0.3; in the simplicial complex with weights,
the 1-simplex [a, g] appears at time 0.3. (d): the zeroth-dimensional and (e): the
first-dimensional persistence diagrams of the filtration induced by (c).

simplicial complex L, defined as the union of simplices in L with
dimensions k ≤ 1, is a well-defined simple graph (See Figure
4 (b)). A k-chain is a formal sum of k-simplices of L, denoted
by Φ =

∑
i βiφi, where each φi is a k-simplex and each βi is

a coefficient. The k-chains together with the addition operation
form the group of k-chains, denoted as Ck(L), or simply Ck.
For a k-chain with Φ =

∑
i βiφi, its boundary is the sum of the

boundaries of its simplices, ∂kΦ =
∑
i βi(∂kφi). Hence, ∂k maps

a k-chain to a (k − 1)-chain, ∂k : Ck → Ck−1. The sequence of
chain groups connected by boundary maps can be represented as

· · · ∂k+2−→ Ck−order+1
∂k+1−→ Ck

∂k−→ Ck−1
∂k−1−→ · · · . (11)

For the connected bow ties in Figure 4 (a), C0 = β1[a] + β2[b] +
· · ·+ β8[h], C2 = β′1[a, g, h] + β′2[b, g, f ] + β′3[b, d, f ]. A k-cycle
is a k-chain with empty boundary, ∂kΦ = 0. In the example, [a]
is a 0-cycle and [a, g] + [g, h] − [a, h] is a 2-cycle. Zk denotes
the group of k-cycles and is the kernel of the k-th boundary map,
Zk = ker ∂k. Observe that any 0-chain is a 0-cycle, therefore Z0 =
C0. A k-boundary is a k-chain that is the boundary of a (k+ 1)-
chain, Φ = ∂k+1Ψ for some Ψ ∈ Ck+1. In the example, [g]− [h]
is a 0-boundary since [g]− [h] = ∂1[h, g] and [h, g] is a 1-chain.
Similarly, [a, g] + [g, h]− [a, h] is a 2-boundary. Every boundary
is also a cycle. Bk denotes the group of k-boundaries and is the
image of the (k + 1)-th boundary map, Bk = im ∂k+1. The k-th
homology group is the k-th cycle group modulo the k-th boundary
group, Hk = Zk/Bk. The homology groups considered in this
paper are of the form Hk ∼=

∑
i γiΦi where each γi ∈ R denotes
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a degree of freedom and Φi =
∑
j βjφj with βj ∈ {−1, 1} is

a linear combination of simplices. We say that each chain Φi
represents a k-th dimensional homological feature.

We now connect computational topology with dissimilarity
networks. Simplicial complexes can be considered as structures
of high order networks, detailing the number and labels of ver-
tices, edges, and higher dimensional counterparts. To incorporate
relationship functions, we assign each simplex in the simplicial
complex L a value between 0 and 1 denoting the time when this
simplex appears. For any α ∈ R, we then define Lα ⊆ L to be
the collection of simplices appearing before or on time α. If all
faces of each simplex and intersections of any simplices in Lα
also appear before or on time α, Lα is a well-defined simplicial
complex and the nested sequence of ∅ = Lα0

⊆ · · · ⊆ Lαm
= L

is defined as the filtration L where 0 = α0 < · · · < αm = 1 is
an ordered sequence of real numbers. From Definition 6, a well-
defined filtration L(DK

X ) can be induced from a given dissimilarity
network DK

X as we formally state next.

Definition 10 Given a dissimilarity network DK
X , its induced

simplicial complex L(DK
X ) is defined on the same node space

X . For full rank tuple x0:k, the simplex [x0:k] is in L(DK
X ) if the

dissimilarity term dkX(x0:k) in the decomposition of rkX(x0:k) [cf.
(6)] is not the maximum dissimilarity maxx̃0:K∈XK+1 dKX(x̃0:K).
The induced filtration L(DK

X ) is the filtration where each simplex
[x0:k] in L(DK

X ) appears at rkX(x0:k).

The reason that the appearance of a simplex in the simplicial
complex depends on its dissimilarity function is because maxi-
mum dissimilarities between elements are expressed differently
in dissimilarity networks and filtrations. In dissimilarity networks,
the relationship rkX(x0:K) between elements of any tuple x0:k with
0 ≤ k ≤ K is defined. Elements are the most dissimilar when
their dissimilarity term dkX(x0:K) is the maximum dissimilarity
maxx̃0:K∈XK+1 dkX(x̃0:K) in the network. For filtrations, a sim-
plex [x0:k] whose elements are the most dissimilar would never
appear. Equivalently speaking, the simplex [x0:k] does not exist
in the simplicial complex. In Definition 10, the induced filtration
L(DK

X ) ignores simplices whose elements are the most dissimilar.
When a simplex [x0:k] does appear in the simplicial complex,
its appearance time is the corresponding relationship function
rkX(x0:k). We formally state that L(DK

X ) is a well defined
filtration in the following proposition.

Proposition 2 The filtration L(DK
X ) induced from a given dis-

similarity network DK
X is a well-defined filtration.

Proof: See Appendix A. �

Proposition 2 also implies that L(DK
X ) is a well-defined

simplicial complex. It establishes the connection between high
order networks with filtrations. Tools developed in computational
topology can therefore be used to analyze networked data. Figure
4 (c) presents an example of filtration in which the numbers
adjacent to simplices denote the time when simplices appear. L0

consists of all vertices except [g] and L0.2 consists of all vertices
union four 1-simplices [a, h], [b, f ], [g, f ], [d, e].

Finally we present an intuitive idea of persistent homology.
Consider the homological feature represented by Φ that ex-
ists in the k-th homology group Hk(Lα) for any α satisfying
αb ≤ α ≤ αd. This feature starts to appear in the homology

group from time αb as a new independent non-trivial cycle. The
feature diminishes at time αd since this cycle is trivialized by a
boundary. This formation and elimination in the homology group
of simplicial complexes in a filtration is defined as persistent
homology. The interval [αb, αd) is named persistence interval for
the corresponding homological feature and can also be represented
as a point (αb, αd) in a two-dimensional plane. The collection of
all such points for the k-th dimensional homological features is
called the k-th dimensional persistence diagram and denoted as
PkL. For the example in Figure 4 (c), at time 0, L0 consists of
all 0-simplicies except [g]. Since every 0-simplex is a 0-cycle,
there exist 7 zeroth-dimensional homological features. At time
0.1, the appearance of the 1-simplex [b, f ] makes the 0-cycles
[b] and [f ] dependent and one zeroth-dimensional homological
features dies, generating a zeroth-dimensional persistence interval
[0, 0.1). At the same time, a new zeroth-dimensional homological
feature represented by [g] appears. As the filtration continues and
more edges appear, all zeroth-dimensional homological features
disappear except one denoting the entire connected component.
For the first dimension, the homological feature represented by
the cycle [a, h]+ [h, g]+ [g, a] appears at time 0.3 and is killed at
time 0.8 by the appearance of the triangle [a, g, h]. At the end of
the filtration, we have one zeroth-dimensional homological feature
born at time 0 and one first-dimensional homological feature
represented by [c, d] + [d, e] + [e, c] born at time 0.4. Figure 4
(d) and (e) plot the zeroth-dimensional and the first-dimensional
persistence diagrams of the filtration induced from (c).

Persistence homologies can be computed fastly [24], [25].
For this reason, we aim to use them to lower bound network
distances defined in Definition 8. We will focus on the analysis
of dissimilarity networks. The analysis is then generalized to
proximity networks as a result of the duality in Proposition 1. We
start by finding bounds of∞-norm dissimilarity network distances
dD,∞ which we undertake in the next section.

IV. PERSISTENCE BOUNDS ON NETWORK DISTANCES

It has been shown that the persistent homology of filtrations on
a simplicial complex is stable in the sense that similar filtrations
yield similar persistence diagrams [28]. In future definitions, it
would be important to consider the difference between persis-
tence diagrams. We formalize this by introducing the notion of
bottleneck distance between point sets as we specify next.

Definition 11 The bottleneck distance d∞B (Q, Q̃) between two
point sets Q and Q̃ with same cardinality |Q| = |Q̃| in two
dimensional space is defined as

d∞B (Q, Q̃) = min
γ

max
q∈Q
‖q − γ(q)‖∞ , (12)

where γ ranges over all bijections from Q to Q̃.

For a given bijection γ between Q and Q̃, the infinity norm
‖q − γ(q)‖∞ between a pair of points q ∈ Q and γ(q) ∈ Q̃ is
assigned as the larger one among the x-axis coordinate difference
and the y-axis coordinate difference between points q and γ(q).
The maximum over infinity norm maxq∈Q ‖q − γ(q)‖∞ selects
the maximum infinity norm ‖q − γ(q)‖∞ among all pairs in the
bijection. The bottleneck distance in (12) is defined by selecting
the bijection that minimizes these maximal infinity norms. Persis-
tence diagrams are stable [28, Thm. 4.4] as we formally restate
from a different perspective to favor our context.
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Lemma 1 If two different filtrations L and L̃ on a same simpli-
cial complex yield finite dimensional persistence homologies and
satisfy the strongly δ interleaved condition, that is for any α ≥ 0,

Lα ⊆ L̃α+δ ⊆ Lα+2δ, (13)

then the bottleneck distance between the k-th dimensional per-
sistence diagrams of L and L̃ for any k is bounded by δ, i.e.
d∞B (PkL,PkL̃) ≤ δ.

Given two filtrations on a same simplicial complex, Lemma 1
guarantees that if the appearance time of any simplicies in two
filtrations does not differ by δ, the bottleneck distance between
the persistence diagrams of the filtrations for any dimension is no
greater than δ.

Remark 1 When the number of points in PkL and PkL̃ is differ-
ent, the bottleneck distance d∞B (PkL,PkL̃) is ill-defined. Instead,
we may think that the filtrations have a number of homological
features being trivialized at the same time they appear in the
filtration, resulting in a number of points on the diagonal (the
line with x-axis coordinate equating y-axis coordinate) in the
corresponding persistence diagrams. To evaluate the difference
between the persistence diagrams PkL and PkL̃, we can add a
number of diagonal points to the persistence diagram that has
fewer nodes. The points in the respective diagrams form two
sets {qi} and {q̃i} of N points in R2. The bottleneck distance
between PkL and PkL̃ is then the optimal result of the Linear
Bottleneck Assignment Problem (LBAP): minπ maxi c(qi, q̃π(i)),
where π ranges over all permutations and the cost

c(q, q̃) = min

{
‖q − q̃‖∞ ,

1

2
max {|qx − q̃y| , |qx − q̃y|}

}
. (14)

In other words, c(q, q̃) chooses the smaller one from the cost
of matching q with q̃ and the cost of matching both points
with their respective closest point on the diagonal. Notice that
c(q, q̃) = c(q, q̃′) for any q whenever q̃, q̃′ are on the diagonal.
This makes the choice of the locations of the diagonal points
added in the preceding section unsubstantial. The LBAP algorithm
can be solved by applying the threshold algorithm described in
[29, Algorithm 6.1] with running time O(N2.5) polynomial to the
maximum number of points N in the persistence diagrams.

In this section we apply Lemma 1 to prove that the bottle-
neck distance between the persistence diagrams of the filtrations
induced by two dissimilarity networks is a lower bound of their
dissimilarity network distance. The result is then generalized to
proximity networks. We begin with a formal statement.

Theorem 1 Let DK
X and DK

Y be two K-order dissimilarity
networks. The bottleneck distance between the k-th dimensional
persistence diagrams of the filtrations L(DK

X ) and L(DK
Y ) is at

most dD,∞(DK
X , D

K
Y ) for any 0 ≤ k ≤ K, i.e.

d∞B (PkL(DK
X ),PkL(DK

Y )) ≤ dD,∞(DK
X , D

K
Y ). (15)

To show Theorem 1, we need to transform filtrations L(DK
X )

and L(DK
Y ) which are defined on two different simplicial com-

plexes to two filtrations on a same simplicial complex. This
enables us to consider if the collection of simplicies in two
filtrations are δ-nested as in (13), upon which Lemma 1 can
be applied. We achieve this by introducing augmented networks
which we describe formally in the following definition.

D1
X :

x10.3

x2

0.1

x3

0.1

0.9

0.2

0.8 D1
Y :

y1 0.3

y3

0.1

0.7

C

C

C

A1
X :

a10.3

a2 0.1a31

0.9

0.2

0.8 A1
Y :

a10.3

a2 0.1a30.1

0.7

0.1

0.7

Fig. 5. An example to construct augmented networks. D1
X and D1

Y are 1-
order dissimilarity networks. The augmented network constructed based on the
correspondence C induces A1

X = D1
X . An additional node a2 and two edges are

augmented in A1
Y .

Definition 12 Given two K-order dissimilarity networks DK
X and

DK
Y and a correspondence C between their node sets X and

Y , the augmented networks AKX,C and AKY,C are a pair of K-
order networks defined on the node space C. Each node ai in
AKX,C and AKY,C represents a correspondent pair (xCi , yCi) in C.
Relationship functions for a0:k with 0 ≤ k ≤ K are defined as

rkAX
(a0:k) = rkX(xC0:Ck

), rkAY
(a0:k) = rkY (yC0:Ck

). (16)

Dissimilarities in the augmented networks are defined as

dkAX
(a0:k) = dkX(xC0:Ck

), dkAY
(a0:k) = dkY (yC0:Ck

). (17)

The X-rank sX(a0:k) of a given tuple a0:k ∈ A is the rank of the
corresponding nodes xC0:Ck

in DK
X , sX(a0:k) = s(xC0:Ck

). The
Y -rank is defined similarly, sY (a0:k) = s(yC0:Ck

).

When the underlying correspondence is clear, C is omitted in
the subscripts. For a given pair of dissimilarity networks DK

X

and DK
Y and a correspondence C between X and Y , both the

augmented networks AKX and AKY have identical |C| nodes where
|C| denotes the number of correspondence pairs in C. Each
node ai in both AKX and AKY represents a correspondent pair
(xCi

, yCi
) in C. For each tuple a0:k, its relationship rkAX

(a0:k)
for the network AKX is the same as the relationship rkX(xC0:Ck

)
between the tuple xC0:Ck

in DK
X . Dissimilarities dkAX

(a0:k) are
the dissimilarity between the tuple xC0:Ck

. From Definition 12
and the decompositions of relationship functions for dissimilarity
networks [cf. (6)], relationship functions for augmented networks
can be written alternatively as

rkAX
(a0:k) = dkX(xC0:Ck

) + εs(xC0:Ck
). (18)

Note that augmented networks are generally not dissimilarity net-
works. When a node x ∈ X appears twice in the correspondence,
we would have two different nodes a 6= a′ in the node space of
AKX representing the same node x in the correspondence pairs.
From (16) and the identity property of high order networks,
r1AX

(a, a′) = r1X(x, x) = r0X(x) = r0AX
(a), which conflicts

with the property of dissimilarity networks that adding a new
element to a tuple makes the set strictly more dissimilar than it
was. An example to construct augmented networks is illustrated in
Figure 5. Well-defined filtrations can be induced from augmented
networks similarly to Definition 10 as we formally state next.

Definition 13 Given an augmented AKX , its induced simplicial
complex L(AKX) is defined on the same node space C. For point
collection a0:k with full rank tuple a0:k, the simplex [a0:k] is in
L(AKX) if the dissimilarity term dkAX

(a0:k) is not the maximum
dissimilarity maxã0:K∈CK+1 dKAX

(ã0:K). The induced filtration
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D1
X :

x10

x2

0.2

x3

0.12

0.32

0.6

0.42 D1
Y :

y1 0.1

y3

0.21

y2

0.25

0.39

0.5

0.51

C

C
C

Fig. 6. An example where the bottleneck distance between the k-th dimensional
persistence diagrams of the filtrations L(DK

X ) and L(DK
Y ) is the same as

their ∞-norm network distance for k ∈ {0, 1}. The optimal correspondence
C yields dD,∞(D1

X , D
1
Y ) = 0.1. The zeroth dimensional persistence in-

tervals for L(D1
X) are [0,∞), [0.12, 0.42), [0.2, 0.32) and for L(D1

Y ) are
[0.1,∞), [0.21, 0.51), [0.25, 0.39). The first dimensional persistence interval for
L(D1

X) is [0.6,∞) and for L(D1
Y ) is [0.5,∞) The bottleneck distances between

the zeroth as well as the first dimensional persistence diagrams of the filtrations
induced from the two networks are 0.1.

L(AKX) is the filtration where each simplex [a0:k] in L(AKX)
appears at time rkAX

(a0:k).

Augmented networks are valid K-order networks. They satisfy
the symmetry and identity properties. The induced filtrations
are well-founded filtrations and most importantly, preserve the
homological features of the filtrations induced from the original
dissimilarity networks. We state this in the next proposition.

Proposition 3 Given a K-order dissimilarity network DK
X and

a correspondence C between X and the node space Y , the
augmented network AKX constructed by Definition 12 is a valid
K-order network. The filtration L(AKX) induced by Definition 13
is a well-defined filtration and has identical persistence diagrams
as L(DK

X ), i.e. for any 0 ≤ k ≤ K,

PkL(AKX) = PkL(DK
X ). (19)

Proof: See Appendix B. �

Finally we use Lemma 1 and Proposition 3 to prove Theorem
1.

Proof of Theorem 1: See Appendix B. �

Theorem 1 provides theoretical justification that high order
networks can be compared via the persistence diagrams of their
induced filtrations. We emphasize that the lower bounds are tight.
First, it follows from the definition of dissimilarity networks
that all the k-order dissimilarities between full rank tuples of
dissimilarity network DK

X can be found in homological features.
We formally state this in the following proposition.

Proposition 4 Given a dissimilarity network DK
X , any of its k-

order dissimilarities between full rank tuples appear either in the
death time of the (k− 1)-th dimensional homological features or
the birth time of the k-th dimensional homological features.

Proof: See Appendix C. �

Proposition 4 guarantees that nothing about dissimilarities
between full rank tuples is lost when we consider the persistence
homologies of the induced filtrations. Moreover, there exist dis-
similarity networks DK

X and DK
Y such that the bottleneck distance

between the k-th dimensional persistence diagrams of the filtra-
tions L(DK

X ) and L(DK
Y ) is the same as their ∞-norm network

distance for all orders 0 ≤ k ≤ K. See Figure 6 for an illustration
where d∞B (PkL(D1

X),PkL(D1
Y )) = dD,∞(D1

X , D
1
Y ) = 0.1 for

k ∈ {0, 1}.

Remark 2 Theorem 1 establishes a relationship between dD,∞
and the bottleneck distance between the persistence diagrams of
the filtrations. Using properties of p-norms, relationships between
general p-norm network distance dD,p and the bottleneck distance
between the persistence diagrams can also be constructed.

Remark 3 In [30], persistence diagrams are used to compare
point cloud data in three dimensional Euclidean space. It is shown
that the bottleneck distance between the persistence diagrams of
the Rips filtrations [31] constructed from two metric spaces is a
lower bound to the Gromov-Hausdorff (GH) distance between the
metric spaces. Theorem 1 can be considered as a generalization in
which the filtrations induced from high order networks generalize
the Rips filtrations constructed from the metric space. Similar
properties of persistence homologies are established in a more
universal setting.

The relationship between the dissimilarity network distance and
the bottleneck distance can be generalized to proximity networks
via the duality established in Proposition 1. We state this formally
in the following corollary.

Corollary 1 Consider two proximity networks PKX and PKY and
their corresponding dual dissimilarity networks DK

X and DK
Y .

The bottleneck distance between the k-th dimensional persis-
tence diagrams of the filtrations L(DK

X ) and L(DK
Y ) is at most

dP,∞(PKX , P
K
Y ) for any 0 ≤ k ≤ K, i.e.

d∞B (PkL(DK
X ),PkL(DK

Y )) ≤ dP,∞(PKX , P
K
Y ). (20)

A. Persistence bounds on k-order distances

Theorem 1 provides guarantee that the ∞-norm dissimilarity
network distance dD,∞ can be tightly bounded by the bottleneck
distance between the persistence diagrams. In this section we base
on Theorem 1 to demonstrate that k-order dissimilarity network
distance dkD between relationship functions for a specific order
k can also be tightly bounded using persistence homologies. We
begin with a formal statement as next.

Theorem 2 Given two dissimilarity networks DK
X and DK

Y and
an integer 1 ≤ k ≤ K, the bottleneck distance between the k′-th
dimensional persistence diagrams of the filtrations L(DK

X ) and
L(DK

Y ) is at most dkD(DK
X , D

K
Y ) for any 0 ≤ k′ ≤ k − 1, i.e.

d∞B (Pk′L(DK
X ),Pk′L(DK

Y )) ≤ dkD(DK
X , D

K
Y ). (21)

To show Theorem 2, first observe that for high order networks,
all information conveyed by relationship functions rk

′

X is included
in rkX for orders k′ ≤ k. This is because for any tuple x0:k′ ,
we can construct an extended tuple x0:k by adding some nodes
already included in x0:k′ such that their ranks are identical
s(x0:k′) = s(x0:k). It then follows from the identity property
of high order networks that rk

′

X (x0:k′) = rkX(x0:k). This also
establishes a relationship for network distance between different
orders as we present next.

Proposition 5 Given high order networks NK
X and NK

Y , it fol-
lows that dk

′

N (NK
X , N

K
Y ) ≤ dkN (NK

X , N
K
Y ) for 0 ≤ k′ ≤ k ≤ K.

Proof: See Appendix C. �

Proposition 5 implies that the k-order network distance in-
creases as the order k becomes higher. k-order dissimilarity or
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Fig. 7. Two dimensional Euclidean embeddings of the networks constructed from quinquennial publications in engineering and mathematics journals with respect to
the network metric lower bounds d∞B (P0L) with infinite intervals removed or replaced by finite intervals, d∞B (P1L), and d∞B (P2L) with infinite intervals replaced.
In the embeddings, red circles denote networks constructed from mathematics journals and blue diamonds represent networks from engineering journals. Networks
constructed from publications of TSP are labeled.

proximity network distances inherit this property that dk
′

D ≤ dkD
and dk

′

P ≤ dkP for any 0 ≤ k′ ≤ k ≤ K. Proposition 5
also connects k-order network distances with ∞-norm network
distance as we state in the next corollary.

Corollary 2 Given high order networks NK
X and NK

Y , it follows
that dN ,∞(NK

X , N
K
Y ) = dKN (NK

X , N
K
Y ).

Proof: See Appendix C. �

When the input networks are dissimilarity networks or proxim-
ity networks, we have that dD,∞ = dKD and dP,∞ = dKP . Finally
we use Theorem 1 and Corollary 2 to prove Theorem 2.
Proof of Theorem 2: See Appendix C. �

The requirement k′ ≤ k − 1 in Theorem 2 comes from
the fact that the k′-th dimensional persistence diagram conveys
information of not only k′-th order but also (k′ + 1)-th order
relationship functions. We again emphasize that the lower bound
described in Theorem 2 is tight and we can find dissimilarity
networks DK

X and DK
Y such that dkD(DK

X , D
K
Y ) equals the bottle-

neck distance between the k′-th dimensional persistence diagrams
of the filtration L(Dk

X) and L(Dk
Y ) for any 0 ≤ k′ ≤ k−1 ≤ K.

Similar to Theorem 1, the results in Theorem 2 can be generalized
for proximity networks via duality as we present next.

Corollary 3 Consider two proximity networks PKX and PKY and
their corresponding dissimilarity networks DK

X and DK
Y . The

bottleneck distance between the k′-th dimensional persistence
diagrams of the filtrations L(DK

X ) and L(DK
Y ) is at most

dkP(PKX , P
K
Y ) for any 0 ≤ k′ ≤ k − 1, i.e.

d∞B (Pk′L(DK
X ),Pk′L(DK

Y )) ≤ dkP(PKX , P
K
Y ). (22)

V. COMPARISON OF COAUTHORSHIP NETWORKS

We apply the lower bounds established in Corollaries 1 and 3 to
compare second order coauthorship networks where relationship
functions denote the number of publications of single authors,
pairs of authors, and triplets. These coauthorship networks are
proximity networks because they satisfy the order decreasing
property in Definition 7. We consider publications in 5 journals
from mathematics community: Computational Geometry (CG),
Discrete Computational Geometry (DCG), Journal of Applied
Probability (JAP), Journal of Mathematical Analysis and Applica-
tions (JMAA), SIAM Journal on Numerical Analysis (SJNA), and
6 journals from engineering community, all from IEEE: Signal
Processing Magazine (SPM), Trans. Automatic Control (TAC),
Trans. Pattern Analysis and Machine Intelligence (TPAMI), Trans.

Information Theory (TIT), Trans. Signal Processing (TSP), Trans.
Wireless Communication (TWC). For each journal, we construct
networks for the 2004-2008 and 2009-2013 quinquennia. For
TAC, TSP, and TWC, we also construct networks for each
individual year from 2004 to 2013. Lists of publications are
queried from [32].

For each of these journals we consider all publications in the
period of interest and construct proximity networks where the
node space X is formed by all authors of the publications. Zeroth
order proximities are defined as the total number of publications of
each member of the network, first order proximities as the number
of papers coauthored by pairs, and second order proximities
as the number of papers coauthored by triplets. The positive
constant ε in the relationship functions [cf. (8)] is set sufficiently
small compared to proximities. To make networks with different
numbers of papers comparable we normalize all relationships by
the total number of papers in the network. There are papers with
more than three coauthors but we don’t record proximities of
order higher than 2. The persistence homologies of the induced
filtrations of networks are computed using JavaPlex [33]. There
exist persistence intervals that never diminish and these would
dominate the bottleneck distance between persistence diagrams
as in Definition 11. To solve this problem, we can either remove
these persistence intervals or replace these intervals, e.g. [αb,∞),
by persistence intervals [αb, 1) which are born at the same time
but disappear at time 1 – the highest possible finite value. We
note that the bottleneck distance between the persistence diagrams
with infinite intervals either removed or replaced is still lower
bounds of the network distances. By assuming that networks
from the same community or constructed from the same journal
have similar collaboration patterns, we show here that network
metric lower bounds succeed in identifying these patterns and
in distinguishing coauthorship networks from communities with
different research interests.

A. Engineering and mathematics communities

Figure 7 shows the two dimensional Euclidean embeddings
[34] of the network metric lower bound d∞B (P0L) with infinite
persistence intervals removed or replaced by finite counterparts
and of the lower bounds d∞B (P1L) and d∞B (P2L) with infinite
intervals replaced. The 12 engineering networks (blue diamonds)
separate clearly from the 10 mathematics networks (red circles)
in all of the network metric lower bounds considered. An un-
supervised classification with one linear boundary run across
all four lower bounds would generate errors of 2 (9.09%) to 5
(22.73%) out of 22 networks. Euclidean embedding of the lower



9

-40 -30 -20 -10 0 10 20 30 40 50
-20

-10

0

10

20

30

40

(a) TAC - TSP

-30 -20 -10 0 10 20 30 40 50
-20

-15

-10

-5

0

5

10

15

20

25

(b) TAC - TWC

-40 -30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

40

(c) TSP - TWC

Fig. 8. Two dimensional Euclidean embeddings of the networks constructed from annual publications in TAC, TSP, and TWC with respect to the summation of the
metric lower bounds d∞B (P0L), d∞B (P1L), and d∞B (P2L) with infinite intervals replaced by finite intervals. In the embeddings, red circles represent TAC, blue
diamonds TSP, and black squares TWC.

bound d∞B (P1L) with infinite intervals removed yields similar
results. Most networks do not possess finite second dimensional
persistence intervals and for this reason we do not consider the
lower bound d∞B (P2L) with infinite intervals removed.

We emphasize that networks constructed from the same journal
with different quinquennia tend to be close to each other with
respect to the metric lower bounds. As an illustration, the networks
constructed from TSP with different quinquennia are marked in
the embeddings and it is clear that their differences in persistence
homologies are considerably low. Such scenarios are observed for
several other journals as well. We also emphasize that bottleneck
distances between the first and second dimensional persistence
diagrams provide different insights compared to that based on the
zeroth dimensional homological features. Indeed, we see clearer
clustering patterns formed by networks constructed from engineer-
ing and mathematics journals. This can be viewed as an example
to demonstrate the advantages of considering higher dimensional
relationship functions besides the conventional pairwise ones.

B. Engineering communities with different research interests

The network metric lower bounds succeed in distinguishing the
different collaboration patterns in engineering and mathematics
communities. We now illustrate that the lower bounds are also able
to identify distinctive features of engineering communities with
different research interests. To see this we consider the networks
constructed from annual publications of TAC, TSP, and TWC.

Figure 8 shows the two dimensional Euclidean embeddings
of the networks with respect to the summation of the network
metric lower bounds d∞B (P0L), d∞B (P1L), and d∞B (P2L) with
infinite intervals replaced by finite counterparts. The incorporation
of the metric lower bounds d∞B (P0L) with infinite intervals
removed yields similar results. Most networks do not possess finite
non-trivial first dimensional nor second dimensional persistence
intervals and for this reason we do not consider lower bounds
d∞B (P1L) and d∞B (P2L) with infinite intervals removed.

We expect more variations in annual networks because the time
for averaging behavior is reduced. Besides, it is hard to argue
that intrinsic and obvious differences exist in the collaboration
patterns in automatic control, signal processing, and wireless
communication communities. Still, networks constructed from the
same journal but different annuals tend to be close to each other
and form clustering structures. An unsupervised classification with
one linear boundary run across the summation of lower bounds
would generate 4 (20%) errors out of 20 networks in all three

classification problems considered. The less obvious clustering
structure formed by networks from different journals in Figure 8
(c) compared to (a) and (b) also suggests that the collaboration
patterns in research communities of signal processing and wireless
communication are more similar compared to that of automatic
control.

VI. CONCLUSION

We establish connections between high order networks and
simplicial complexes and use the differences between the in-
duced homological features to evaluate the differences between
networks. We justify that this is a lower bound to two families
of valid metrics in the space of high order networks modulo
permutation isomorphisms. These lower bounds succeed in dis-
tinguishing the collaboration patterns of engineering communities
from mathematics communities and in discriminating engineering
communities with different research interests.

APPENDIX A
PROOF OF PROPOSITION 2

We first prove that the simplicial complex L(DK
X ) induced from

a given dissimilarity network DK
X is a well-defined simplicial

complex. To that end, we demonstrate that (i) every face of a
simplex of L(DK

X ) is also in L(DK
X ) and (ii) the intersection

of any two simplices is either empty or a shared face. To see
(i), suppose that simplex [x0:k] is a simplex of L(DK

X ). From
Definition 10, we know that the dissimilarity between vertices
of the simplex dkX(x0:k) is not the maximum dissimilarity in the
network, i.e.

dkX(x0:k) < max
x̃0:K∈XK+1

dKX(x̃0:K). (23)

For any faces of [x0:k], say [x0:k̃] with k̃ ≤ k, from the order
increasing property [cf. (7)] of dissimilarities in dissimilarity net-
works, we know that dk̃X(x0:k̃) ≤ dkX(x0:k). Combining this with
(23) yields dk̃X(x0:k̃) < maxx̃0:K∈XK+1 dKX(x̃0:K). Therefore,
every face of a simplex of L(DK

X ) is also in L(DK
X ). To see (ii),

observe that simplicial complex L(DK
X ) is defined on the node

space X and therefore the intersection of any two simplices must
be the convex hull of some tuple x0:k ∈ X . If the intersection is
not empty, it must be a face for each of the two simplices. The
analysis in proving (i) shows that the intersection also appears in
L(DK

X ) and therefore it is a shared face.
Now we prove that L(DK

X ) is a well-defined filtration. It
suffices to demonstrate that for any α, all faces of each simplex
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and intersections of any simplices in Lα also appear before or on
time α. Suppose simplex [x0:k] appears before time α for some
chosen α. From Definition 10, we know that rkX(x0:k) ≤ α. For
any faces of [x0:k], say [x0:k̃] with k̃ < k, the order increasing
property implies dk̃X(x0:k̃) ≤ dkX(x0:k). Moreover, the rank of the
tuple x0:k̃ cannot be higher than the rank of x0:k. Combining these
with the decomposition of relationship functions of dissimilarity
networks [cf. (6)] yields

rk̃X(x0:k̃) ≤ rkX(x0:k) ≤ α, (24)

which shows that the face [x0:k̃] appears before time or on time
α. Similarly, it can can be shown that the intersections of any
simplices in Lα appear before α, concluding the proof.

APPENDIX B
PROOFS OF PROPOSITION 3 AND THEOREM 1

In the proof of Proposition 3 we use two lemmas. The first one
establishes properties between relationships of tuples of different
lengths in augmented networks.

Lemma 2 Relationship functions in an augmented network AKX
as defined in Definition 12 satisfy the following properties:

Order increasing. rkAX
(a0:k) ≥ rk−1AX

(a0:k−1) and dkAX
(a0:k) ≥

dk−1AX
(a0:k−1) for any a0:k ∈ A.

Core tuple. For any a0:k, if the X-rank of the tuple formed by
deleting a node al is the same as the X-rank of the original
tuple, i.e. sX(a0:l̂:k) = sX(a0:k), deleting al results in the
same relationship rk−1AX

(a0:l̂:k) = rkAX
(a0:k) and dissimilarity

dk−1AX
(a0:l̂:k) = dkAX

(a0:k).

Proof: To see the order increasing property, from (18) we have

rkAX
(a0:k) = dkX(xC0:Ck

) + εs(xC0:Ck
),

rk−1AX
(a0:k−1) = dk−1X (xC0:Ck−1

) + εs(xC0:Ck−1
).

(25)

The order increasing property of dissimilarity network DK
X im-

plies dkX(xC0:Ck
) ≥ dk−1X (xC0:Ck−1

). Dissimilarities in aug-
mented networks are the same as dissimilarities in original
networks. Therefore, dkAX

(a0:k) ≥ dk−1AX
(a0:k−1) illustrating the

order increasing property for dissimilarities. Besides, remov-
ing a node xCk

from the tuple xC0:Ck
cannot make the rank

s(xC0:Ck−1
) be greater than s(xC0:Ck

). Combining these observa-
tions with (25) yields the order increasing property for relationship
functions.

To see the core tuple property, the identity property of high
order network DK

X indicates rk−1X (xC0:Cl̂
:Ck

) = rkX(xC0:Ck
).

Following the definition of relationships in augmented network
AKX yields

rk−1AX
(a0:l̂:k)=rk−1X (xC0:Cl̂

:Ck
)=rkX(xC0:Ck

)=rkAX
(a0:k). (26)

Moreover, from the definition of X-rank, sX(a0:l̂:k) = sX(a0:k)
implies s(xC0:Cl̂

:Ck
) = s(xC0:Ck

). Subtracting εs(xC0:Cl̂
:Ck

) =
εs(xC0:Ck

) from the left and right hand side of (26) and substitut-
ing into (25) implies dk−1AX

(a0:l̂:k) = dkAX
(a0:k), completing the

proof. �

The second lemma is a statement about the boundary operation
of simplices.

Lemma 3 For any simplex [a0:k], ∂k−1∂k[a0:k] = 0.

Proof: See [35, pp. 81]. �

We now use Lemmas 2 and 3 to show Proposition 3.
Proof of Proposition 3: To prove Proposition 3, we prove the
(i) symmetry property and (ii) identity property of high order
networks [cf. Definition 1], (iii) L(AKX) being a valid filtration,
and (iv) L(AKX) and L(DK

X ) having identical persistent homology.
Proof of the symmetry property: For any point collec-
tions a0:k, the symmetry property of dissimilarity network DK

X

and the definition of augmented networks imply rkAX
(a[0:k]) =

rkX(x[C0:Ck]) = rkX(xC0:Ck
) = rkAX

(a0:k) for any reordering
a[0:k]. This shows the symmetry property of AKX . �

Proof of the identity property: Given a point collection a0:k, any
of its subtuple al0:lk̃ with s(al0:lk̃) = s(a0:k) would have the same
elements in its node space C as the original tuple a0:k. Therefore,
xC0:Ck

and xCl0
:Cl

k̃
also have identical points in the node space

X implying s(xC0:Ck
) = s(xCl0

:Cl
k̃
). The identity property

of dissimilarity network DK
X and the definition of augmented

networks yield rkAX
(a0:k) = rkX(xC0:Ck

) = rk̃X(xCl0
:Cl

k̃
) =

rk̃AX
(al0:lk̃). This shows the identity property of AKX . �

Proof of L(AKX) being a valid filtration: The proof that L(AKX)
induced from AKX is a valid simplicial complex is identical to the
proof that L(DK

X ) induced from DK
X is a valid simplicial complex

as in Appendix A. This is because the order increasing property of
dissimilarities in augmented networks also holds true as described
in Lemma 2. That L(AKX) is a well-defined filtration follows
immediately from the order increasing property of relationships
in augmented networks. �

Proof of L(AKX) and L(DK
X ) having identical persistence

intervals: To prove this statement we construct a sequence of
nested correspondences

C0 ⊆ C1 ⊆ · · · ⊆ C|C|−|X| = C. (27)

In the sequence of correspondences, C0 is the largest subset of C
where there does not exist a node x ∈ X with (x, y), (x, y′) ∈ C0

for y, y′ ∈ Y with y 6= y′. Since C0 is the largest subset satisfying
this requirement, every node x ∈ X appears once and only once in
some correspondences in C0. For any 0 ≤ i ≤ |C|−|X|−1, Ci+1

is the correspondence formed by adding a new correspondence
pair (x, y) for some y ∈ Y to the correspondence Ci such that
the pair satisfies (x, y) ∈ C and (x, y) 6∈ Ci. We can perform
such addition |C| − |X| times until every correspondence pair in
C has been added and we recover the original correspondence
C. An augmented network AKX,Ci

can be defined for each corre-
spondence Ci in the sequence (27), and this gives a sequence of
augmented networks,

AKX,C0
, AKX,C1

, . . . , AKX,C|C|−|X| = AKX,C = AKX . (28)

Since every node x ∈ X appears once and only once in some
correspondences in C0, we can find a bijective mapping between
node x ∈ X and node a = (x, y) ∈ C0. It follows immediately
from Definition 12 that DK

X is isomorphic to AKX,C0
, and therefore

filtrations L(DK
X ) and L(AKX,C0

) are identical. We now prove that
for any 0 ≤ i ≤ |C| − |X| − 1, induced filtrations L(AKX,Ci

) and
L(AKX,Ci+1

) have identical persistence homologies.
Based on the constructions, there must exist two nodes aj 6=

aj′ in Ci+1 with aj ∈ Ci and aj′ 6∈ Ci such that aj = (x, y)
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and aj′ = (x, y′) for some common node x ∈ X and different
nodes y 6= y′ in Y . Ci+1 has identical nodes as Ci except for
the additional node aj′ . Persistence homologies of the filtrations
L(AKX,Ci

) and L(AKX,Ci+1
) can only be different due to k-chains

involving simplices [a0:k−1,j′ ] or [ak−2,j,j′ ] for some k and some
point collections a0:k−1 or a0:k−2. In subsequent contexts, point
collections a0:k−1, a0:k−2 do not include aj nor aj′ . Therefore, to
prove that the induced filtrations L(AKX,Ci

) and L(AKX,Ci+1
) have

identical persistence homologies, it suffices to demonstrate that
for any α and any k, the k-th homology group Hk(Lα(AKX,Ci

))

and the (k − 1)-th homology group Hk−1(Lα(AKX,Ci
)) of the

collection of simplices appearing before or on time α will not be
modified by k-chains involving [a0:k−1,j′ ] or [ak−2,j,j′ ].

We first prove that k-chains involving simplices [a0:k−1,j′ ] or
[ak−2,j,j′ ] will not create new non-trivial homological features
compared to Hk(Lα(AKX,Ci

)). To see this, for any α, let Φ0 be a
k-cycle Φ0 ∈ Zk(Lα(AKX,Ci+1

)) and involve simplices [a0:k−1,j′ ]
or [ak−2,j,j′ ]. Start with τ = 0 and conduct the following con-
struction. If there is a simplex [a0:k−1,j′ ] that is involved in Φτ for
some tuple a0:k−1, consider the simplex Ψτ = ∂k+1[a0:k−1,j,j′ ].
Since the node in X represented by correspondent pairs aj and
aj′ are identical, sX(a0:k−1,j,j′) = sX(a0:k−1,j′). Following the
core tuple property described in Lemma 2, we know that

dk+1
AX ,Ci+1

(a0:k−1,j,j′) = dkAX ,Ci+1
(a0:k−1,j′). (29)

rk+1
AX ,Ci+1

(a0:k−1,j,j′) = rkAX ,Ci+1
(a0:k−1,j′). (30)

Since Φτ ∈ Zk(Lα(AKX,Ci+1
)), [a0:k−1,j′ ] is a simplex of

L(AKX,Ci+1
). Definition 13 then implies dk−1AX ,Ci+1

(a0:k−1,j,j′) <

maxã0:K∈CK+1 dKAX ,Ci+1
(ã0:K). Substituting this inequality into

(29) yields

dk+1
AX ,Ci+1

(a0:k−1,j,j′) < max
ã0:K∈CK+1

dKAX ,Ci+1
(ã0:K), (31)

which demonstrates that [a0:k−1,j,j′ ] is also a simplex of
L(AKX,Ci+1

). Similarly, from (30) and the fact that [a0:k−1,j′ ]
appears before or on time α, we know that the simplex [a0:k−1,j,j′ ]
also appears before or on time α. Combining these observations
with the order increasing property from Lemma 2 indicates that
every face of [a0:k−1,j,j′ ] – every simplex in the chain Ψτ –
exists in L(AKX,Ci+1

) and appears before or on time α. Therefore,
Ψτ ∈ Bk(Lα(AKX,Ci+1

)). Since every boundary is also a cycle,
Ψτ ∈ Zk(Lα(AKX,Ci+1

)).
We form another k-chain

Φτ+1 = Φτ − β̂τΨτ , (32)

where the coefficient β̂τ is chosen such that the simplex [a0:k−1,j′ ]
is not involved in the new chain Φτ . This is possible since
[a0:k−1,j′ ] appears in both Ψt and Φt. Apart from the fact
that [a0:k−1,j′ ] does not involve in Φt+1, Φt+1 has two more
important properties: (i) If Φτ ∈ Zk(Lα(AKX,Ci+1

)), Φτ+1 ∈
Zk(Lα(AKX,Ci+1

)). (ii) Φτ+1 can not have any new simplices
[a′0:k−1] for some tuple a′0:k−1 compared to Φτ . (i) is because
linear combination of cycles produce another cycle. To see (ii), it
follows from (10) that

Ψτ =β[a0:k−1,j ] + β′[a0:k−1,j′ ] +
∑
a′′0:k−2

βa′′0:k−2
[a′′0:k−2,j,j′ ], (33)

for some tuples a′′0:k−2 and coefficients β, β′, βa′′0:k−2
. The only

simplex [a′0:k−1,j′ ] in Ψτ for some tuple a′0:k−1 is the one

with a′0:k−1 = a0:k−1. Hence, Φτ+1 does not involve simplex
[a0:k−1,j′ ] and does not introduce any new simplices [a′0:k−1,j′ ]
for any tuples a′0:k−1 compared to Φτ . There are only finite
number of simplices [a0:k−1,j′ ] and therefore after finite number
of iterated constructions, Φt+1 = Φ0 −

∑t
τ=0 Ψτ will not

involve simplices [a0:k−1,j′ ] for any tuples a0:k−1. We now argue
that Φt+1 also does not involve simplices [a0:k−2,j,j′ ] for any
tuples a0:k−2. Φt+1 ∈ Zk(Lα(AKX,Ci+1

)) implies ∂kΦt+1 = 0.
If Φt+1 involves simplex [a0:k−2,j,j′ ] for some tuple a0:k−2,
∂k[a0:k−2,j,j′ ] involves the simplex [a0:k−2,j′ ]. To cancel out this
simplex, there is at least one simplices [a0:k−1,j′ ] in Φt+1 for some
tuples a0:k−1. This contradicts the fact that Φt+1 does not involve
simplices [a0:k−1,j′ ] for any tuples a0:k−1. Hence, Φt+1 does
not involve simplices [a0:k−1,j′ ] nor [a0:k−2,j,j′ ] for any tuples
a0:k−1. This implies that it is a k-cycle in the simplicial complex
induced from AKX,Ci

, i.e. Φt+1 ∈ Zk(Lα(AKX,Ci
)). Meanwhile,

Ψτ ∈ Bk(Lα(AKX,Ci+1
)) for any 0 ≤ τ ≤ t implies that∑t

τ=0 Ψτ ∈ Bk(Lα(AKX,Ci+1
)). Since

Φ0 − Φt+1 =

t∑
τ=0

Ψτ , (34)

any new cycle Φ0 in Lα(AKX,Ci+1
) generated by chains involving

[a0:k−1,j′ ] or [a0:k−2,j,j′ ] are dependent of some cycle Φt+1 in
Lα(AKX,Ci

) via boundaries
∑t
τ=0 Ψτ . Consequently, k-chains in-

volving simplices [a0:k−1,j′ ] or [ak−2,j,j′ ] will not create any new
non-trivial homological features compared to Hk(Lα(AKX,Ci

)).
What remains to be shown is that k-chains involving simplices

[a0:k−1,j′ ] or [ak−2,j,j′ ] will not affect existing homological
features Hk−1(Lα(AKX,Ci

)). Suppose Φ0 is a k-chain which
involves [a0:k−1,j′ ] or [ak−2,j,j′ ] and trivializes a (k − 1)-cycle
Φ′0 ∈ Zk−1(Lα(AKX,Ci

)). There are no simplices involving aj′ in
the chain ∂kΦ0 = Φ′0. We now prove that we can find another
k-chain Φt+1 which does not involve [a0:k−1,j′ ] nor [ak−2,j,j′ ]
such that ∂kΦt+1 = ∂kΦ0 and every simplex of Φt+1 appears in
Lα(AKX,Ci

). Start with τ = 0 and conduct the following construc-
tion. If there is a simplex [a0:k−1,j′ ] that is involved in Φτ for
some tuple a0:k−1, consider the simplex Ψτ = ∂k+1[a0:k−1,j,j′ ].
Form a new k-chain Φτ+1 as in (32). It has been shown that every
simplex in Ψτ appears in Lα(AKX,Ci

). Therefore, every simplex in
Φτ+1 also appears in Lα(AKX,Ci

). Moreover, from Lemma 3 we
know that ∂k+1Ψτ = ∂k+1∂k[a0:k−1,j,j′ ] = 0, and consequently,

∂kΦτ+1 =∂k

(
Φτ−β̂τΨτ

)
=∂kΦτ−β̂α∂k+1∂k[a0:k−1,j,j′ ]=∂kΦτ .

(35)

It has also been shown that Φτ+1 cannot have any new simplices
[a′0:k−1,j′ ] compared to Φτ with a′0:k−1 6= a0:k−1. There are
only finite number of simplices and therefore after finite number
of iterated constructions, Φt+1 = Φ0 −

∑t
τ=0 Ψτ will not

involve simplices [a0:k−1,j′ ] for any tuples a0:k−1. We now argue
that Φt+1 also does not involve simplices [a0:k−2,j,j′ ] for any
tuples a0:k−2. There are no simplices involving node aj′ in
the chain ∂kΦt+1 = ∂kΦ0 = Φ′0. If Φt+1 involves simplex
[a0:k−2,j,j′ ] for some tuple a0:k−2, ∂k[a0:k−2,j,j′ ] involves the
simplex [a0:k−2,j′ ]. To cancel out this simplex, there is at least
one simplices [a0:k−1,j′ ] in Φt+1 for some tuples a0:k−1. This
contradicts the fact that Φt+1 will not involve simplices [a0:k−1,j′ ]
for any tuples a0:k−1. Hence, Φt+1 does not involve simplices
[a0:k−1,j′ ] nor [a0:k−2,j,j′ ] for any tuples a0:k−1. This implies
that it is a k-chain in the simplicial complex induced from
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AKX,Ci
, i.e. Φt+1 ∈ Ck(Lα(AKX,Ci

)). This demonstrates that Φ′0 is
also trivialized by a chain in Lα(AKX,Ci

) and therefore k-chains
involving simplices [a0:k−1,j′ ] or [ak−2,j,j′ ] will not affect existing
homological features Hk−1(Lα(AKX,Ci

)).
Since L(AKX,Ci

) and L(AKX,Ci+1
) have identical homological

features for any 0 ≤ i ≤ |C| − |X| − 1 for the sequence of
augmented networks in (28) and AKX,C0

∼= DK
X , L(AKX,C0

) and
L(DK

X ) have identical persistence intervals. �

Having demonstrated all four statements in Proposition 3, the
global proof is completed. �

Finally, we use Lemma 1 and Proposition 3 to show Theorem
1.
Proof of Theorem 1: Let δ = dD,∞(DK

X , D
K
Y ). From Definitions

5 and 8, there exists a correspondence C between X and Y
such that |rkX(x0:k) − rkY (y0:k)| ≤ δ for any k and any pairs
of correspondents (x0:k, y0:k) = (x0, y0), . . . , (xk, yk) ∈ C.
Construct the pair of augmented networks AKX and AKY defined
in Definition 12 using this correspondence. It follows from (16)
that given a tuple a0:k ∈ C with each node ai representing the
correspondent pair (xCi

, yCi
) in C,∣∣rkAX

(a0:k)−rkAY
(a0:k)

∣∣= ∣∣rkX(xC0:Ck
)−rkY (yC0:Ck

)
∣∣≤δ. (36)

Since AKX and AKY have identical nodes, (36) implies that any
simplices that appear at time α in the induced filtration L(AKX)
[cf. Definition 13] will appear no earlier than α− δ and no later
than α + δ in the induced filtration L(AKY ). Similar properties
hold for any simplicies that appear at time α in the induced
filtration L(AKY ). This shows that filtrations L(AKX) and L(AKY )
are strongly δ interleaved [cf. (13)]. By Lemma 1, we know that
for any k, the bottleneck distance between the k-th dimensional
persistence diagrams of L(AKX) and L(AKY ) is bounded by
dD,∞(DK

X , D
K
Y ),

d∞B (L(AKX),L(AKY )) ≤ dD,∞(DK
X , D

K
Y ). (37)

Besides, Proposition 3 guarantees that the persistence diagram
of L(AKX) is the same as that of L(DK

X ) and the persistence
diagram of L(AKY ) is the same as that of L(DK

Y ). Therefore,
d∞B (L(AKX),L(AKY )) = d∞B (L(DK

X ),L(DK
Y )). Substituting this

into (37) concludes the proof. �

APPENDIX C
OTHER PROOFS IN SECTION IV

Proof of Proposition 4: In order to show that any k-order
dissimilarity of a dissimilarity network DK

X can be found in
persistence homologies, observe that given any full rank (k+ 1)-
tuples x0:k, (24) indicates that the k-simplex φk defined by the
convex hull conv{x0:k} appears strictly after any of its faces
conv{x0:ŝ:k} in the filtration. Suppose φk appears at time α and
denote ∂kφ

k =
∑
i βiψ

k−1
i with βi the coefficients, then each

ψk−1i appears strictly before time α.
Now suppose that the appearance of φk trivializes a (k − 1)-

th dimensional homological feature. This means that φk is the
boundary to trivialize the (k − 1)-th dimensional cycle ∂kφ

k.
Since each face ψk−1i of φk appears strictly before time α, the
cycle ∂kφk results in a persistence interval. The death time of this
persistence interval is α, or equivalently, the time represented by
the relationship rkX(x0:k).

On the other hand, if the appearance of φk does not trivialize
a (k − 1)-th dimensional homological feature, then the (k − 1)-
cycle ∂kφk is also in the boundary group Bk−1(Lα(DK

X )) of the
collection of simplices appearing before or on time α. This means
that ∂kφk can be represented by a formal sum of the boundaries
of some k-chains Φki ,

∂kφ
k =

∑
i

βi∂kΦki (38)

with coefficients βi and k-chains Φki appearing before or on time
α. By the definition of k-chains, Φi =

∑
j β
′
jψ

k
j with coefficients

β′j and k-simplices ψkj appearing before or on time α. Therefore,
(38) can be written as ∂kφk =

∑
j β
′′
j ∂kψ

k
j . Rearranging terms

yields

∂k

∑
j

β′′j ψ
k
j − φk

 = 0. (39)

This implies that
∑
i β
′′
i ψ

k
i −φk is a k-cycle. There must be a new

cycle formed since φk just appears. The cycle cannot be trivialized
immediately since any (k + 1)-chain Ψk+1 with ∂k+1Ψk+1 =∑
i β
′′
i ψ

k
i − φk would involve a simplex [x0:k,l] for some node

xl with full rank tuple x0:k,l where this simplex [x0:k,l] appears
strictly after α. Therefore we have a k-th dimensional persistence
interval with birth time α, or equivalently, the time denoted by
the relationship rkX(x0:k). This concludes the proof. �

Proof of Proposition 5: Given any 0 ≤ k′ ≤ k ≤ K, it follows
from (2) that for any correspondence C between X and Y ,

ΓkX,Y (C) = max
(x0:k,y0:k)∈C

∣∣rkX(x0:k)− rkY (y0:k)
∣∣ , (40)

Γk
′

X,Y (C) = max
(x0:k′ ,y0:k′ )∈C

∣∣∣rk′X (x0:k′)− rk
′

Y (y0:k′)
∣∣∣ . (41)

For the (x?0:k′ , y
?
0:k′) ∈ C achieving the maximum difference

|rk′X (x?0:k′) − rk
′

Y (y?0:k′)| in Γk
′

X,Y (C), we can construct another
correspondent pair (x?0:k, y

?
0:k) such that x?0:k′ is a sub-tuple of

x?0:k with same rank s(x?0:k′) = s(x?0:k) and y?0:k′ is a sub-tuple
of y?0:k with s(y?0:k′) = s(y?0:k). It follows from the identity
property of high order networks that rk

′

X (x?0:k′) = rkX(x?0:k) and
rk
′

Y (y?0:k′) = rkY (y?0:k). This implies that taking the maximum
|rkX(x0:k)− rkY (y0:k)| over (x0:k, y0:k) ∈ C cannot yield a lower
difference than |rk′X (x?0:k′)− rk

′

Y (y?0:k′)|, i.e.

ΓkX,Y (C) ≥
∣∣∣rk′X (x?0:k′)− rk

′

Y (y?0:k′)
∣∣∣ = Γk

′

X,Y (C). (42)

Since (42) holds true for any correspondence C ∈ C(X,Y ), the
inequality must hold true when we take the minimum over all
correspondences C(X,Y ) between X and Y ,

min
C∈C(X,Y )

ΓkX,Y (C) ≥ min
C′∈C(X,Y )

Γk
′

X,Y (C ′). (43)

Substituting the definition of k-order and k′-order network dis-
tances into (43) yields dkD ≥ dk

′

D and concludes the proof. �

Proof of Corollary 2: It follows from (4) that for any corre-
spondence C between the node spaces X and Y , the difference
between NK

X and NK
Y measured by C is∥∥ΓKX,Y (C)
∥∥
∞ = max

k=0,1,...,K

{
ΓkX,Y (C)

}
. (44)

From (42) we know that for any 0 ≤ k′ ≤ k ≤ K,
ΓkX,Y (C) ≥ Γk

′

X,Y (C), and therefore for any correspondence C,
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maxKk=0

{
ΓkX,Y (C)

}
= ΓKX,Y (C). Substituting this into (44) and

taking a minimum over all correspondences C(X,Y ) concludes
the proof. �

Besides Theorem 1 and Corollary 2, the proof of Theorem 2
requires introducing the definition of truncated networks as we
state next.

Definition 14 Given K-order network NK
X =

(X, r0X , r
1
X , . . . , r

K
X ), its k-order truncated network Nk

X is
defined as Nk

X = (X, r0X , r
1
X , . . . , r

k
X).

A k-order truncated network Nk
X has the same node space as its

parent network NK
X and collects the lowest k+1 order relationship

functions of NK
X . It follows immediately that Nk

X is a k-order
network. We now use Theorem 1, Corollary 2, and Definition 14
to prove Theorem 2.
Proof of Theorem 2: Construct the k-order truncated networks
Dk
X and Dk

Y from DK
X and DK

Y . It follows directly from Theorem
1 that for any 0 ≤ k′ ≤ k, the bottleneck distance of the
persistence diagrams of Pk′L(Dk

X) and Pk′L(Dk
Y ) is a lower

bound of their ∞-norm network distance,

d∞B (Pk′L(Dk
X),Pk′L(Dk

Y )) ≤ dD,∞(Dk
X , D

k
Y ). (45)

Since Dk
X and Dk

Y are valid high order networks, Corollary
2 implies that dD,∞(Dk

X , D
k
Y ) = dkD(Dk

X , D
k
Y ). Meanwhile,

dkD(Dk
X , D

k
Y ) = dkD(DK

X , D
K
Y ) follows from the facts that Dk

X

and DK
X have identical k-order relationship functions and DK

Y and
Dk
Y have same k-order relationship. Finally, for any k′ ≤ k − 1,

the k′-th dimensional persistence diagram of L(Dk
X) is identical

to that of L(DK
X ) and the k′-th dimensional persistence diagram

of L(Dk
Y ) is identical to that of L(DK

Y ), therefore

d∞B (Pk′L(Dk
X),Pk′L(Dk

Y ))=d∞B (Pk′L(DK
X ),Pk′L(DK

Y )). (46)

Combining these observations, the proof concludes. �
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