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Abstract—We consider discriminative dictionary learning in a
distributed online setting, where a network of agents aims to learn
a common set of dictionary elements of a feature space and model
parameters while sequentially receiving observations. We formulate
this problem as a distributed stochastic program with a non-convex
objective and present a block variant of the Arrow-Hurwicz saddle
point algorithm to solve it. Using Lagrange multipliers to penalize
the discrepancy between them, only neighboring nodes exchange
model information. We show that decisions made with this saddle
point algorithm asymptotically achieve a first-order stationarity
condition on average. The learning rate depends on the signal
source, network, and discriminative task. We illustrate the algorithm
performance in an online multi-agent setting for a collaborative
image classification task and show that practical performance
is comparable to the centralized case. Moreover, in the multi-
class setting, the proposed framework empirically allows nodes to
make global inferences despite only observing distinct subsets of
the feature space. We apply the proposed method to a mobile
robotic team performing collaborative navigability assessment in
an unknown environment, demonstrating the proposed algorithm’s
utility in a field setting.

I. INTRODUCTION

We develop a system to allow a multi-agent system to col-
lectively perform high-level signal processing tasks such as
regression or classification in unknown dynamic environments.
The problem formulation breaks down into three aspects: de-
veloping data-driven feature representations, learning task-driven
model parameters over these representations, and extending these
formulations to dynamic, networked settings. We consider an
application to decentralized online texture classification on a
mobile robotic team for the purpose of analyzing the navigability
of terrain over which the platforms are traversing in real-time.

Consider the problem of computing an alternative representa-
tion of a set of vectors where this alternative representation may
reveal latent relationships between them. Broadly, this problem is
referred to as unsupervised learning, and techniques designed to
address it have yielded important advances in a variety of signal
processing applications [1]. To learn such a representation, a
variety of objectives may be considered. If the vector’s dimension
is very large, dimensionality reduction is of interest, whereby
one aims to find a representation that explains the most data
variability across a feature space. Classically this task been
approached with principle component analysis [2], which requires
orthogonality of the basis elements. Alternatively, if specialized
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domain knowledge is available, finding representations based on
particularized functions, i.e. wavelets for natural imagery [3], is
more appropriate. A more general approach to seeking signal
representations of a feature space is to learn the basis elements
from data, as in dictionary learning. Dictionary learning has
been successfully applied to signal reconstruction tasks such as
inpainting or denoising [4]–[6], and higher level signal processing
tasks such as classification [7], [8].

An important question recently posed in [9] is why one aims
to learn a signal representation from data, if not for feeding into
a higher-level signal processing task. Thus the authors in [9]
propose tailoring the dictionary to a discriminative modeling task,
referred to as discriminative dictionary learning. Such methods
have recently shown promise as compared to their unsupervised
counterparts [10]–[12]. The problem of developing a dictionary
representation of a signal specifically suited to the learning
problem of interest is a difficult optimization problem. In the
centralized offline setting, this class of problems has been solved
with block coordinate descent [13], [14], or alternating gradient
methods [15]; however, these techniques are only effective when
the training set is static and not too large. In the centralized
online setting, prior approaches have made use of stochastic
approximation methods [4], [16].

In this paper, we extend the online discriminative dictionary
learning formulation of [9] to networked settings, where a team of
agents seeks to learn a common dictionary and model parameters
based upon local dynamic information. To do so, we consider
tools from stochastic approximation [17] and its decentralized
extensions which have incorporated ideas from distributed op-
timization such as weighted averaging [18]–[21], [25], dual
reformulations where each agent ascends in the dual domain [22],
[23], and primal-dual methods which combine primal descent
with dual ascent [18], [24], [26], [27].

Our main technical contribution is the formulation of the
dynamic multi-agent discriminative dictionary learning problem
as a distributed stochastic program, and the development of a
block variant of the primal-dual algorithm proposed in [27].
Moreover, we establish that the proposed method converges in
expectation to a first-order stationary solution of the problem.
We describe the discriminative dictionary learning and sparse
representation problem in Section II. We extend this problem
to multi-agent settings, and derive an algorithmic solution which
is a block variant of the saddle point algorithm of Arrow and
Hurwicz [24], [27] in Section III. In Section IV, we prove that
the proposed algorithm converges in expectation to a first-order
stationary condition of the problem. In Section V, we analyze
the proposed framework’s empirical performance on a texture
classification problem based upon image data for a variety of
network settings and demonstrate its capacity to solve a new
class of collaborative multi-class classification problems in multi-



agent settings. In Section VI we consider the algorithm’s use in
a mobile robotic team for navigability assessment. We conclude
in Section VII.

II. DISCRIMINATIVE DICTIONARY LEARNING

Consider a set of T signals {xt}Tt=1 each of which lives in an
m-dimensional feature space so that we have xt ∈ X ⊂ Rm. We
aim to represent the signals xt as combinations of a common
set of k linear basis elements {dl}kl=1, which are unknown and
must also be learned from the data. We group these k basis
elements into a dictionary matrix D = [d1, . . . ,dk] ∈ Rm×k and
denote the coding of xt as αt ∈ Rk. For a given dictionary, the
coding problem calls for finding a representation αt such that the
signal xt is close to its dictionary representation Dαt. This goal
can be mathematically formulated by introducing a loss function
f(αt,D; xt) that depends on the proximity between Dαt and
the data point xt and formulating the coding problem as [28]

α∗(D; xt) := argmin
αt∈Rk

f(αt,D; xt) . (1)

Hereafter, we assume that basis elements are normalized to have
norms ‖dl‖ ≤ 1 so that the dictionary is restricted to the convex
compact set D := {D ∈ Rm×k : ‖dl‖ ≤ 1, for all l}.

The dictionary learning problem associated with the loss
function f(αt,D; xt) entails finding a dictionary D such that the
signals xt are close to their representations Dα∗(D; xt) for all
possible t. Here, however, we focus on discriminative problems
where the goal is to find a dictionary that is well adapted to
a specific classification or regression task [9]. Formally, we
associate with each xt a variable yt ∈ Y that represents a
discrete label – in the case of classification problems – or a set
of associated vectors Y ⊂ Rq – in the case of regression. We
then use the coding α∗(D; x) in (5) as a feature representation
of the signal xt and introduce the classifier w that is used to
predict the label or vector yt when given the signal α∗(D; x).
The merit of the classifier w is measured by the smooth loss
function h

(
α∗(D; xt),D,w; (xt,yt)

)
that captures how well

the classifier w may predict yt when given the sparse coding
α∗(D; xt) that we compute using the dictionary D. The discrim-
inative dictionary learning problem is then formulated as the joint
determination of the dictionary D ∈ D and classifier w ∈ W that
minimize the cost h

(
α∗(D; xt),w; (xt,yt)

)
averaged over the

T -element training set,

(D∗,w∗) := argmin
D∈D,w∈W

1

T

T∑
t=1

h
(
α∗(D; xt),D,w; (xt,yt)

)
.

(2)
For given dictionary D and signal sample xt we compute the
code α∗(D; xt) as per (1), predict yt using w, and measure the
prediction error with the loss function h

(
α∗(D; xt),w; (xt,yt)

)
.

The optimal pair (D∗,w∗) in (2) is the one that minimizes the
cost averaged over the given sample pairs (xt,yt). Observe that
α∗(D; xt) is not a variable in the optimization in (2) but a
mapping for a implicit dependence of the loss on the dictionary
D. To simplify notation we henceforth write (2) as

(D∗,w∗) := argmin
D∈D,w∈W

1

T

T∑
t=1

h
(
D,w; (xt,yt)

)
. (3)

The optimization problem in (4) is not assumed to be convex
– this would be too restrictive because the dependence of h on

D is, partly, through the mapping α∗(D; xt) defined by (1). In
general, only local minima of (3) can be found.

Our goal in this paper is to study online algorithms that
solve (3) as training pairs (xt,yt) become available. To do
so we introduce the assumption that training pairs (xt,yt) are
independently sampled from a common probability distribution
and replace (3) by

(D∗,w∗) := argmin
D∈D,w∈W

Ex,y

[
h
(
D,w; (x,y)

]
. (4)

The problems in (4) and (3) are equivalent in the limit of T →∞
if (xt,yt) are independently drawn from the joint distribution of
the random pair (x,y). The problem in (4), as the one in (3), is
not convex. We clarify the problem formulation in (4) with two
representative examples.

Example 1 (Sparse non-discriminative learning) When we
have k < m, the formulation in (1) aims at finding a dictionary
that reduces data dimensionality from m to k. In this paper
we are more interested in the overdetermined case in which
k > m but we want the codes αt to be sparse. These sparsity
constraints can be written as upper limits on the zero norm of αt

but that would yield computationally intractable formulations.
To circumvent this issue, sparsity can be incentivized by adding,
e.g., elastic net regularization terms [29], [30], in which case we
can write the loss functions f(αt,D; xt) in (1) as

f(αt,D; xt) = f̃(αt,D; xt) + ζ1‖αt‖1 +
ζ2
2
‖αt‖22 . (5)

In (5), f̃(αt,D; xt) measures proximity between xt and Dαt,
the `1 term ζ1‖αt‖1 encourages sparsity, and the `2 term
(ζ2/2)‖αt‖22 is a smooth regularizer. Common choices for the
proximity functions are the Euclidean distance f̃(αt,D; xt) =
‖xt−Dαt‖/2 and the l∞ norm f̃(αt,D; xt) = ‖xt−Dαt‖∞ =
maxi |xi,t−Diαi,t|. In a non-discriminative problem we simply
want to make xt and Dα∗(D; xt) close to each other across
elements of the training set. We achieve that by simply making
h
(
α∗(D; xt),D,w; (xt,yt)

)
= f

(
α∗(D; xt),D; (xt,yt)

)
.

Example 2 (Sparse logistic regression) Given a training set of
pairs (xt, yt) where xt ∈ Rp is a feature vector with associated
binary label yt ∈ {−1, 1}, we seek a decision hyperplane w ∈ Rk

which best separates data points with distinct labels. However,
instead of looking for linear separation in the original space,
we seek for linear separation in a sparse coded space. Thus, let
α∗(D; xt) be the sparse coding of xt computed through (1) when
using the loss function in (5). We want to find a classifier w such
that wTα∗(D; xt) > 0 when yt = 1 and wTα∗(D; xt) < 0
when yt = 0. This hyperplane need not exist but we can always
model the probability of observing yt = 1 through its odds ratio
relative to yt = −1. This yields the optimal classifier w∗ as the
one that minimizes the logistic loss

h(D,w; (xt,yt)) = P
(
yt = ±1

∣∣α∗(D; xt),w
)

=
1

1 + exp(−ytwTα∗(D; xt))
. (6)

For a feature vector xt, (6) models the probability of the label yt
being 1 or −1 as determined by the inner product wTα∗(D; xt)
through the given logistic transformation. Substituting (6) into (4)
yields the discriminative dictionary learning problem for logistic
regression with sparse features.



A. Decentralized discriminative learning

We want to solve (4) in distributed settings where signal and
observation pairs are independently observed by agents of a
network. Agents aim to learn a dictionary and model parameters
that are common with all others while having access to local
information only. In particular, associated with each agent i is a
local random variable and associated output variable (xi,yi) and
each agent’s goal is to learn over the aggregate training domain
{(xi,yi)}Ni=1. To this end, let G = (V, E) be a symmetric and
connected network with node set V = {1, . . . , N} and M = |E|
directed edges of the form e = (i, j) and further define the
neighborhood of i as the set of nodes ni := {j : (i, j) ∈ E}
that share an edge with i. When each of the N agents observes
a pair (xi,yi), the function h in (4) can be written as a sum of
local losses,

h(D,w; (x,y)) =

N∑
i=1

hi(Di,wi; (xi,yi)), (7)

where we have defined the vertically concatenated dictionary
D := [D1; . . . ; DN ] ∈ RNm×k and model parameter w :=
[w1; . . . ; wN ] ∈ RNk.

Substituting (7) into the objective in (4) yields a problem in
which the agents learn dictionaries and classifiers that depend
on their local observations only. The problem to be formulated
here is one in which the agents learn common dictionaries Di =
Dj and models wi = wj . Since the network G is assumed to
be connected, this relationship can be attained by imposing the
constraints Di = Dj and wi = wj for all pairs of neighboring
nodes (i, j) ∈ E . Substituting (7) into the objective in (4) with
these constraints yields the distributed stochastic program

{D∗i ,w∗i }Ni=1 := argmin
Di∈D,wi∈W

N∑
i=1

Eyi,xi

[
hi(Di,wi; (xi,yi)

]
s.t. Di = Dj , wi = wj , j ∈ ni.

(8)

When the agreement constraints in (8) are satisfied, the objective
is equivalent to one in which all the observations are made at a
central location and a single dictionary and model are learnt.
Thus, (8) corresponds to a problem in which each agent i,
having only observed the local pairs (xi,yi), aims to learn a
dictionary representation and model parameters that are optimal
when information is aggregated globally over the network. The
decentralized discriminative learning problem is to develop an
iterative algorithm that relies on communication with neighbors
only so that agent i learns the optimal (common) dictionary
D∗i = D∗j and discriminative model w∗i = w∗j . We present in
the following section an algorithm that is shown in Section IV
to converge to a local optimum of (8).

III. BLOCK SADDLE POINT METHOD

To write the constraints in (8) more compactly, define the
augmented graph edge incidence matrix CD ∈ R(M×N)mk

associated with the dictionary constraint. The matrix CD is
formed by M ×N square blocks of dimension mk. If the edge
e = (i, j) links node i to node j the block (e, i) is [CD]ei = Imk

and the block [CD]ej = −Imk, where Imk denotes the identity
matrix of dimension mk. All other blocks are identically null,
i.e., [C]ei = [C]ej = 0mk when e 6= (i, j). Likewise, the matrix

Cw ∈ RMk×Nk is defined by M × N blocks of dimension
k with [Cw]ei = Ik and [Cw]ej = −Ik when e = (i, j)
and [C]ei = [C]ej = 0k otherwise. With these definitions the
constraints Di = Dj and wi = wj for all pairs of neighboring
nodes can be written as

CDD = 0, Cww = 0. (9)

The edge incidence matrices CD and Cw have exactly mk and
k null singular values, respectively. We denote as 0 < γ the
smallest nonzero singular value of C := [CD; Cw] and as Γ
the largest singular value of C. The singular values γ and Γ are
measures of network connectedness.

Imposing the constraints in (9) for all realizations of the
local random variables requires global coordination – indeed, the
formulation would be equivalent to the centralized problem in (4).
Instead, we consider a modification of (7) in which we add linear
penalty terms to incentivize the selection of coordinated actions.
Introduce then dual variables Λe = Λij ∈ Rm×k associated
with the constraint Di − Dj = 0 and consider the addition of
penalty terms of the form tr[ΛT

ij(Di − Dj)]. For an edge that
starts at node i, the multiplier Λij is assumed to be kept at
node i. Similarly, introduce dual variables νij associated with
the constraint wi − wj = 0 for all neighboring node pairs and
penalty terms νT

ij(wi−wj). By introducing the stacked matrices
Λ := [Λ1; . . . ; ΛM ] ∈ RMm×k and ν := [ν1; . . . ;νM ] ∈ RMk

which are restricted to compact convex sets L and N , we can
write the Lagrangian of this problem as

L(D,w,Λ,ν) =

N∑
i=1

Eyi,xi [hi(Di,wi; (xi,yi))]

+ tr
(
ΛTCDD

)
+ νTCww . (10)

Recall that in the applications considered here the optimization
problem in (8) is not convex. Thus, we use the dual formulation
in (10) to develop an iterative distributed algorithm that converges
to a KKT point of (8).

To do so, suppose agent i receives local observation pairs
(xi,t,yi,t) at time t and define the instantaneous Lagrangian as
the stochastic approximation of (10) evaluated with the observa-
tions {(xi,t,yi,t)}Ni=1 aggregated across the network as

L̂t(D,w,Λ,ν) =

N∑
i=1

hi(Di,wi; (xi,t,yi,t))

+ tr
(
ΛTCDD

)
+ νTCww . (11)

We consider the use of the Arrow-Hurwicz saddle point
method to solve (8) by alternating block variable updates, in order
to exploit the fact that primal-dual stationary pairs are saddle
points of the Lagrangian to work through successive primal
alternating gradient descent steps and dual gradient ascent steps.
Particularized to the Lagrangian in (10), the primal iteration of
the saddle point algorithm takes the form

Dt+1 = Dt − εt∇DL̂t(Dt,wt,Λt,νt) , (12)

wt+1 = wt − εt∇wL̂t(Dt,wt,Λt,νt) , (13)

where ∇DL̂t(Dt,wt,Λt,νt) and ∇wL̂t(Dt,wt,Λt,νt), are
projected stochastic subgradients of the Lagrangian with respect
to D and w, respectively. By projected stochastic subgradients,



we mean stochastic subgradients whose outward normal compo-
nents to the feasible set are set to null when the iterates are close
to the set boundary. Likewise, the dual iteration is defined as

Λt+1 = Λt + εt∇ΛL̂t(Dt+1,wt+1,Λt,νt) , (14)

νt+1 = νt + εt∇νL̂t(Dt+1,wt+1,Λt,νt) , (15)

where ∇ΛL̂t(Dt,wt,Λt,νt) and ∇νL̂(Dt,wt,Λt,νt) are the
projected stochastic subgradients of the Lagrangian with respect
to Λ and ν, respectively. Moreover, εt is a step size chosen as
O(1/t) – see Section IV.

We now show that the algorithm specified by (12)-(15) yields
an effective tool for discriminative learning in multi-agent set-
tings.

Proposition 1 The gradient computations in (12)-(13) may be
separated along the local primal variables Di,t and wi,t asso-
ciated with node i, yielding 2N parallel updates

Di,t+1 = Di,t − εt
(
∇Dihi(Di,t,wi,t; (xi,t,yi,t))

+ D̃i,t +
∑
j∈ni

(Λij,t −Λji,t)
)
, (16)

wi,t+1 = wi,t − εt
(
∇wi

hi(Di,t,wi,t; (xi,t,yi,t))

+ w̃i,t +
∑
j∈ni

(νij,t − νji,t)
)
, (17)

where D̃i,t and ṽi,t are elements of the normal cones of D
and W when the respective iterates Di,t and wi,t are near the
boundary of sets D and W , and null otherwise. Moreover, the
dual gradients in the updates of Λij,t and νij,t respectively in
(14)-(15) may separated into 2M parallel updates associated
with edge (i, j)

Λij,t+1 = Λij,t + εt

(
Di,t+1 −Dj,t+1 + Λ̃ij,t

)
, (18)

νij,t+1 = νij,t + εt (wi,t+1 −wj,t+1 + ν̃ij,t) , (19)

which allows for distributed computation across the network.

Proof: See Appendix A. �

The D4L algorithm follows by letting node i implement (16)-
(17) as we summarize in Algorithm 1. To do so, node i utilizes its
local primal iterates Di,t and wi,t, its local dual iterates Λij and
νij , and its local instantaneous observed pair (xi,t,yi,t). Node
i also needs access to the neighboring multipliers Λji and νji

to implement (16) and (17) as well as to the neighboring primal
iterates Dj,t and wj,t to implement (18) and (19). The core steps
of D4L in Algorithm 1 are the primal iteration in Step 5 and the
dual iteration in Step 7. Steps 4 and 6 refer to the exchange of
dual and primal variables that are necessary to implement steps 5
and 7, respectively. Step 1 refers to the acquisition of the signal
and observation pair and Step 2 to the computation of the code
in (1) using the local current dictionary iterate Di,t. We discuss
the specific use of Algorithm 1 to learning discriminative sparse
signal representations in a distributed setting to clarify ideas.

Example 3 (Distributed sparse discriminative learning)
Consider a multi-agent system in which signals are independently
observed at each agent, and the data domain has latent structure
which may be revealed via learning discriminative representations

Algorithm 1 D4L: Decentralized Dynamic Discriminative Dic-
tionary Learning
Require: D0, initial dictionary, yu, local random variables, ζ ∈ R,

regularization parameter.
1: for t = 0, 1, 2, . . . do
2: Acquire local signal and observation pair (xi,t,yi,t).
3: Coding [cf. (1)], α∗i,t+1 := argminα∈Rk f(α,Di,t; xi,t).
4: Send (Λij,t,νij,t) and receive (Λji,t,νji,t) for all j ∈ ni.
5: Update dictionary and model parameters [cf. (16) and (17)]

Di,t+1 =Di,t−εt
(
∇Dihi(Di,t,wi,t; (xi,t,yi,t))

+ D̃i,t +
∑
j∈ni

(Λij,t −Λji,t)
)
,

wi,t+1 = wi,t − εt
(
∇wihi(Di,wi,t; (xi,t,yi,t))

+ w̃i,t +
∑
j∈ni

(νij,t − νji,t)
)
.

6: Send (Di,t,wi,t) and receive (Dj,t,νj,t) for all j ∈ ni.
7: Update Lagrange multipliers [cf. (18) and (19)]

Λij,t+1 = Λij,t + εt
(
Di,t+1 −Dj,t+1 + Λ̃ij,t

)
,

νij,t+1 = νij,t + εt (wi,t+1 −wj,t+1 + ν̃ij,t) .

8: end for

that are sparse. In this case, we select the particular form of
f in (1) as the elastic net [cf. (5)] with the Euclidean distance
f̃(αt,D; xt) = ‖xt − Dαt‖/2. Then the dictionary update in
(16) may be derived from the subgradient optimality conditions
of the elastic-net (see [30]):

dl(xi,t −Dα∗)− ζ2α∗l = ζ1 sgn(α∗l ) if α∗l 6= 0 ,

dl(xi,t −Dα∗)− ζ2α∗l ≤ ζ1 otherwise , (20)

where sgn(α∗) is a vector of signs of α∗. Proceeding as in the
Appendix of [9], define Z ⊂ {1, . . . , k} as the set of nonzero
entries of α∗ = α∗(x,D). Then α∗ is the solution to the system
of linear inequalities in (20), i.e.

α∗Z = (DT
ZDZ + ζ2I)−1(DZx− ζ1 sgn(α∗)) . (21)

At time t, to compute the stochastic gradient with of (10) respect
to a local dictionary for agent i, apply Proposition 1 of [9] which
yields the explicit form

∇Di
L̂t(Dt,wt,Λt)=−Di,tβi,tα

∗
i,t + (xi,t−Di,tα

∗
i,t)βi,t

T

+ D̃i,t +
∑
j∈ni

(Λij,t −Λji,t) . (22)

α∗i,t = α∗i,t(Di,t; xi,t) is shorthand for (5) and Zi,t is defined
as the set of indices associated with nonzero entries of α∗i,t.
Moreover, we define βi,t ∈ Rk as

βi,t
l = ([Di,t]

T
l [Di,t]l + ζ2I)−1×
∇αl

hi(Di,t,wi,t; (xi,t,yi,t)) if l ∈ Zi,t ,

βi,t
l = 0 if l /∈ Zi,t , (23)

as in [9], Proposition 1. This result is established via a pertur-
bation analysis of the elastic-net optimality conditions. Note that
this follows from substituting the solution of (5) into hi and
applying the chain rule in the gradient computation.



IV. CONVERGENCE ANALYSIS

We turn to establishing that the saddle point algorithm in (12)-
(15) asymptotically converges to a stationary point of the problem
(8). In order to obtain these results, some conditions are required
of the network, loss functions, and stochastic approximation
errors which we state below.

Assumption 1 (Network connectivity) The network G is con-
nected with diameter D. The singular values of the incidence
matrix C are respectively upper and lower bounded by Γ and
γ > 0.

Assumption 2 (Smoothness) The Lagrangian has Lipschitz con-
tinuous gradients in the primal and dual variables with constants
LD, Lw, LΛ, and Lν . This implies that, e.g.,

‖∇DL(D,w,Λ,ν)−∇DL(D̃,w,Λ,ν)‖ ≤ LD‖D− D̃‖F .
(24)

Moreover, the gradients of the Lagrangian in the primal and dual
variables are bounded with block constants GD, Gw, GΛ, and
Gν , which implies that, e.g.,

‖∇DL(D,w,Λ,ν)‖ ≤ GD . (25)

Assumption 3 (Diminishing step-size rules) The step-size εt is
chosen as O(1/t), i.e. εt satisfies
(i)
∑∞

t=1 εt =∞, (non-summability)
(ii)
∑∞

t=0 ε
2
t <∞, (square-summability).

Assumption 4 (Stochastic Approximation Error) The stochastic
gradients of the Lagrangian are unbiased estimators for the true
gradients, which for instance implies

E
[
∇DL̂t(Dt,wt,Λt,νt)

]
= ∇DLt(Dt,wt,Λt,νt) . (26)

Moreover, let Ft be a sigma algebra that measures the history of
the system up until time t. Then, the conditional second moments
of the stochastic gradients are bounded by σ2 for all times t,
which for example allows us to write

E
[
‖∇DL̂t(Dt,wt,Λt,νt)‖2

∣∣Ft

]
≤ σ2. (27)

Assumption 1 is standard in distributed algorithms and As-
sumption 2 is common in analysis of descent methods. Assump-
tion 3 specifies that a diminishing step-size condition for the
algorithm and Assumption 4 provides conditions on the stochastic
approximation errors, both of which are typical in stochastic
optimization. They are all satisfied in most cases.

Moreover, the projected stochastic gradients in the updates (12)
- (13) implies that the primal variables themselves are contained
in compact sets DN and WN , which allows us to write

‖D‖F ≤
√
Nk , ‖w‖ ≤ Kw , (28)

for all dictionaries D ∈ DN and model parameters w ∈ WN .
The compactness of dual sets L and N ensure the primal
gradients may be bounded in (25), and the dual gradients with
respect to Λ and ν in (25) are bounded with respective constants
GΛ = Γ

√
Nk and Gν = ΓKw.

Before stating the main theorem, we present a lemma which
will be used in its proof, and appears as Proposition 1.2.4 in [33].

Lemma 1 Let {at} and {bt} be two nonnegative scalar se-
quences such that

∑∞
t=1 at =∞ and

∑∞
t=1 atbt <∞. Then

lim inf
t→∞

bt = 0. (29)

Furthermore, if |bt+1−bt| ≤ Bat for some constant B > 0, then

lim
t→∞

bt = 0. (30)

With these preliminary results in place, we are ready to
state our main result, which says that the proposed algorithm
asymptotically achieves in expectation a first-order stationarity
condition of the Lagrangian associated with the optimization
problem stated in (8).

Theorem 1 Denote (Dt,wt,Λt,νt) as the sequence generated
by the block saddle point algorithm in (12)-(15). If Assumptions
1 - 4 hold true, then the first-order stationary condition with
respect to the primal variables

lim
t→∞

E[‖∇DL(Dt,wt,Λt,νt)‖] = 0 , (31)

lim
t→∞

E[‖∇wL(Dt,wt,Λt,νt)‖] = 0 (32)

is asymptotically achieved in expectation. Moreover, the asymp-
totic feasibility condition

lim
t→∞

E[‖∇ΛL(Dt,wt,Λt,νt)‖] = 0 (33)

lim
t→∞

E[‖∇νL(Dt,wt,Λt,νt)‖] = 0 (34)

is attained in an expected sense.

Proof: The analysis is broken up into distinct components for the
primal and dual variables. In the primal variables, we consider
the Lagrangian difference of iterates at the next and current time.
We expand terms, use properties of the stochastic gradients and
function smoothness, and take conditional expectations on past
information to establish a decrement property. We then mirror
this analysis in the dual domain. At this point we leverage the
step-size rules and apply (29). Then we consider the magnitude
of block gradient differences which we bound by a term that
diminishes with the step-size, which implies (30) holds, yielding
an the expected asymptotic convergence to a stationary solution.

Begin by considering the difference of Lagrangians evaluated
at the primal variables at the next and current time, and apply
Taylor’s Theorem to quadratically approximate the former term

L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt)

≤
[
∇DL(Dt,wt,Λt,νt)
∇wL(Dt,wt,Λt,νt)

]T [
Dt+1−Dt

wt+1−wt

]
+ LD‖Dt+1 −Dt‖2F + Lw‖wt+1 −wt‖2, (35)

where we have applied the Lipschitz gradient property the
Lagrangian to the final two terms as stated in (24) to the last
term of (35). The difference of the current and next iterates
may be written as Dt+1 −Dt = −εt∇DL̂t(Dt,wt,Λt,νt) and
wt+1 − wt = −εt∇wL̂t(Dt,wt,Λt,νt), which we substitute



into the right hand side of (35), yielding

L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt)

≤−εt
[
∇DL(Dt,wt,Λt,νt)
∇wL(Dt,wt,Λt,νt)

]T[∇DL̂t(Dt,wt,Λt,νt)

∇wL̂t(Dt,wt,Λt,νt)

]
+ε2t

(
LD‖∇DL̂t(Dt,wt,Λt,νt)‖2F

+ Lw‖∇wL̂t(Dt,wt,Λt,νt)‖2
)
, (36)

Take the expectation of (36) conditional on the filtration Ft,
and apply Assumption 4 regarding the fact that the stochastic
gradients are unbiased estimators of the true gradients [cf. (26)]
with finite conditional second moments as stated in (27), so that
almost surely we have

E[L(Dt+1,wt+1,Λt,νt)−L(Dt,wt,Λt,νt) | Ft]

≤−εt
∥∥∥∥∇DLt(Dt,wt,Λt,νt)
∇wLt(Dt,wt,Λt,νt)

∥∥∥∥2 + σ2
(
LD + Lw

)
, (37)

where we have applied the triangle inequality to the middle term.
We set this analysis aside for now and consider Taylor expansion
around Lagrangian evaluated at the dual iterates at the next and
current time

L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt)

≤
[
∇ΛLt(Dt+1,wt+1,Λt,νt)
∇νLt(Dt+1,wt+1,Λt,νt)

]T [
Λt+1−Λt

νt+1−νt

]
(38)

The difference of the current and next iterates may be written
as Λt+1 −Λt = εt∇ΛL̂(Dt+1,wt+1,Λt,νt) and νt+1 − νt =
εt∇νL̂(Dt+1,wt+1,Λt,νt), which we substitute into the right
hand side of (38), yielding

L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt) (39)

≤εt
[
∇ΛL(Dt+1,wt+1,Λt,νt)
∇νL(Dt+1,wt+1,Λt,νt)

]T[∇ΛL̂(Dt+1,wt+1,Λt,νt)

∇νL̂(Dt+1,wt+1,Λt,νt)

]
Now compute the expectation conditional on the algorithm his-
tory Ft up to time t and apply the unbiased property of the dual
stochastic gradient of the Lagrangian [cf. (26)] to write

E[L(Dt+1,wt+1,Λt+1,νt+1)−L(Dt+1,wt+1,Λt,νt) |Ft]

≤ εt
∥∥∥∥∇ΛLt(Dt+1,wt+1,Λt,νt)
∇νLt(Dt+1,wt+1,Λt,νt)

∥∥∥∥2 (40)

We make use of the convergence of the primal gradient sequence
to establish the dual sequence converges by summing the inequal-
ities in (37) and (40) together, which yields

E[L(Dt+1,wt+1,Λt+1,νt+1)− L(Dt,wt,Λt,νt) |Ft]

≤ −εt
(∥∥∥∥∇DLt(Dt,wt,Λt,νt)
∇wLt(Dt,wt,Λt,νt)

∥∥∥∥2
+

∥∥∥∥∇ΛLt(Dt+1,wt+1,Λt,νt)
∇νLt(Dt+1,wt+1,Λt,νt)

∥∥∥∥2 )+σ2
(
LD+Lw

)
,

(41)

Observe that the left hand side of (41) is telescopic, and hence
if we sum this relations over t we obtain a finite quantity in
expectation. Moreover, by applying the step-size rules stated in
Assumption 3 with the fact that L is lower-bounded since the

primal and dual domains are compact, the following hold true in
expectation

∞∑
t=1

εtE
[ ∥∥∥∥∇DLt(Dt,wt,Λt,νt)
∇wLt(Dt,wt,Λt,νt)

∥∥∥∥2
+

∥∥∥∥∇ΛLt(Dt+1,wt+1,Λt,νt)
∇νLt(Dt+1,wt+1,Λt,νt)

∥∥∥∥2 ] <∞ , (42)

which as a consequence of (29) as stated in Lemma 1, implies
that the expected limit infinum of the sequence converges to null,
i.e.

lim inf
t→∞

E
[ ∥∥∥∥∇DLt(Dt,wt,Λt,νt)
∇wLt(Dt,wt,Λt,νt)

∥∥∥∥2
+

∥∥∥∥∇ΛLt(Dt+1,wt+1,Λt,νt)
∇νLt(Dt+1,wt+1,Λt,νt)

∥∥∥∥2 ] = 0 (43)

Using the convergence in (43), we proceed now to es-
tablish that the each whole sequence of partial gradients
of the Lagrangian converge. Since the logic is equivalent
in each block variable, it is enough to consider just the
primal-dual pair (D,Λ). We subsequently use the short-
hand ∇DL(·, ·, ·, ·)t+1 := ∇DL(Dt+1,wt+1,Λt,νt) and
∇DL(·, ·, ·, ·)t := ∇DL(Dt,wt,Λt,νt). Consider the expected
absolute difference of the Lagrangian gradients evaluated at the
next and current iterate, and apply Jensen’s inequality to write∣∣∣‖E[∇DL(·, ·, ·, ·)t+1]‖2F−‖E[∇DL(·, ·, ·, ·)t]‖2F

∣∣∣
≤ E[‖∇DL(·, ·, ·, ·)t+1+∇DL(·, ·, ·, ·)t‖F
× ‖∇DL(·, ·, ·, ·)t+1−∇DL(·, ·, ·, ·)t‖F ] . (44)

Apply the triangle inequality and Lipschitz continuity to right
hand side of (44) to express this gradient difference in terms of
the difference between the next and current iterate as

E[‖∇DL(·, ·, ·, ·)t+1 +∇DL(·, ·, ·, ·)t‖F
× ‖∇DL(·, ·, ·, ·)t+1 −∇DL(·, ·, ·, ·)t‖F ]

≤ 2GDLDE[‖Dt+1 −Dt‖] , (45)

where we have used the gradient bounds and Lipschitz gra-
dient properties [cf. (25) and (24)] in the last inequality
to bound the magnitude of Dt. Substitute Dt+1 − Dt =
−εt∇DL̂t(Dt,wt,Λt,νt) into the previous expression and ap-
ply with the bound on the second conditional moment of the
stochastic gradient stated in (27) of Assumption 4 to write

2GDLDεtE[‖∇wL̂t(Dt,wt,Λt,νt)‖] ≤ 2GDLDσεt . (46)

With (46), the second condition of Lemma 1 is satisfied, whereby
we may conclude the gradient sequence converges in expectation

lim
t→∞

E[‖∇DL(Dt,wt,Λt,νt)‖] = 0 . (47)

Since the other primal block sequence wt is updated in
an analogous manner to that of D, the analysis with the
same logic, implying that a first order stationary condition of
the Lagrangian is achieved asymptotically almost surely, i.e.
E[‖∇wL(Dt,wt,Λt,νt)‖]→ 0.

We now establish that the whole dual gradient
sequence with respect to Λ is converging in
magnitude to null. We use the shorthand notation
∇ΛL(·, ·, ·, ·)t+1 := ∇ΛL(Dt+1,wt+1,Λt+1,νt+1) and



∇ΛL(·, ·, ·, ·)t := ∇ΛL(Dt+1,wt+1,Λt,νt). Continue by
considering the expected absolute difference of the Lagrangian
gradients evaluated at the next and current dual iterate, and
applying Jensen’s inequality to write∣∣∣‖E[∇ΛL(·, ·, ·, ·)t+1]‖2F − ‖E[∇ΛL(·, ·, ·, ·)t]‖2F

∣∣∣
≤ E[‖∇ΛL(·, ·, ·, ·)t+1 +∇ΛL(·, ·, ·, ·)t‖F
× ‖∇ΛL(·, ·, ·, ·)t+1 −∇ΛL(·, ·, ·, ·)t‖F ]

= E[‖CDDt+1 + CDDt‖F ‖CDDt+1−CDDt‖F ] (48)

where the last equality in (48) follows from the computation
of the dual gradient of the Lagrangian in (58). Now apply the
triangle inequality and the compactness of the set D to express
the right hand side of (48) in terms of the difference between the
next and current iterate, yielding

E[‖CDDt+1 + CDDt‖F ‖CDDt+1−CDDt‖F ]

≤ 2Γ
√
NkE[‖Dt+1−Dt‖] , (49)

= 2Γ
√
NkεtE[‖∇DL̂t(Dt,wt,Λt,νt)‖] ≤ 2Γ

√
Nkσεt ,

where the second equality comes from the substitution Dt+1 −
Dt = −εt∇DL̂(Dt,wt,Λt,νt), and the last inequality comes
from applying the bound in (27). As in the analysis of the primal
gradient sequence, we may now apply (30) in Lemma 1, which
implies that the expected dual gradient sequence converges to
null in magnitude, i.e.

lim
t→∞

E[‖∇ΛL(Dt,wt,Λt,νt)‖] = 0. (50)

By noting that the analysis for Λ is analogous to that
of the other dual variable ν, we may also conclude
E[‖∇νL(Dt,wt,Λt,νt)‖]→ 0.

�

Theorem 1 guarantees that the block saddle point method as
stated in (12) - (15) solves the problem of learning a dictionary
and discriminative model over that dictionary representation of
the feature space in a decentralized online manner. In particular,
the algorithm asymptotically converges to a KKT point of the
problem (8) in expectation. This implies that the primal vari-
ables converge to a local minimum of the objective, and the
dual variables asymptotically enforce feasibility, i.e. the network
agreement constraints are satisfied in expectation. We next turn
to the practical consequences of this theorem by studying the
algorithm performance on a canonical computer vision task.

V. SIMULATIONS

We are chiefly concerned with the task of recognizing visual
patterns in dynamic multi-agent settings. In this setting, learning
sparse representations have recently yielded key insights into
the data domain [8], motivating our choice of selection of f in
(1) as a sparse coding problem via the elastic-net (5) with the
Euclidean distance f̃(αt,D; xt) = ‖xt − Dαt‖/2. Using this
loss, which can be efficiently computed via least angle regression
[35], we study the performance of Algorithm 1 on a multi-class
texture classification problem in order to understand its empirical
performance in a simple setting.

To this end, we conduct numerical experiments on the Brodatz
dataset [34] for a variety of network sizes and topologies. In the
case of studying the impact of network size, we also compare
the algorithm performance to the centralized case, i.e. N = 1.

Fig. 1: Sample images from the Brodatz texture database.

Fig. 2: Initialized (left) and final (right) dictionary for 8-by-8 grayscale
patches. These dictionaries were computed using the centralized (N =
1) algorithm with step-size ε = 0.25.

Moreover, we consider the case where each agent observes
training examples which are incomplete random subsets of the
total class labels, yet aims to learn a classifier over all possible
classes. We use the numerical insight gained in this section as
design principles for the robotic experiments in Section VI.

We restrict ourselves to C = 4 class labels {grass, bark, straw,
herringbone weave } in the Brodatz texture database. Sample
images from this data set are shown in Figure 1. This data subset
consists of one grayscale image per texture, which amounts to
four 512 × 512 images in total consisting of 1, 820 overlapping
patches of size 24× 24.

A. Feature Generation

Inspired by the two-dimensional texton features discussed in
[36], we generate texture features to classify, α̃∗, as the sum of
the sparse dictionary representations of sub-patches. That is, we
classify each image patche of size 24-by-24 by first extracting
the nine non-overlapping 8-by-8 sub-patches x(i) within it. We
vectorize (column-major order) each sub-patch, subtract off the
sample mean, and divide by its norm such that `2 norm so that
x(i) is zero-mean and has unit `2 norm. Stacking these sub-
patches column wise in a matrix X =

[
x(1); · · · ; x(9)

]
, we

compute the aggregate sparse coding α̃∗i,t at agent i at time t
according to

α̃∗(Xi,t,Di,t) =

9∑
l=1

α∗(Di,t; x
(l)
i,t) , (51)

which implies that the local stochastic gradient of the dictio-
nary ∇Di

h̃i,t(Di,t,wi,t; (Xi,t,yi,t)) is the sum of contributions
∇Di

hi,t(Di,t,wi,t; (xi,t,yi,t)) from each sub-patch.

B. Loss Function and Performance Metrics

We cast texture classification as a multi-class logistic regres-
sion problem in which agent i receives signals xi and is charged
with outputting a decision variable yi, ∈ {0, 1}C where C
is the number of classes. Each component yi,c of the vector



yi ∈ {0, 1}C is a binary indicator of whether the signal falls
into class c. The local loss hi is the negative log-likelihood of
the probabilistic model [37], stated as

hi(Di,Wi; (Xi,yi)) = log

(
C∑

c=1

ew
T
i,cα̃

∗
i +w0

i,c

)
(52)

−
C∑

c=1

(
yi,cw

T
i,cα̃

∗
i +w0

i,c

)
+ξ‖Wi‖2F ,

where the activation functions gc(α̃
∗
i ) = ew

T
i,cα̃

∗
i +w0

i,c , are
computed using the cth column wc of the weight matrix Wi ∈
R(k+1)×C . Moreover, w0

i,c is a bias term for each class c. Recall
that hi is implicitly a function of Di since the aggregate sparse
coding α̃∗i depends on the dictionary over which it is represented.
Moreover, we add l2 regularization to prevent over-fitting.

To ensure identifiability, every element of the last column of
Wi is set to zero. With Wi, the probability that α̃∗i belongs
to class c is given by gc(α̃

∗
i )/
∑

c′ gc′(α̃
∗
i ), the classification

decision is made by selecting the maximum-likelihood class
label, i.e. c̃ = argmaxc gc(α̃

∗
i )/
∑

c′ gc′(α̃
∗
i ) is the only nonzero

entry of yi,t.
Besides the local loss hi which we known converges to a KKT

point as a consequence of Theorem 1, we also study the network
average classification accuracy

∑N
i=1 P (ŷi,t = yi,t)/N at each

iteration. Here yi,t denotes the true texture label, ŷi,t denotes
the predicted label, and P (ŷi,t = yi,t) represents the empirical
classification rate on a fixed test set of size T̃ = 4096. We also
consider the relative variation of the average classifiers, stated as

RV(W̄i,t) =
1

N

N∑
j=1

‖W̄i,t − W̄j,t‖F , (53)

where W̄i,t =
∑t

s=1 Wi,s/t which quantifies how far individual
agents’ classifiers are from consensus. We consider time averages
W̄i,t instead of the plain estimates Wi,t because the latter tend to
oscillate around the stationary point W∗ and agreement between
estimates of different agents is difficult to visualize.

C. Implementation Details

(i) Dictionary Size To select a dictionary of the appropriate
size, we investigate its effect on classification accuracy on the
Brodatz textures. Because the number of atoms k in the dictio-
nary will similarly affect both the centralized and decentralized
algorithms, we conduct out this experiment for the centralized
(N = 1) algorithm due to computational expedience. As in
[9], we find that increasing the size of the dictionary led to
better classifier performance. However, because of diminishing
performance improvement with increasing k beyond a certain
level, we select k = 128 in all subsequent experiments. In theory,
one could make k arbitrarily large, but as k increases so do the
computational demands of the algorithm. We show the initialized
and final 128-element, 8-by-8 patch dictionaries in Figure 2.

(ii) Mini-Batching In our implementation of D4L, we adopted a
mini-batching procedure: at each iteration, we replace the single
labeled patch with a small batch of T̂ = 200 randomly-drawn
labeled patches. The procedure for generating this batch is as
follows: for each patch, a label is first drawn uniformly at random
from the set of all possible labels. Then, the patch is selected
uniformly at random from the set of all patches with that label.

We then compute the dictionary and classifier gradient values for
the iteration by averaging the gradient values generated by each
individual patch within the mini-batch. Practically, this process
reduces the variance of the local stochastic gradients, which often
empirically yields improved convergence.

(iii) Initialization We initialized D using unsupervised dictio-
nary learning for a small set of randomly-drawn initialization data
[16]. We then used the labels and the dictionary representations of
the data to initialize the classifier parameters W. All experiments
are run from this common initialization.

(iv) Regularization and Step-size Selection The D4L algorithm
requires several parameters to be specified. Following [9], we
used ζ1 = 0.125, ζ2 = 0, ξ = 10−9. We also adopted the
learning-rate selection strategy discussed in [9], which is to select
the initial step-size ε by implementing a grid search over a fixed
small number of iterations (T̃ = 200) and selecting the one
that minimized cross-validation error. We set εt = min(ε, εt0/t),
where t0 = T/2. This selection amounts to using a step-size of
ε for the first half of the iterations after which we follow a 1/t
annealing rate for those that remain, enforcing convergence.

We note here that, due to the non-convexity of the objective, the
algorithm may diverge if ε is too large. This follows from the fact
that convergence guarantees for stochastic gradient algorithms in
non-convex settings only occur in cases where a diminishing step-
size mitigates the stochastic approximation error, which may not
occur if the step-size is too large. Moreover, we have experi-
mentally observed that values of ε which avoid this behavior are
smaller than effective values for the centralized version by an
order of magnitude or more. Consequently, when comparing D4L
to its centralized counterpart, we select ε that yield convergence
for both settings, i.e., the smaller values appropriate for D4L. For
the Brodatz dataset, we found that ε = 0.05 led to convergence
in all cases.

D. Results on Texture Database

(i) Network Size To investigate the dependence of the con-
vergence rate in Theorem 1 on the network size N we run
Algorithm 1 for problem instances with N = 1 (centralized),
N = 10, and N = 100 nodes. For the later two cases,
connections between nodes are random, with the probability of
two nodes being connected set to ρ = 0.2. In this experiment,
each agent observes training examples from all label classes.
Figure 3 shows the results of this numerical experiment for
a randomly selected agent in the network. In Figure 3a, we
show hi(Di,t,Wi,t; (Xi,t,yi,t)) over iteration t. Observe that
as N increases, the log-likelihood hi(Di,t,Wi,t; (Xi,t,yi,t)) de-
clines at comparable rates for networks of moderate size, yet
it significantly slower for the N = 100 node network. To be
specific, both the centralized and N = 10 node network achieve
hi(Di,t,Wi,t; (Xi,t,yi,t)) ≤ 0.62 by T = 1000, while the
N = 100 node network remains at 0.77 over its run. We may
observe this performance discrepancy more concretely in Figure
3b which shows the classification accuracy on a fixed test set over
iteration t. Observe that the centralized algorithm achieves an
accuracy near 76%, whereas the decentralized methods achieve
an accuracy of 75% and 67% for the N = 10 and N = 100 node
networks by T = 1000 iterations, respectively.

In Figure 3c we investigate how far the agents are from
consensus as measured by RV(D̄i,t) over iteration t. Observe
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(a) Local loss versus iteration t
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(b) Classification accuracy vs. iteration t
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(c) Relative variation RV(D̄i,t) vs. iteration t
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(d) Relative variation RV(W̄i,t) vs. iteration t

Fig. 3: Learning achieved by an arbitrary agent in networks of size N = 1 (centralized), N = 10, and N = 100 with nodes randomly connected
with prob. ρ = 0.2. 3a-3b show hi(Di,t,Wi,t; (Xi,t,yi,t)) and

∑N
i=1 P (ŷi,t = yi,t)/N versus iteration t, both of which decline faster in smaller

networks. Figures 3c-3d show that network disagreement in terms of RV (D̄i,t) and RV (W̄i,t) becomes more stable and declines faster with
smaller N . Algorithm performance in moderate sized networks is comparable to the centralized case.

that the network experiences greater disagreement, as measured
with RV(D̄i,t), with larger N . Trivially RV(D̄i,t) = 0 for the
centralized case, but for the N = 10 and N = 100 node
networks the algorithm achieves RV(D̄i,t) ≤ 1.9 by t ≥ 417 and
RV(D̄i,t) ≤ 35 by T = 1000 respectively. Thus in larger net-
works information diffuses more slowly. Moreover, the agreement
constraints are more difficult to satisfy and delay the convergence
to stationarity. This difference in consensus achievement may also
be observed in Figure 3d, which shows RV(W̄i,t) over iteration
t. That is, for the N = 10 and N = 100 node networks the
algorithm achieves RV(W̄i,t) ≤ 1.3 × 10−1 by t ≥ 312 and
RV(W̄i,t) ≤ 3 for t ≥ 400 respectively. Thus we observe an
order of magnitude difference in the relative variation between
the N = 10 and N = 100 node networks for both the dictionary
and model parameters.

(ii) Network Topology and Diameter We study the dependence
of the convergence rate of Algorithm 1 in Theorem 1 on the
network topology by fixing the network size to N = 20 and
running (12) - (15) over random graphs, small world graphs,
cycles, and grids. In the first two, the probability that node pairs
are randomly connected is fixed at ρ = 0.2. The latter two are
deterministically generated. A cycle is a closed directed chain of
nodes. Grids are formed by taking the two-dimensional integer
lattice of size

√
N×
√
N , with

√
N rounded to the nearest integer.

Connections are drawn between adjacent nodes in the lattice
as well as between remainder nodes at the boundary. Cycles,
grids and random networks have progressively larger number of
connections per node and smaller diameter. Random networks

have small degree and small diameter; see [38], [39].

We present the results of this experiment in Figure 4. In Figure
4a, we plot hi(Di,t,Wi,t; (Xi,t,yi,t)) over iteration t. Observe
that the rate at which hi(Di,t,Wi,t; (Xi,t,yi,t)) decreases is
comparable across the different networks, yet we can differentiate
the learning achieved in the different settings by the benchmark
hi(Di,t,Wi,t; (Xi,t,yi,t)) ≤ 6.5× 10−1. To surpass this bound,
the algorithm requires t = 700 iterations for grids and cycles,
whereas the random and small world networks oscillate around
the interval [0.65, 0.70] for t ≥ 650. This indicates that structured
deterministic networks are an easier setting for finding good
signal representations in a decentralized manner. This insight
is corroborated in the plot of classification performance over
iteration t in Figure 4b. Observe that the algorithm achieves an
accuracy near 75% for cycle and grid networks as compared to
72% and 73% for random and small world networks, respectively.

We study how the network topology impacts the algorithm’s
convergence to consensus in 4c, where we plot RV(D̄i,t) over
time t. Observe that the initial burn-in period is comparable
across the different networks except for the cycle, i.e. RV(D̄i,t) ≤
7 for t ≥ 300 the grid, small world, and random networks as
compared to RV(D̄i,t) ≤ 10 for the cycle setting. However,
by t ≥ 600, the random and small world networks experience
greater numerical oscillations. This difference in convergence to
consensus as measured my the relative variation is corroborated
in 4d, where we plot RV(W̄i,t) versus iteration t. Observe that
the cycle yields the slowest convergence rate, yet is more stable
than the small world and random networks. Surprisingly, the grid
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Fig. 4: D4L run on N = 20 node cycle, grid, random and small world networks, where edges are generated randomly between agents with
probability ρ = 0.2 in the later two. Figure 4a-4b show hi(Di,t,Wi,t; (Xi,t,yi,t)) and

∑N
i=1 P (ŷi,t = yi,t)/N , respectively, over iteration t

for an arbitrarily chosen agent i ∈ V . Learning slows and numerical oscillations become more prevalent in networks with random connectivity
patterns. Structured deterministic networks such as grids and cycles have larger diameter than small world and random networks, yet achieve
superior performance. Figures 4c-4d shows that the agents reach consensus in terms of RV(D̄i,t) and RV(W̄i,t) at comparable rates across the
different network topologies.

network has superior convergence to consensus both in terms of
dictionary and model parameters.

(iv) Complete vs. Incomplete Sampling We now turn to study-
ing the performance of D4L in the more challenging context
of what we term incomplete sampling, which refers to the case
that each agent in the network observes only training examples
from a fixed random subset of the total number of class labels,
yet is charged with the task of learning a classifier which can
identify all classes. This problem setting is closer to our robotic
application of interest, which is discussed in further detail in
Section VI. We run the algorithm on a N = 10 node random
network with connection probability ρ = 0.2. We display these
results in Figure 5, where we also plot for comparison results
generated in the complete sampling setting.

Figure 5 shows the results of this numerical experiment
for a randomly selected agent in the network. In Figure 5a,
we plot hi(Di,t,Wi,t; (Xi,t,yi,t)) over iteration t. Note that
during an initial burn-in period of t ≤ 300 the local losses
decline at comparable rates, after which the algorithm expe-
riences greater numerical oscillations and its convergence rate
slows for the incomplete case. In particular, for the benchmark
hi(Di,t,Wi,t; (Xi,t,yi,t)) ≤ 6.7×10−1, the incomplete sampling
case requires t = 676 iterations as compared with t = 592 for the
complete sampling case. This oscillatory behavior and reduced
convergence rate may also be observed in the plot of classification
performance versus iteration t in Figure 5b. Observe that by
t = 350 both cases achieve an accuracy of 70%; however, the
incomplete sampling oscillates around this benchmark whereas

the complete case continues to improve. Succinctly, increased
dithering around stationarity occurs when agents observe training
examples drawn from incomplete subsets of the total labels.

We study how the incomplete sampling, or the implicit parti-
tion of the feature space across the network, impacts the network
disagreement in Figure 5c, where we plot RV(D̄i,t) over time
t. Observe during an initial burn-in period of t ≤ 100 that the
relative variation is smaller in the case of incomplete sampling for
the dictionary, yet by t ≥ 600 the complete sampling case more
closes enforces consensus. Moreover, RV(D̄i,t) slowly climbs
despite the convergence of the algorithm to a neighborhood
of a stationary point. We observe a similar phenomenon in
the plot of RV(W̄i,t) over time t in Figure 5d, i.e. for t ≥,
RV(W̄i,t) ≤ 5× 10−1 for the incomplete sampling case.

VI. ROBOTIC EXPERIMENTS

In this section, we consider how the tools developed in Section
III may be used for a team of robots to perform collaborative
pattern recognition in unknown domains. This task may be
viewed as providing the capability to perform object recognition
or analyze the navigability of the environment in which the
multi-agent system operates. To this end, we have deployed a
robotic network in a cluttered urban setting with little a priori
information and recorded visual information along distinct paths
for each robot. Note that each robot in the network only has
access to information about the environment based on the path it
has traversed, which may omit regions of the feature space crucial
for recognizing patterns. By communicating with other robots
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(ŷ

i
,t
=

y
i
,t
),

C
la
ss
ifi
c
a
ti
o
n
A
c
c
u
ra
c
y

 

 

Complete
Incomplete

(b) Classification accuracy vs. iteration t

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

t, number of iterations

R
V
(D̄

i
,t
),

R
e
la
ti
v
e
v
a
ri
a
ti
o
n

 

 

Complete
Incomplete

(c) Relative variation RV(D̄i,t) vs. iteration t

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

t, number of iterations

R
V
(W̄

i
,t
),

R
e
la
ti
v
e
v
a
ri
a
ti
o
n

 

 

Complete
Incomplete

(d) Relative variation RV(W̄i,t) vs. iteration t

Fig. 5: Algorithm 1 run on a N = 10 node random networks, where edges are generated randomly between agents with probability ρ = 0.2.
”Incomplete” refers to the case where each agent observes training examples that comprise a random incomplete subset of the total data labels.
Figure 4a-4b show hi(Di,t,Wi,t; (Xi,t,yi,t)) and

∑N
i=1 P (ŷi,t = yi,t)/N , respectively, over iteration t for an arbitrarily chosen agent j ∈ V ,

as compared with the case where this agent observes training examples from all classes. Observe that learning is still achieved for this more
challenging context, yet the algorithm exhibits increased oscillatory behavior and decreased accuracy for the incomplete case. Figures 4c-4d shows
that the agents reach consensus in terms of RV(D̄i,t) and RV(W̄i,t) at comparable rates for complete cases and incomplete cases, albeit with
more oscillations in the later. Moreover, the algorithm still converges despite the instability in RV(D̄i,t).

in the network, individuals may learn over a broader domain
associated with that which has been explored by the whole mobile
network.

This problem is challenging due to the reliance of many
computer vision algorithms on static data and centralized pro-
cessing. Recent works have made progress towards online ob-
ject recognition [40], [41], yet solving this task in dynamic
distributed settings remains an open problem. As a preliminary
benchmark towards this goal, we consider decentralized online
texture classification in teams of robots. In this case, each
robot in the network sequentially observes images based on its
traveled path, partitions them into small patches, and identifies
properties of each patch. We interpret this problem setting as
providing multi-robot systems the means to dynamically analyze
the navigability of unknown domains: certain textures correspond
to environments which are easier to traverse than others, and
discerns the intractable from the traversable.

Experimentally, we consider cases where each robot observes
training examples which contain all of the class types, and is
able to communicate with all others in the network. We collected
images that were sequentially observed by a N = 3 agent net-
work of Husky robots at Camp Lejeune, a cluttered urban setting,
and labeled the images offline. See Figure 6 for an example of
the images taken by a prototypical Husky platform. We call this
data the Integrated Research Assessment for the U.S. Army’s
Robotics Collaborative Technology Alliance, abbreviated as IRA.
The associated texture classes for the IRA field data are {sky,

Fig. 6: Sample image from the IRA dataset (left) associated with an
N = 3 node network of Husky robots (right) moving around a cluttered
urban setting.

grass, building, concrete floor}. Running the D4L algorithm on
these image observations resembles a field implementation of a
robotic network. The IRA dataset consists of 16 images converted
to grayscale of size 320 by 240. Using the human-generated
label masks, we are able to extract 610, 528 label-homogeneous,
overlapping 24-by-24 patches that have labels within our subset.
Values of ε that exhibit convergent behavior varied between the
two problem settings (Brodatz vs. IRA). In the IRA setting, we
select ε = 5× 10−3.

Results for the implementation on a N = 3 robotic network
associated with the IRA dataset as compared with the centralized
processing of each robot’s data in aggregate is shown in Figure
7. Due to the more challenging nature of field data, reducing
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Fig. 7: D4L classifier performance improvement for the IRA texture
dataset with step-size ε = 5× 10−3. “D4L, Complete” refers to a fully-
connected, three-node network where each node has access to training
data from all classes. Classifier accuracy is averaged over all robots.
Increasing the step-size ε may improve performance faster, but may
yield divergence in the decentralized cause. The field setting is more
challenging for pattern recognition, yet the decentralized and centralized
algorithms still achieve comparable performance.

the algorithm step-size to ε = 5 × 10−3 to ensure convergence
was necessary. However, such a small step-size makes learning
occur at a slow rate. We do observe that learning occurs, albeit
slowly: the accuracy of the algorithm continues to climb as more
data is accumulated, though by T = 103 classification accuracy
approaches %60.

VII. CONCLUSION

This work represents the first attempt to extend the discrimi-
native dictionary learning problem of [9] to networked settings.
To do so we consider cases where losses are node-separable
and introduced agreement constraints, yielding a decentralized
stochastic non-convex optimization problem. By considering the
Lagranian relaxation of an agreement-constrained system, we
develop a block variant of the Arrow-Hurwicz saddle point
method to solve it. Moreover, we establish the convergence of
the algorithm to a KKT point of the problem in expectation.

Experiments on a texture classification problem demonstrated
comparable classifier performance between the centralized and
decentralized settings, and illustrated the convergence rate de-
pendence on the network topology. Learning occurred at slower
rates in larger networks and networks with random connectivity
patterns. Moreover, the proposed method allows multi-agent
systems to learn over a new class of pattern recognition problems.
The small step-sizes required for convergence yielded slow
learning rates, yet are essential for avoiding divergent behavior
in non-convex settings. While pattern recognition methods for
centralized settings [9], [36], [42] outperform that which is
developed here, they may not be readily adapted to distributed
settings. We applied this method to a mobile robotic network
deployed in an unknown domain charged with the task of col-
laboratively analyzing the navigability of distinct paths traversed
by each robot. In doing so, we gained insight into how to more
effectively design collaboration strategies in robotic teams for
future hardware development.
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APPENDIX A: PROOF OF PROPOSITION 1
To compute the primal stochastic gradient of the Lagrangian

[cf. (10)] with respect to a local dictionary Di,t for a signal-
output pair (xi,t,yi,t), apply the node-separability of the global
cost in (7) to the first term in (10), and note that all terms of the
derivative of the second term with respect to Di in (10) are null
except those associated with node i and neighbors j. With this
reasoning we obtain

∇Di
L̂t(Dt,wt,Λt,νt) = ∇Di

hi(Di,t,wi,t; (xi,t,yi,t))

+D̃i,t +
∑
j∈ni

(Λij,t −Λji,t) (54)

Here D̃i,t is an element of the normal cone of D when Di,t is
near the boundary of the set, and null otherwise. comes from the
fact that we are using projected stochastic gradients rather than
stochastic gradients. Substituting this into the update given in
(12) and separating update along direction associated with agent
i, we obtain

Di,t+1 =Di,t − εt
(
∇Di

hi(Di,t,wi,t; (xi,t,yi,t))

+ D̃i,t +
∑
j∈ni

(Λij,t −Λji,t)
)
, (55)

To compute the primal stochastic gradient of (10) with respect
to the model parameters wi of agent i, we apply the same logic
to terms involving wi to write

∇wiL̂t(Dt,wt,Λt,νt) = ∇wihi(Di,t,wi,t; (xi,t,yi,t))

+ w̃i,t +
∑
j∈ni

(νij,t − νji,t) (56)

Again, the stochastic gradient of agent i is decoupled from
all others except the Lagrange multipliers it receives from its
neighbors, and hence yields a decentralized implementation. The
particular form of the model parameter update follows

wi,t+1 = wi,t − εt
(
∇wi

hi(Di,t,wi,t; (xi,t,yi,t))

+ w̃i,t +
∑
j∈ni

(νij,t − νji,t)
)
. (57)

To develop the dual variable updates, compute the stochastic
subgradient of (10) with respect to the Lagrange multipliers as-
sociated with edge (i, j) and the dictionary agreement constraint.
By noting that all terms in the sum tr(ΛTCD) are null except
those associated with edge (i, j), we obtain

∇Λij L̂t(Dt+1,wt+1,Λt,νt) = Di,t+1 −Dj,t+1 + Λ̃ij,t . (58)

This local subgradient corresponds to the communication link
between agent i and agent j. Separating the update in (15) along
variables associated with edge (i, j), we obtain the local update

Λij,t+1 = Λij,t + εt

(
Di,t+1 −Dj,t+1 + Λ̃ij,t

)
. (59)

With analogous reasoning regarding the agreement constraint
slack term for w in (10), we obtain

∇νij L̂t(Dt+1,wt+1,Λt,νt) = wi,t+1 −wj,t+1 + ν̃ij,t . (60)

With the same reasoning, the dual update for the Lagrange multi-
pliers associated with the model parameter agreement constraints
may be expressed as

νij,t+1 = νij,t + εt (wi,t −wj,t + ν̃ij,t) . (61)

which is as stated in Proposition 1.
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