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DLM: Decentralized Linearized Alternating
Direction Method of Multipliers

Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro

Abstract— This paper develops the Decentralized Linearized
Alternating Direction Method of Multipliers (DLM) that min-
imizes a sum of local cost functions in a multiagent network.
The algorithm mimics operation of the decentralized alternating
direction method of multipliers (DADMM) except that it lin-
earizes the optimization objective at each iteration. This results
in iterations that, instead of successive minimizations, implement
steps whose cost is akin to the much lower cost of the gradient
descent step used in the distributed gradient method (DGM). The
algorithm is proven to converge to the optimal solution when the
local cost functions have Lipschitz continuous gradients. Its rate
of convergence is shown to be linear if the local cost functions are
further assumed to be strongly convex. Numerical experiments
in least squares and logistic regression problems show that the
number of iterations to achieve equivalent optimality gaps are
similar for DLM and ADMM and both much smaller than those
of DGM. In that sense, DLM combines the rapid convergence of
ADMM with the low computational burden of DGM.

Index Terms— multiagent network, decentralized optimization,
linearized alternating direction method of multipliers

I. I NTRODUCTION

Consider a multiagent system composed ofn networked
agents whose goal is to solve a decentralized optimization
problem with a separable cost of the form

min
n∑

i=1

fi(x̃). (1)

The variablex̃ ∈ Rp is common to all agents whose aim is
to find an optimal argument̃x∗ = argmin

∑n
i=1 fi(x̃). We

say (1) is decentralized because, despite the common goal of
finding x̃∗, the local cost functionfi : Rp → R is known to
agenti only. The decentralized optimization problem (1) arises
in various applications, such as event detection in wireless
sensor networks [2]–[4], state estimation in smart grids [5],
[6], spectrum sensing in cognitive radio networks [7]–[9], and
decentralized machine learning in computer networks [10]–
[12], to name a few.

While aggregating all functions at a common location is
possible, it is more efficient to design decentralized optimiza-
tion algorithms in which agents iterate through information
exchanges with neighboring agents. Decentralized algorithms
generating iterates that converge to an optimal argumentx̃∗ of
(1) can be divided into those operating in the primal domain
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and those operating in the dual domain. In the primal domain
methods, each agent averages its local iterate with those of
neighbors and descends along its local negative (sub)gradient
direction. Typical primal domain methods include the dis-
tributed (sub)gradient method (DGM) [13]–[16] and the dual
averaging method [17], [18]. The dual domain methods rewrite
(1) to a constrained form where the constraints force local
solutions to reach global consensus. The dual ascent method
is hence applicable because (sub)gradients of the dual function
depend on local and neighboring solutions only and can
thereby be computed without global cooperation [19], [20].
The alternating direction method of multipliers (ADMM)
modifies dual ascent by penalizing the constraints with a
quadratic term and the resulting algorithm, the decentralized
ADMM (DADMM), improves numerical stability as well as
rate of convergence [21]–[24].

The main advantage of the primal domain methods is
their low computation burden. The operation required at each
iteration is akin to a (sub)gradient step and, hence, entails a
small computation burden. However, existing primal domain
methods suffer from either slow convergence or low accuracy.
With time-varying stepsizes, the distributed gradient method
and the dual averaging method converge to the optimal solu-
tion at sublinear rates [16], [17]. If the stepsize is constant, the
distributed gradient method is able to achieve a linear rate of
convergence under the assumption that the local cost functions
have Lipschitz gradients and are strongly convex; however,
the algorithm converges not to the actual optimizer but to a
neighborhood of the optimal solution [15]. The dual domain
methods, on the other hand, converge relatively fast to the
exact optimal solution [24] but have high computation burden.
Indeed, each agent needs to solve an optimization problem at
each iteration, whose objective is the local cost function plus
some other term – a linear term in the dual ascent method [19]
and a quadratic term in DADMM [21]–[23]. Since this local
optimization problem has no explicit solution unless the local
cost function has a special structure, it has to be solved by a
local iterative minimization method.

This paper develops the decentralized linearized ADMM
(DLM) algorithm that enjoys the advantages of both the primal
and the dual domain methods, i.e., low computation burden
and fast convergence to the exact optimal solution. Besides
developing DLM we prove its convergence to the optimal
argument provided that the local cost functions have Lipschitz
continuous gradients. If we further assume that the local cost
functions are also strongly convex we show that the rate of
convergence to the optimal solution is linear. This convergence
guarantees are analogous to the ones for DADMM [24].
We point out that DLM is related to various (centralized)
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algorithms that are known as linearized ADMM [25]–[27] but
it is not identical to either of them; see Remark2. More closely
related approaches are the decentralized inexact ADMM [28]
and ADMM+ [29]. Their differences with DLM and with
respect to each other are relatively minor but lead to different
analyses that provide complementary insights.

This paper begins by reformulating the decentralized opti-
mization problem (1) to a constrained form, which is solved
through alternating minimization of the augmented Lagrangian
and linearization of the local cost functions (SectionII ). We
further reorganize the iterations and introduce an initialization
condition so that a simpler DLM algorithm is obtained (Propo-
sition 1). We then proceed to analyze convergence properties
of DLM (SectionIII ) under the assumptions that the local ob-
jective functions have Lipschitz continuous gradients and are
strongly convex (SectionIII-A ). The assumption of Lipschitz
continuous gradients guarantees convergence of the algorithm
(Theorem1 in SectionIII-B ) while the addition of a strong
convexity assumption establishes a linear rate of convergence
(Theorem 2 in Section III-C). Numerical experiments are
presented (SectionIV) for least squares (SectionIV-A ) and
logistic regression (SectionIV-B) problems. The numerical
results corroborate theoretical findings on DLM. They also
show the number of iterations to achieve equivalent optimality
gaps are similar for DLM and DADMM and both much
smaller than those of DGM. In that sense, DLM combines the
rapid convergence of DADMM with the low computational
burden of DGM (SectionV).

Notation For column vectorsv1, . . . , vn we use the notation
v := [v1; . . . ; vn] to represent the stacked column vectorv.
For a block matrixM we use(M)i,j to denote the(i, j)th
block. Given matricesM1, . . . , Mn we use diag(M1, . . . , Mn)
to denote the block diagonal matrix whoseith diagonal block
is Mi. Let ‖v‖ be the Euclidean norm ofv. For a positive
definite matrixM , ‖v‖M :=

√
vT Mv is the norm ofv with

respect toM and 〈v1, v2〉M := vT
1 Mv2 is the inner product

of v1 andv2 with respect toM .

II. A LGORITHM DEVELOPMENT

Consider a connected network composed of a set ofn
agentsV = {1, . . . , n} and a set ofm arcsA = {1, . . . , m},
where each arce ∼ (i, j) is associated with an ordered
pair (i, j) indicating thati can communicate toj. Assume
communication is bidirectional so that if arce ∼ (i, j) ∈ A
the opposite arce′ ∼ (j, i) ∈ A. We refer to agents adjacent
to i as the neighbors ofi and denote their set asNi :=
{j : (i, j) ∈ A}. The cardinality of this set is represented
by di : |Ni| and referred to as the degree of agenti. Further
define the block arc source matrixAs ∈ Rmp×np containing
m × n square blocks(As)e,i ∈ Rp×p of dimensionp. The
block (As)e,i is not identically null if and only if the arc
e ∼ (i, j) originatesat nodei in which case(As)e,i = Ip is
given by thep× p identity matrix. Likewise, define the block
arc destination matrixAd ∈ Rmp×np containingm×n square
blocks (Ad)e,i ∈ Rp×p. The block(Ad)e,j = Ip ∈ Rp×p if
the arce ∼ (i, j) terminatesat nodej and is null otherwise.
The extended oriented incidence matrix is then written as

Eo = As − Ad and the unoriented incidence matrix asEu =
As + Ad. The extended oriented (signed) Laplacian is given
by Lo = (1/2)ET

o Eo, the unoriented (unsigned) Laplacian by
Lu = (1/2)ET

u Eu, and the degree matrix containing degrees
di in the diagonal blocks byD = (1/2)(Lo + Lu). Let
Γu and γu be the largest and smallest eigenvalues ofLu,
respectively, andγo be the smallest nonzero eigenvalue of
Lo. The eigenvaluesΓu, γu, andγo are measures of network
connectedness [30].We make the following assumptions on
the local cost functionsfi.

Assumption 1 The local cost functionsfi are proper closed
convex and differentiable.

Assumption 2 The local cost functionsfi have Lipschitz
continuous gradients. There is a positive constantMf > 0
such that for all agentsi and for any pair of points̃xa and x̃b

it holds ‖∇fi(x̃a)−∇fi(x̃b)‖ ≤ Mf‖x̃a − x̃b‖.

Assumption 3 The local cost functionsfi are strongly con-
vex. There is a positive constantmf > 0 such that for all
agentsi for any pair of pointsx̃a and x̃b it holds [x̃a −
x̃b]T [∇fi(x̃a)−∇fi(x̃b)] ≥ mf‖x̃a − x̃b‖2.

A. DADMM: Decentralized ADMM

To develop DLM for a problem having the form of (1) we
introduce variablesxi ∈ Rp representing local copies of the
variable x̃, auxiliary variableszij ∈ Rp associated with each
arc (i, j) ∈ A, and reformulate (1) as

min
n∑

i=1

fi(xi), (2)

s. t. xi = zij , xj = zij , for all (i, j) ∈ A.

The constraintsxi = zij and xj = zij force neighboring
agentsi and j to reach consensus on their local copiesxi

andxj . Since the edges are bidirectional, we have thatxi =
zij = zji = xj , for all(i, j) ∈ A. Insofar as the network is
connected, this local consensus implies that the variables in
the feasible set of (2) must bexi = xj for all, not necessarily
neighboring, agentsi, j ∈ V. Thus, (2) is equivalent to (1)
for connected networks in the sense that for alli and j the
optimal arguments of (2) must satisfyx∗i = x̃∗ and z∗ij = x̃∗

where, we recall,̃x∗ is an optimal solution of (1).
Using the definitions of the arc source and arc destination

matricesAs and Ad we can rewrite (2) in a more compact
form. To do so define the vectorx := [x1; . . . ;xn] ∈ Rnp

concatenating all local variablesxi and the vectorz =
[z1; . . . ; zm] ∈ Rmp concatenating all auxiliary variablesze =
zij . Introduce the aggregate functionf : Rnp → R defined as
f(x) :=

∑n
i=1 fi(xi) and rewrite (2) in matrix form as

min f(x), s. t. Asx− z = 0, Adx− z = 0. (3)

Further define the matrixA = [As;Ad] ∈ R2mp×np stacking
the arc source and destination matricesAs and Ad and the
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matrix B = [−Imp;−Imp] stacking the opposite of two
identity matrices so that (3) reduces to

min f(x), s. t. Ax + Bz = 0. (4)

Introduce now Lagrange multipliersαe = αij associated with
the constraintsxi = zij and Lagrange multipliersβe = βij

associated with the constraintsxj = zij . Group the multipliers
αe in the vectorα = [α1; . . . ;αm] ∈ Rmp and the multipliers
βe in the vectorβ = [β1; . . . ;βm] ∈ Rmp which are thus
associated with the constraintsAsx−z = 0 andAdx−z = 0,
respectively. Groupingα andβ in the multiplierλ = [α;β] ∈
R2mp, which is therefore associated with the constraintAx +
Bz = 0, we define the augmented Lagrangian of (4) as

L(x, z, λ) = f(x) + λT [Ax + Bz] +
c

2
‖Ax + Bz‖2,

wherec > 0 is an arbitrary strictly positive constant.
The ADMM algorithm proceeds through alternating min-

imizations of the augmented Lagrangian with respect tox
and z followed by a gradient ascent update of the Lagrange
multiplier. Specifically, introduce iteration indexk and let
x(k), z(k), andλ(k) be variable iterates at timek. At each
iteration the augmented Lagrangian is minimized with respect
to x andz in an alternating fashion

x(k + 1) := argmin
x

L(x, z(k), λ(k)), (5)

z(k + 1) := argmin
z

L(x(k + 1), z, λ(k)). (6)

After updating variablesx(k + 1) andz(k + 1) the Lagrange
multiplier λ(k+1) is updated through the dual ascent iteration

λ(k + 1) = λ(k) + c
[
Ax(k + 1) + Bz(k + 1)

]
. (7)

Observing the special structures of the cost functionf(x)
and the matricesA and B, the iterations in (5)-(7) can be
implemented in a decentralized manner. This implementation
is the DADMM algorithm [22]–[24].

The computation cost of a DADMM iteration is dominated
by the Lagrangian minimization with respect tox in (5). The
dual update in (7) requires a few operations per agent because
the matricesA andB are as sparse as the graph. The minimiza-
tion with respect toz in (6) is a simple quadratic minimization
that can be solved in a closed form. The minimization in (5), in
general, requires implementation of an iterative minimization
method. The idea of DLM is to avoid this minimization as we
explain in the following.

B. DLM: Decentralized Linearized ADMM

Similar to DADMM, the proposed DLM algorithm also
operates with alternating minimizations with respect tox and
z followed by a dual ascent step on the multiplierλ. However,
instead of minimizing exactly with respect tox we perform an
inexact minimization in which the functionf(x) is replaced
by a quadratic approximation centered at the current iterate.
In particular, say that past iteratesx(k), z(k) and λ(k) are
given. Then, the primal iteratex(k + 1) is defined as

x(k+1) := argmin
x

∇f(x(k))T (x− x(k)) +
ρ

2
‖x− x(k)‖2

+ λ(k)T [Ax + Bz(k)] +
c

2
‖Ax + Bz(k)‖2, (8)

where the approximation parameterρ is a constant. Comparing
the DADMM iteration in (5) with the DLM iteration in (8)
we see that the term∇f(x(k))T

[
x − x(k)

]
+ ρ

2‖x − x(k)‖2
in the latter is a quadratic approximation off(x) at point
x(k). The steps in (6) and (7) remain unchanged with respect
to DADMM. The DLM algorithm is therefore defined by
recursive application of (8), (6) and (7).

Using first order optimality conditions for the minimization
problems in (8) and (6) yields explicit expressions forx(k+1)
andz(k + 1). The resulting equation forx(k + 1) is

∇f(x(k)) + ρ
[
x(k + 1)− x(k)

]

+ AT λ(k) + cAT
[
Ax(k + 1) + Bz(k)

]
= 0, (9)

which can be solved explicitly forx(k + 1) by inverting
the matrixρInp + cAT A. Likewise, the first order optimality
condition for (6) yields

BT λ(k) + cBT
[
Ax(k + 1) + Bz(k + 1)

]
= 0, (10)

which can be solved forz(k+1) if we invert the matrixcBT B.
By exploiting the sparse structure ofAT A and BT B it

is possible to see that the variable componentsxi(t) and
zij(t) can be updated by agenti using its own local iterates
and iterates of neighboring agents. Instead of developing
that decomposition we first notice that, similar to DADMM,
the iterations in (9), (10) and (7) can be replaced by a
simpler set of iterations if the variables are properly initialized.
Such initialization is adopted henceforth and specified in the
following assumption.

Assumption 4 We require the initial Lagrange multiplier
λ(0) = [α(0);β(0)] to satisfyα(0) = −β(0) and the initial
auxiliary variable z(0) to be such thatEox(0) = 2z(0).
We further define variablesφ(k) = [φ1(k); . . . ;φn(k)] :=
ET

o α(k) ∈ Rnp.

If the initialization condition in Assumption4 holds, the
auxiliary variablez(k) can be eliminated and the Lagrange
multipliers λ(k) ∈ R2mp replaced by the smaller dimension
vectorφ(k) ∈ Rnp. We summarize the simplified algorithm in
the following proposition; see [23], [31].

Proposition 1 Consider the sequence of variablesx(k) gen-
erated by(9), (10) and (7). If Assumption4 holds, iterates
x(k + 1) can be alternatively generated by the recursion

x(k + 1) = D̃−1
[
L̃ux(k)−∇f(x(k))− φ(k)

]
, (11)

φ(k + 1) = φ(k) + cLox(k + 1), (12)

where we define the weighted degree matrixD̃ := 2cD+ρInp

and the weighted unoriented LaplaciañLu = cLu + ρInp.

Proof: See AppendixI.

The initial conditions in Assumption4 are not difficult
to satisfy; e.g., it suffices to setαe(0) = βe(0) = 0 and
xi(0) = ze(0) = 0 for all arcs e ∼ (i, j) and agentsi.
On the other hand, implementation of (11) and (12) does
not rely on Assumption4. Since the iterations in (11) and
(12) are equivalent to the iterations in (9), (10) and (7) with
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Algorithm 1 DLM algorithm run by agenti
Require: Initialize local variables toxi(0) andφi(0) = 0.

1: for timesk = 1, 2, . . . do
2: Compute local solutionxi(k + 1) from [cf. (13)]

xi(k + 1) = xi(k)

− 1

d̃i

[
∇fi(xi(k)) + c

∑
j∈Ni

[
xi(k)− xj(k)

]
+ φi(k)

]
,

3: Transmitxi(k+1) / receivexj(k+1) from neighborsj ∈ Ni.
4: Update local dual variableφi(k + 1) as [cf. (14)]

φi(k + 1) = φi(k) + c
∑

j∈Ni

[
xi(k + 1)− xj(k + 1)

]
.

5: end for

proper initialization, we implement (11) and (12), not (9), (10)
and (7). To implement (11) and (12) and have Proposition
1 hold we just need to make sure thatφ(0) lies in the
column space ofET

o . Further observe that the matrices̃D
and L̃u are linear combinations of the degree matrixD and
the unoriented LaplacianLu with identity matricesInp. The
coefficients in these linear combinations are2c, c, andρ, which
are parameters of DLM.

As is the case of (9), (10) and (7), the operations in (11) and
(12) can be implemented in a decentralized manner. Consider
the component of the update forx(k + 1) corresponding to
the variablexi(k + 1). Using the definitions of the weighted
degree matrixD̃, the weighted unoriented LaplaciañLu, and
the oriented incidence matrixEo, we can write this component
of (11) as

xi(k + 1) = xi(k) (13)

− 1
d̃i

[
∇fi(xi(k)) + c

∑

j∈Ni

[
xi(k)− xj(k)

]
+ φi(k)

]
,

where we define the weighted degreed̃i := 2cdi +ρ such that
D̃ = diag(d̃1, . . . , d̃n). Likewise, using the definition of the
oriented LaplacianLo the update in (12) can be written as

φi(k + 1) = φi(k) + c
∑

j∈Ni

[
xi(k + 1)− xj(k + 1)

]
. (14)

The iterations in (13) and (14) have intuitive appeal. The
iteration in (13) is reminiscent of gradient descent with step-
size 1/d̃i. The gradient∇fi(xi(k)) is corrected by the sum
c
∑

j∈Ni

[
xi(k) − xj(k)

]
which accounts for the disagree-

ment between local variablexi(k) and neighboring variables
xj(k) and the dual variableφi(k). In turn, the dual variable
φi(k) is just an integration device for past disagreements
c
∑

j∈Ni

[
xi(l + 1)− xj(l + 1)

]
between local variablesxi(l)

and neighboring variablesxj(l) for all times l ≤ k.
An algorithmic summary of DLM is shown in Algorithm

1. At time k = 0 we initialize local variables to arbitrary
xi(0) and φi(0) = 0. The latter is one out of many possible
selections to ensure that the vectorφ(0) is in the column
space ofET

0 . For all subsequent times agenti goes through
successive steps implementing the primal and dual iterations
in (13) and (14) as shown in Step 2 and Step 4 of Algorithm
1, respectively. Implementation of Step 2 requires neighboring

variablesxj(k) from the previous iteration. Implementation of
Step 4 requires current neighboring variablesxj(k+1), which
become available through the exchange implemented in Step
3. This variable exchange also makes variables available for
the update in Step 2 corresponding to the following time index.

We proceed to analyze the convergence properties of DLM
after two pertinent remarks.

Remark 1 As intended, DLM is advantageous over DADMM
due to its lower computation burden. The iterations in (13) and
(14) contain simple algebraic operations and a gradient descent
step. The counterpart of (13) in DADMM is a, most often
nontrivial, minimization offi(xi) augmented by a quadratic
term. It is also interesting to compare DLM and DGM [13].
In the latter, agenti updates its local variablexi(k) as

xi(k + 1) =
∑

j∈Ni∪i

wijxj(k)− ε(k)∇fi(xi(k)), (15)

where ε(k) is a stepsize sequence that can be chosen as
constant or nonsummable vanishing and the weightswij are
elements of a doubly stochastic matrixW = [wij ] ∈ Rn×n

[32]. The idea of the update in (15) is to descent along the
negative gradient direction−∇fi(xi(k)) while mixing local
and neighboring iterates. This idea can be also construed as
an interpretation of (13) with the difference being the addition
of the memory termφi(k). In that sense we can think of
DLM as a primal method with memory – as opposed to a dual
method with inexact Lagrangian minimization. Irrespective of
interpretation, the computation cost of DLM is of the same
order as DGM.

Remark 2 DLM differs from the centralized linearized
ADMM in [25], [26] in that the latter linearizes the quadratic
term (c/2)‖Ax + Bz‖2 in the augmented Lagrangian in (5) –
while DLM linearizes the objective functionf(x). The central-
ized linearized ADMM in [27] applies to objectives of the form
f(x)+ g(z) and uses linearized versions of these functions in
both, thex(k) iteration in (5) and thez(k) iteration in (6).
This, however, yields an algorithm that is not guaranteed to
converge to optimal arguments. An extra gradient step is added
to overcome this limitation. The special structure of the cost
function in (4), namely, that the objective does not contain
a term of the formg(z) precludes this problem. This yields
the simpler linearized algorithm defined by (9), (10) and (7)
which we transform into the DLM algorithm defined by (11)
and (12).

III. C ONVERGENCEANALYSIS

This section analyzes convergence and rate of convergence
of the proposed DLM algorithm. We analyze the iterations
(9), (10) and (7), instead of the iterations (11) and (12)
(see also Algorithm 1). Recall that they are equivalent under
Assumption4 as shown in Proposition1. SectionIII-A pro-
vides basic assumptions and supporting lemmas. SectionIII-B
proves convergence of DLM, while SectionIII-C establishes
a linear rate of convergence under stronger assumptions.
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A. Preliminaries

The analyses of convergence and rate of convergence are
based on Assumptions1–3. Assumption1 implies that the
aggregate functionf(x) :=

∑n
i=1 fi(xi) is proper closed

convex and differentiable. Assumption2 implies that the
aggregate functionf(x) has Lipschitz continuous gradients
with constantMf . For any pair of pointsxa andxb it holds

‖∇f(xa)−∇f(xb)‖ ≤ Mf‖xa − xb‖. (16)

Assumption 3 implies that the aggregate functionf(x) is
strongly convex with constantmf . For any pair of pointsxa

andxb it holds
[
xa − xb

]T [∇f(xa)−∇f(xb)
] ≥ mf‖xa − xb‖2. (17)

Assumptions1 and2 are common in proving convergence of
descent algorithms. Assumption3 is also a common require-
ment to establish linear convergence rates.

We investigate convergence the primal variablex(k) and the
dual variableα(k), which is a part of the Lagrange multiplier
λ(k) = [α(k);β(k)], to their optimal values. Observe that due
to the consensus constraints, an optimal primal solution has
the form x∗ = [x̃∗; · · · ; x̃∗] where x̃∗ is an optimal solution
of (1). If the local cost functions are not strongly convex, then
there may exist multiple optimal primal solutions; instead, if
the local cost functions are strongly convex (i.e., Assumption3
holds), the optimal primal solution is unique. For each optimal
primal solution x∗, there exist multiple optimal Lagrange
multipliersλ∗ = [α∗;β∗] whereα∗ = −β∗ as we will prove in
Lemma1. In the analysis of convergence (SectionIII-B ), we
show thatα(k) converges to one of the optimal dual solutions
α∗ whose value depends on the initial dual variableα(0). In
establishing a linear rate of convergence (SectionIII-C), we
require that the dual variable is initialized such thatα(0) lies
in the column space ofEo and consider its convergence to a
unique dual solutionα∗ that also lies in the column space of
Eo. Existence and uniqueness of such anα∗ are also proved
in Lemma1 as we state next.

Lemma 1 Given an optimal primal solutionx∗ of (4), there
exist multiple optimal multipliersλ∗ = [α∗;β∗] whereα∗ =
−β∗ such that every(x∗, λ∗) is a primal-dual optimal pair.
Among all these optimal dualsλ∗, there exists a uniqueλ∗ =
[α∗;β∗] such thatα∗ = −β∗ lies in the column space ofEo.

Proof: See AppendixII .

In the subsequent analyses of convergence and rate of
convergence, we need a couple of equalities that connect
x(k+1), x(k), α(k+1) andα(k) with a pair of optimal primal
and dual solutionsx∗ and α∗. These equalities are technical
and provided in the following lemma.

Lemma 2 Consider iterations(9), (10) and (7) initialized as
in Assumption4. Let x∗ and α∗ be optimal for(4) and recall
the definitionL̃u = cLu +ρInp. Then, for all timesk ≥ 0, we
write the gradient difference∇f(x(k))−∇f(x∗) as

∇f(x(k))−∇f(x∗) (18)

= L̃u

[
x(k)− x(k + 1)

]− ET
o

[
α(k + 1)− α∗

]
,

Likewise, the primal variable differencex(k+1)−x∗ satisfies

c

2
Eo

[
x(k + 1)− x∗

]
= α(k + 1)− α(k). (19)

Proof: See AppendixIII .

B. Convergence

To prove convergence of DLM iterates to an optimal pair
x∗ andα∗ of (4) we show that the primal and dual variables
x(k+1) andα(k+1) are closer tox∗ andα∗ than the previous
iteratesx(k) andα(k). More to the point, for a given optimal
pair (x∗, α∗) define the energy function

Vx∗,α∗(x, α) :=
1
2

∥∥x− x∗
∥∥2

L̃u
+

1
c

∥∥α− α∗
∥∥2

. (20)

Recall that the positive definite matrix̃Lu is defined as
L̃u = cLu + ρInp. We show that the energy function
Vx∗,α∗(k) = Vx∗,α∗(x(k), α(k)) is monotonically decreasing
with an improvement that is related to the squared distance
between the two successive points(x(k + 1), α(k + 1)) and
(x(k), α(k)) as we formally state next.

Lemma 3 Consider iterations(9), (10) and (7) with the initial
conditions in Assumption4. With γu denoting the smallest
eigenvalue of the unoriented LaplacianLu and Mf the Lips-
chitz continuity constant of the local cost functions’ gradients
define the constant

ξ := (cγu + ρ−Mf/2)/(cγu + ρ). (21)

Assume that the DLM parametersc and ρ are chosen so that
ξ > 0 and that Assumptions1 and 2 hold. Then, for all
times k ≥ 0 we have that the energy functionVx∗,α∗(k) =
Vx∗,α∗(x(k), α(k)) in (20) is monotonically decreasing and
satisfies

Vx∗,α∗(k + 1) ≤ Vx∗,α∗(k) (22)

− ξ

2

∥∥x(k + 1)− x(k)
∥∥2

L̃u
− ξ

c

∥∥α(k + 1)− α(k)
∥∥2

.

Proof: See AppendixIV.

To guarantee the conditionξ > 0 we just need to makec or
ρ sufficiently large. For future reference further note that we
must haveξ < 1 for any choice of DLM parametersc andρ.

Since the energy functionVx∗,α∗(k) is monotonically de-
creasing and nonnegative, Lemma 3 implies that it must
eventually converge. To prove convergence of the sequence
x(k) to an optimal solutionx∗ we need to show not only that
the energy functionVx∗,α∗(k) converges but that it converges
to zero for some optimal pair(x∗, α∗). Constructing this
argument is not difficult if we follow analogous proofs for
the centralized ADMM; see e.g., [26], [33].With particular
note, recently [34] also proves convergence of the centralized
ADMM for nonconvex sharing and consensus problems.We
give the convergence result in the following theorem.

Theorem 1 Consider iterations(9), (10) and (7) with the
initial conditions in Assumption4. Let Assumptions1 and 2
hold and the constantξ in (21) be positive. Then, the sequences
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x(k) and α(k) generated by the DLM algorithm converge
to an optimal pair of (4). I.e., there exist optimalx∗ and
λ∗ = [α∗;β∗] such that

lim
k→∞

x(k) = x∗ and lim
k→∞

α(k) = α∗. (23)

Proof: See AppendixV.

We emphasize that Theorem1 does not specify which
optimal primal and dual solutionsx(k) and α(k) converge
to. Indeed,x(k) can converge to one of the optimal primal
solutions x∗ and α(k) can converge to one of the corre-
sponding optimal dual solutions. However, if letα(0) be
initialized in the column space ofEo, from the dual iterate
α(k + 1) = α(k) + (c/2)Eox(k + 1) in (37), we know that
α(k) always lies in the column space ofEo for all timesk ≥ 0.
Therefore,α(k) converges to the unique optimal dual solution
that corresponds tox∗ and lies in the column space ofEo;
existence and uniqueness of such a dual solution have been
proved in Lemma1.

Note that we needc > 0 to have a proper energy function
in (22) but that it is possible to haveρ < 0 without violating
the hypotheses of Theorem1. If we choose a negativeρ we
just need to makec larger to guaranteeξ > 0 in (21). As
long asξ > 0, DLM converges to a pair of optimal(x∗, α∗),
which shows robustness of DLM to the parametersc and ρ.
It implies that the cost function of (8), which is the Taylor
expansion of the augmented Lagrangian in (5), must have a
positive definite Hessian. The possibility of selecting negative
ρ notwithstanding, our numerical analyses suggest that fastest
convergence is achieved with a constantc that is slightly
larger than the equivalent constant used in DADMM [24] and
positive constantρ of similar order toc – see SectionIV.

C. Linear Rate of Convergence

If we add the strong convexity condition in Assumption
3 to the hypotheses in Theorem1 we can establish a linear
rate of convergence for DLM. To do so we use the strong
convexity of the local cost functionsfi to develop a contraction
inequality for the energy functionVx∗,α∗(x, α) in (20) for a
properly selected optimal pair(x∗, α∗) and a properly selected
initial multiplier α(0). The particular optimal pair is formed
by the unique optimal primal argumentx∗ – which is unique
because the local cost functionsfi are strongly convex – and
the unique dual optimal solution lying in the column space
of Eo – which is unique because we prove so in Lemma1.
The initial multiplier α(0) must be selected in the column
space ofE0. This is needed because our analysis holds in the
column space ofE0 and selectingα(0) in that space ensures
that α(k) stays in it for all timesk. We emphasize that this
setting is different to Lemma3 that holds for any pair of
optimal primal and dual solutions and any initial condition that
satisfies Assumption4. We present this result in the following
theorem.

Theorem 2 Consider iterations(9), (10) and (7) with the
initial condition in Assumption4 and the further requirement
that α(0) lies in the column space ofEo. Further assume that
assumptions1-3 hold, that the constant in(21) is ξ > 0, and

let x∗ and α∗ be the unique optimal pair of(4) for which α∗

lies in the column space ofEo. Then, there exists a contraction
parameterδ > 0 such the energy function in(20) satisfies

Vx∗,α∗(k + 1) ≤ 1
1 + δ

Vx∗,α∗(k) (24)

Proof: See AppendixVI .

The constantδ has an explicit expression in terms of the
unoriented Laplacian eigenvaluesΓu and γu, the oriented
Laplacian eigenvalueγo, the strong convexity and Lipschitz
constantsmf andMf , and the DLM parametersc andρ – see
(68) in AppendixVI . The result in Theorem2 is analogous to
similar results that hold for ADMM [35] and DADMM [24].
The result is also related to the linear convergence results
of the centralized multi-block ADMM [38], the centralized
ADMM on quadratic problems [40], as well as the asymptotic
linear convergence rate of DADMM [39].

In the contraction inequality in (24) we have thatVx∗,α∗(k)
shrinks by a factor strictly smaller than 1 at all itera-
tions. Therefore, Theorem2 indicates linear convergence of
Vx∗,α∗(k) to 0. Since Vx∗,α∗(k) = (1/2)‖x(k) − x∗‖2

L̃u
+

(1/c)‖α(k) − α∗‖2, it follows that ‖x(k) − x∗‖2
L̃u

also con-
verges linearly to0 because we have that

‖x(k)− x∗‖2
L̃u
≤ Vx∗,α∗(k + 1) (25)

≤
(

1
1 + δ

)k+1

Vx∗,α∗(0).

To establish that‖x(k)−x∗‖ converges linearly to0 it suffices
to write the conventional Euclidean norm‖x(k)−x∗‖ in terms
of theL̃u norm‖x(k)−x∗‖L̃u

and take the square root of both
sides of (25). Substituting the inequality‖x(k) − x∗‖2

L̃u
≥

(cγu + ρ)‖x(k) − x∗‖2 into (25), we have the following
corollary of Theorem2.

Corollary 1 Consider iterations(9), (10) and (7) and assume
the same hypotheses of Theorem2. Then, there exists a
contraction parameterδ > 0 such that

‖x(k)− x∗‖ ≤
(

1√
1 + δ

)k+1 (
Vx∗,α∗(0)
cγu + ρ

)1/2

. (26)

I.e., the primal variablex(k) converges linearly to the unique
optimal primal variablex∗.

Corollary1 shows that‖x(k)−x∗‖ linearly converges to0 if
the initial energy functionVx∗,α∗(0) is finite and the weighted
Laplacian L̃u = cLu + ρInp is positive definite. Note that
‖x(k) − x∗‖ is not necessarily monotonically decreasing as
Vx∗,α∗(k) is (see Theorem2).

Remark 3 In Theorem2 and Corollary1, we require that
α(0) lies in the column space ofEo in addition to the initial
condition in Assumption4. Translating the initial condition
of α(0) to that of φ(0) in Algorithm 1, we can see that the
initial Lagrange multiplierφ(0) determines where the dual
solution converges (SectionIII-B ). To achieve linear rate of
convergence,φ(0) must be chosen in the column space of
Lo (e.g., φ(0) = 0) becauseφ(0) = ET

o α(0) and Lo =
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(1/2)ET
o Eo (Section III-C). This is equivalent to choosing

λ(0) = [α(0);β(0)] such that bothα(0) and β(0) are in the
column space ofEo.

IV. N UMERICAL EXPERIMENTS

This section provides numerical experiments to study the
convergence times of DLM as defined by Algorithm 1 for a
least squares problem (SectionIV-A ) and a logistic regression
problem (SectionIV-B). The local cost functions in the least
squares problem are strongly convex whereas the local func-
tions in the logistic regression example are convex but not
strongly convex. We consider various network topologies –
random, line, star, complete, and small world graphs – as well
as the effect of growing the number of agents in the network.
We also compare the performance of DLM with that of the
decentralized ADMM (DADMM) of [22] as defined by (5)-(7)
and the distributed gradient method (DGM) of [13] as defined
by (15), and an accelerated variant of DGM, the distributed
Nesterov gradient (DNG) method of [16], as defined by

xi(k + 1) =
∑

j∈Ni∪i

wijyj(k)− ε(k)∇fi(yi(k)),

yi(k + 1) = xi(k + 1) + η(k) (xi(k + 1)− xi(k)) ,

whereη(k) = (k − 1)/(k + 2) is the parameter of Nesterov
acceleration.In DGM and DNG, the weight matrixW is
chosen following the maximum-degree rule [32]. Convergence
is studied in terms of the average absolute error

e(k) :=
1
n

n∑

i=1

‖xi(k)− x̃∗‖ .

The average absolute errore(k) is the average of the local
errors‖xi(k)− x̃∗‖ observed at each agenti.

A. Least Squares Regression

Agent i measures a true signalx̃o ∈ R3 through the noisy
linear transformationyi = Uix̃

o + ωi where Ui ∈ R3×3 is
the measurement matrix andωi ∈ R3 is the noise vector. To
run global least squares regression taking advantage of the
information collected by all agents we formulate a problem
as in (1) with the local cost function of agenti given by
fi(x̃) = ‖Uix̃−yi‖2/2. With this particular choice of functions
the iteration in (13) and, equivalently, Step 2 of Algorithm 1,
becomes

xi(k + 1) = xi(k) (27)

− 1
d̃i

[
UT

i Uixi(k)− UT
i yi + c

∑

j∈Ni

[
xi(k)− xj(k)

]
+ φi(k)

]
.

The iteration in (14) and Step 4 of Algorithm 1 is independent
of the specific form offi(x̃). Elements of the matrixUi are
chosen at random from a normal distribution with zero mean
and variance 1. MatricesUi are checked for invertibility by
requiring UT

i Ui º 10−4 × I3 so that the local functions are
strongly convex with strong convexity parametermf = 10−4.
A different Ui matrix is chosen if this is not satisfied. The
noise vectorsωi ∈ R3 follow from a zero-mean Gaussian
distribution with covariance matrixE

[
ωiω

T
i

]
= 10−2 × I3.
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DLM, c = 1.1, ρ = 4
DADMM, c = 0.9
DGM, ε(k) = 0.01
DGM, ε(k) = 0.3/k
DNG, ε(k) = 0.3/k

Fig. 1. Comparison of different decentralized optimization algorithms in a
least squares problem. DLM, DADMM, DNG, and DGM with constant and
vanishing stepsizes are shown for a random network withn = 100 agents
and 384 edges. DLM has a slope close to DADMM but a much smaller
computation cost per iteration. DLM has similar computation cost per iteration
as DNG and DGM but converges much faster.

Algorithm comparison.Given n = 100 agents select bidirec-
tional edges at random until obtaining a connected network.
An example run of DLM, DADMM, DNG, and DGM with
constant and vanishing stepsizes are shown for one such
network in Fig.1. In this example the network contains 384
edges (m = 768 arcs) out of the4950 possible. Different
parameter combinations are chosen for each algorithm and
results are reported for the one that minimizes the average
absolute errore(k) in (27) after k = 100 iterations. These
parameters arec = 1.1 and ρ = 4 for DLM, c = 0.9 for
DADMM, ε(k) = 0.3/k for DNG, ε(k) = 0.01 for DGM
with constant stepsize andε(k) = 0.3/k for DGM with de-
creasing stepsize. Note that for least squares regression, local
optimization of DADMM boils down to a matrix inversion.
The convergence rate of DLM is linear as proven in Section
III . More interesting, the difference in the slopes of DLM and
DADMM are minimal. The latter requires between 20% to
30% less iterations to achieve a target accuracy. This penalty
in convergence rate is small given that the computation cost
of each DLM iteration involvesO(p) operations (cf. steps 2
and 4 of Algorithm 1) – in this experimentp = 3 – whereas
DADMM requires solution of local optimization problems at
each iteration [22]. Further observe that DLM converges much
faster than DNG and DGM. This is consistent with earlier
theoretical and numerical comparisons of DADMM, DNG, and
DGM [15], [16], [24].

Network topology.The slope of the convergence curve of
DLM varies with the choice of network topology. Convergence
curves for line, star, complete, and small world topologies are
shown in figs.2 and 3. The random small world topologies
are constructed through first forming a cycle topology and then
adding random edges. In all cases we considern = 100 agents
and choose parametersc andρ in Algorithm 1 to minimize the
average absolute errore(k) in (27) after k = 100 iterations.

As seen in Fig.2 the fastest and slowest convergence are
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Fig. 2. Convergence of DLM on line, star, complete, and small world graphs.
All networks haven = 100 agents. The small world graph is formed by a
cycle to which 100 extra random edges are added. Convergence is slowest for
the line and fastest for the complete graph. The star graph is good at diffusing
information with small average degree but large maximum degree. Small
world graphs diffuse information efficiently with small maximum degree.
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Fig. 3. Convergence of DLM on small world networks with different average
degree. Convergence slopes for networks withn = 100 agents and 100,
400, or 700 random edges added to the cycle are shown. Convergence of
the line and complete graphs are also depicted for reference. Adding more
random edges to small world networks increases the agents’ average degree
but expedites convergence.

exhibited by complete (withc = 0.05 and ρ = 3) and
line graphs (withc = 30 and ρ = 8), respectively. This is
reasonable because these are the graphs for which it takes the
longest and shortest time possible for the observations of one
agent to affect all other agents. The faster convergence rate
of complete graphs comes at the expense of communication
cost. Agents in the line graph exchange information with
one or two neighbors only, whereas in the complete graph
each agent communicates with all othern − 1 agents. Small
communication cost and steep convergence slope are achieved
by the star topology also shown in Fig.2 (with c = 3.6 and
ρ = 5). While aggregate communication cost is small for star
topologies, the center agent is a communication bottleneck. A
structure that avoids this problem is a small world network
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100 Agents 800 Edges
500 Agents 1000 Edges
500 Agents 4000 Edges

Fig. 4. Convergence of DLM for small world networks of different sizes and
average degrees. Networks withn = 100 andn = 500 agents are shown. In
each case we add 1 or 7 random edges per agent. The convergence rate of
DLM is more sensitive to the average degree than to the network size.

formed by a cycle plus a given number of random edges.
The convergence behavior for a small world network with 100
random edges (200 edges in total) is also shown in Fig.2 (with
c = 2.8 andρ = 2). Each agent in this network communicates
with an average of 4 neighbors. Convergence slope improves
substantially over the line graph while avoiding the excessive
communication cost of a complete graph or the bottleneck of
the star topology. This is, again, not surprising. Small world
networks are good at diffusing information with small degrees
because the addition of random edges decreases the network’s
diameter.

The convergence slope of small world networks depends
on the number of random edges added. In Fig.3 we show
convergence curves when we add 100, 300, and 700 random
edges. This corresponds to networks whose average degrees
are 4, 8, and 16, respectively; the parameters arec = 2.8
and ρ = 2, c = 1 and ρ = 2, and c = 0.4 and ρ = 3,
respectively. The curves corresponding to line and complete
graphs are also shown for reference. Adding random edges
to small world networks increases the agents’ average degree
and expedites convergence. Observe that to reduce commu-
nication cost needed to achieve a target accuracy, there is a
tradeoff in setting the average degree. Increasing the average
degree requires higher communication cost per iteration, but
its gain in expediting convergence becomes marginal when the
network is dense enough. Indeed, when the average degree is
16 – in this case the network has 100 deterministic edges and
700 random edges – the speed of convergence is close to that
of a complete graph, whose average degree is 99.

Scalability. The experiments above demonstrate a strong de-
pendence of the convergence rate of DLM with the network
topology. Here we show that the convergence rate is less
dependent of the network size using small world networks
as a test case. For that matter we consider connected small
world networks composed of: 1)n = 100 agents with100
deterministic edges and100 random edges; 2)n = 100
agents with100 deterministic edges and700 random edges;



9

0 100 200 300 400
10

−1

10
0

10
1

10
2

k

e(
k

)

 

 
DLM
DADMM

Fig. 5. Comparison of DLM and DADMM on the logistic regression problem.
In a random small world network composed ofn = 100 agents with100
deterministic edges and100 random edges, each agenti hasqi = 50 samples
and each sample is ofp = 100 dimension. DLM requires between 20%
to 30% more iterations to achieve a target accuracy than DADMM, but on
average, each DADMM iteration requires 80 gradient descent iterations. It
follows that in terms of computation cost DADMM is about 60 times more
expensive than DLM.

3) n = 500 agents with500 deterministic edges and500
random edges; 4)n = 500 agents with500 deterministic
edges and3500 random edges. The corresponding optimal
DLM parameters are 1)c = 2.8 and ρ = 2; 2) c = 0.4
andρ = 3; 3) c = 3.2 andρ = 2; 4) c = 0.6 andρ = 3. Fig.
4 shows that convergence rates of DLM are similar for the
networks with the same average degree, which means similar
network connectedness, rather than the same network size.
Also observe that the performance of DLM does not degrade
much when the network sizen increases.

B. Logistic Regression

We consider application of DLM to a logistic regression
problem. Agenti has access toqi sample vectors and corre-
sponding classes. Denote the sample vectors asuil ∈ Rp and
the corresponding classes asyil ∈ {−1, 1} with l = 1, . . . , qi.
We are interested in observing samplesu ∈ Rp and estimating
the probability P

[
y = 1

∣∣ u
]

of observing classy = 1. We
postulate that this probability is given by the logistic function
P

[
y = 1

∣∣ u
]

= 1/(1 + exp(−uT x̃)) for some vectorx̃ to
be determined using the sample and class observation pairs
{uil, yil}i,l available atall agents. Given this model it follows
that the maximum likelihood estimate of the vectorx̃ is given
by – see, e.g., [36] –

x̃∗ := argmin
x̃

n∑

i=1

qi∑

l=1

log
(
1 + exp

(−yilu
T
il x̃

) )
. (28)

This problem has the form in (1) with the local functions
defined as

fi(x̃) =
qi∑

l=1

log
(
1 + exp

(−yilu
T
il x̃

) )
. (29)

For this specific choice of functionsfi(x̃) the iteration in (13)
and Step 2 of Algorithm 1 becomes

xi(k + 1) = xi(k)− 1
d̃i

[
c

∑

j∈Ni

[
xi(k)− xj(k)

]
+ φi(k)

]

+
1
d̃i

qi∑

l=1

yiluil exp
(− yilu

T
ilxi(k)

)

1 + exp
(− yiluT

ilxi(k)
) . (30)

The iteration in (14) and Step 4 of Algorithm 1 is independent
of the specific form offi(x̃). Observe that the local cost
functionsfi(x̃) are convex but not strongly convex. Thus, the
linear convergence guarantees of SectionIII do not hold. The
numerical results show that, nonetheless, DLM succeeds in
finding x̃∗ and does so with a performance very close to the
performance of DADMM – and a much smaller computational
cost comparable to that of DGM.

As a particular numerical example consider a random small
world network composed ofn = 100 agents with 100
deterministic edges and100 random edges. Each agenti has
qi = 50 samples and each sample is of dimensionp =
100. Different from the least squares regression in Section
IV-A , DADMM minimizations required at each step cannot
be computed in closed form. We solve these minimizations
through a local gradient descent algorithm with stepsize0.01.
We terminate the local gradient descent when the Euclidean
norm between two successive solutions is less than10−4. For
implementation of DADMM and DLM we use the parameters
that minimize the absolute errore(k) in (27) after running
k = 400 iterations. These parameters arec = 1.4 for DADMM
andc = 3 andρ = 4 for DLM.

The results are shown in Fig.5. Both algorithms converge
towardsx̃∗, but none of them converges linearly. The number
of iterations required by DLM to achieve a target accuracy
is larger than those required by DADMM. The difference
is minimal, however. This small increase in the number of
iterations results in a large reduction in the computation cost
of each iteration. Each DLM step requires computation of the
update in (27). Each DADMM iteration requires computation
of gradient descent steps that are numerically analogous to
the DLM step in (27). On average, each DADMM iteration
in Fig. 5 requires 80 gradient descent iterations. As DLM
requires between 20% to 30% more iterations to achieve a
target accuracy than DADMM, it follows that in terms of
computation cost DADMM is about 60 times more expensive
than DLM.

V. CONCLUSION

We introduced DLM, a decentralized version of the lin-
earized alternating direction method of multipliers to solve
optimization problems with separable objectives. The method
is a variation of the decentralized alternating direction method
of multipliers (DADMM). The main difference is that instead
of performing a minimization step in the primal domain, an
objective cost linearization is used to yield a step whose com-
putational cost is akin to that of a gradient descent step. This
modification results in DLM having a computational cost per
iteration that is one to two orders of magnitude smaller than
the cost of DADMM. The algorithm was proven to converge
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to optimal arguments at a linear rate when the local objective
functions have Lipschitz continuous gradients and are strongly
convex. Numerical experiments were conducted for a least
squares problems as well as for a logistic regression problem.
In both cases the number of iterations required by DLM to
achieve a target accuracy are of the same order of those
required by DADMM. Besides having a much smaller total
computational cost than DADMM, DLM also outperforms the
distributed gradient method (DGM) and its accelerated variant.

APPENDIX I
PROOF OFPROPOSITION1

Proof: The proof is analogous to similar results in [23], [31]
and given here for completeness. Substituting the multiplier
updateλ(k) = λ(k + 1) − c

[
Ax(k + 1) + Bz(k + 1)

]
in (7)

into the update for the primal variablesx(k + 1) in (9) leads
to

∇f(x(k)) + ρ
[
x(k + 1)− x(k)

]
(31)

+ AT λ(k + 1)− cAT B
[
z(k + 1)− z(k)

]
= 0.

Similarly, substituting the multiplier updateλ(k) = λ(k+1)−
c
[
Ax(k + 1) + Bz(k + 1)

]
in (7) into the expression for the

auxiliary variablez(k + 1) in (10) leads to

BT λ(k + 1) = 0. (32)

Recalling the definitions ofB = [−Imp;−Imp] andλ(k+1) =
[α(k + 1);β(k + 1)] it follows from (32) that α(k + 1) =
−β(k + 1) for all k ≥ 0. Since we haveα(0) = −β(0) by
hypothesis, it follows thatα(k) = −β(k) for all k ≥ 0. Using
this fact, the definition ofA = [As;Ad], and the definition of
the oriented incidence matrixEo = As − Ad, we conclude
that for all k ≥ 0

AT λ(k) = AT
s α(k)−AT

d α(k) = ET
o α(k). (33)

Further observe that from the definitions ofA = [As;Ad],
B = [−Imp;−Imp] and the unoriented incidence matrixEu =
As + Ad, it follows that AT B = [AT

s , AT
d ][−Imp;−Imp] =

−AT
s −AT

d = −ET
u . Substituting this expression and (33) into

(31) yields

∇f(x(k)) + ρ
[
x(k + 1)− x(k)

]
(34)

+ ET
o α(k + 1) + cET

u

[
z(k + 1)− z(k)

]
= 0.

Now consider (7) and recall thatλ(k) = [α(k);β(k)] to
separate the equality along theα(k) andβ(k) directions

α(k + 1) = α(k) + c
[
Asx(k + 1)− z(k + 1)

]
, (35)

β(k + 1) = β(k) + c
[
Adx(k + 1)− z(k + 1)

]
.

Since we know from (32) and the initialization hypothesis that
α(k) = −β(k) for all k ≥ 0 we can sum up the two equalities
in (35) to obtainc

[
Asx(k)− z(k)

]
+ c

[
Adx(k)− z(k)

]
= 0

for all k > 0. Reorder terms to write

1
2
Eux(k) =

1
2
(As + Ad)x(k) = z(k), (36)

where we also use the definition of the unoriented edge
incidence matrixEu = As + Ad to write the first equality.

Since by initialization hypothesis(1/2)Eux(0) = z(0), (36)
is true for all timesk ≥ 0.

Using (36) to eliminatez(k) from the update forα(k) in
(35) yields

α(k + 1) = α(k) + c
[
Asx(k + 1)− 1

2
(As + Ad)x(k + 1)

]

= α(k) +
c

2
Eox(k + 1). (37)

Here we use the definition of the oriented edge incidence
matrix Eo = As − Ad. Multiplying both sides of (37) by
ET

o and using the definitions of the oriented Laplacian matrix
Lo = (1/2)ET

o Eo and the vectorφ(k) = ET
o α(k), we obtain

the update forφ(k+1) in (12). Likewise, use (36) to eliminate
z(k + 1) andz(k) from (34) so as to write

∇f(x(k)) +
( c

2
ET

u Eu + ρInp

) [
x(k + 1)− x(k)

]

+ ET
o α(k + 1) = 0. (38)

From the definitionET
o α(k + 1) = φ(k + 1) and the equality

φ(k+1) = φ(k)+Lox(k+1) in (12), we know thatET
o α(k+

1) = φ(k)+Lox(k+1). Using this equality and the definition
of the unoriented LaplacianLu = (1/2)ET

u Eu, rewrite (38)
to

∇f(x(k)) + (cLu + ρInp)
[
x(k + 1)− x(k)

]

+ φ(k) + cLox(k + 1) = 0. (39)

Regrouping terms in (39) and observing that the degree matrix
is D = (1/2)(Lo + Lu) yield

(2cD + ρInp)x(k + 1)
= (cLu + ρInp)x(k)−∇f(x(k))− φ(k). (40)

The update forx(k + 1) in (11) follows from (40) by using
the notationsD̃ = 2cD + ρInp and L̃u = cLu + ρInp.

APPENDIX II
PROOF OFLEMMA 1

Proof: Write down the KKT conditions for the decentralized
optimization problem in (4) so as to obtain the equalities

∇f(x∗) + AT λ∗ = 0, (41)

BT λ∗ = 0, (42)

Ax∗ + Bz∗ = 0. (43)

The definition of the matrixB = [−Imp;−Imp] and the
equality BT λ∗ = 0 in (42) imply that the optimal multiplier
λ∗ = [α∗;β∗] must satisfyα∗ = −β∗.

Using the fact ofα∗ = −β∗ and the definitions ofA =
[As;Ad] andEo = As −Ad, we can rewrite (41) as

∇f(x∗) + ET
o α∗ = 0. (44)

For any optimal primal solutionx∗, (44) suggests that there
are multiple optimal dual solutionsα∗. To see so, observe that
the oriented LaplacianLo = (1/2)ET

o Eo ∈ Rnp×np is rank
deficient. Therefore, the rank ofET

o ∈ Rnp×mp is less than
np, which is no more thanmp for any connected network
with n > 1 agents. Consequently, there are multiple vectors
α∗ ∈ Rmp satisfying (44).
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Given an optimal dual solution̂α that satisfies∇f(x∗) +
ET

o α̂ = 0, its projection onto the column space ofEo, denoted
by α∗, is also an optimal dual solution. This is true because
according to the property of projection,ET

o

[
α̂ − α∗

]
= 0

and henceET
o α̂ = ET

o α∗. Therefore,α∗ satisfies∇f(x∗) +
ET

o α∗ = 0 and is an optimal dual solution, showing that there
exists an optimal dual variableα∗ lying in the column space
of Eo.

We prove uniqueness of such anα∗ by contradiction.
Consider two vectorsEora andEorb both lying in the column
space ofEo where ra, rb ∈ Rnp and Eora 6= Eorb. If they
are both optimal dual solutions, then from (44)

∇f(x∗(k)) + ET
o Eora = 0, (45)

∇f(x∗(k)) + ET
o Eora = 0.

Subtracting the two equalities in (45) yields

ET
o Eo[ra − rb] = 0. (46)

Observing that‖ET
o Eo[ra−rb]‖ ≥

√
2γo‖Eo[ra−rb]‖ where

γo is the smallest nonzero eigenvalue value ofLo = ET
o Eo/2

and hence
√

2γo is the smallest nonzero singular value ofEo,
(46) implies that‖Eo[ra − rb]‖ = 0, which contradicts with
Eora 6= Eorb. Since this is absurd we must haveEora = Eorb

implying that there is a unique optimal dual solutionα∗ lying
in the column space ofEo.

APPENDIX III
PROOF OFLEMMA 2

Proof : In this proof we reuse some intermediate results
from the proofs of Proposition1 and Lemma2. Begin by
considering (37) and reorder terms to conclude that under the
initial conditions α(0) = −β(0) and Eox(0) = 2z(0), we
have that

c

2
Eox(k + 1) = α(k + 1)− α(k). (47)

Further consider (38) and use the definitioñLu = cLu +
ρInp = (c/2)ET

u Eu + ρInp to write

∇f(x(k)) + L̃u

[
x(k + 1)− x(k)

]
+ ET

o α(k + 1) = 0. (48)

For a pair of optimal primal and dual solutionsx∗ and α∗,
combining the KKT conditions∇f(x∗)+AT λ∗ = 0 [cf. (41)]
andBT λ∗ = 0 [cf. (42)] yields

∇f(x∗) + ET
o α∗ = 0, (49)

as we have shown in (44). Now we consider the other KKT
condition Ax∗ + Bz∗ = 0 [cf. (43)]. From the definitions
of A = [As;Ad] and B = [−Imp;−Imp], we separate the
condition intoAsx

∗−z∗ = 0 andAdx
∗−z∗ = 0. Subtracting

the two equalities and using the definition of the oriented
incidence matrixEo = As − Ad, it follows that Eox

∗ = 0
and consequently

c

2
Eox

∗ = 0. (50)

Subtracting (49) from (48) yields (18) and subtracting (50)
from (47) yields (19).

APPENDIX IV
PROOF OFLEMMA 3

Proof: From Assumptions1 and2 the aggregate cost function
f(x) is convex and has Lipschitz continuous gradients with
constantMf , therefore it holds, see e.g., [37],

1
Mf

‖∇f(x(k))−∇f(x∗)‖2 (51)

≤ [x(k)− x∗]T [∇f(x(k))−∇f(x∗)]

= [x(k + 1)− x∗]T [∇f(x(k))−∇f(x∗)]

+ [x(k)− x(k + 1)]T [∇f(x(k))−∇f(x∗)] .

We consider the two terms on the right-hand side of (51)
separately. For the first summand in (51) substitute the result
in (18) of Lemma2 for the factor∇f(x(k))−∇f(x∗) so as
to write

[x(k + 1)−x∗]T [∇f(x(k))−∇f(x∗)] (52)

= [x(k + 1)− x∗]T L̃u [x(k)− x(k + 1)]

− [x(k + 1)− x∗]T ET
o [α(k + 1)− α∗] .

According to (19) we know that(c/2)Eo[x(k + 1) − x∗] =
α(k + 1)− α(k), hence (52) can be rewritten as

[x(k + 1)−x∗]T [∇f(x(k))−∇f(x∗)] (53)

= [x(k + 1)− x∗]T L̃u [x(k)− x(k + 1)]

− 2
c

[α(k + 1)− α(k)]T [α(k + 1)− α∗] .

Use the the definition of the Euclidean norm with respect to
the matrixL̃u to conclude that

2 [x(k + 1)− x∗]T L̃u [x(k)− x(k + 1)] (54)

=‖x(k)−x∗‖2
L̃u
−‖x(k + 1)−x∗‖2

L̃u
−‖x(k)−x(k − 1)‖2

L̃u
,

which can be easily verified by expanding the squares and
canceling terms in the right hand side. Further observe that

2 [α(k + 1)− α(k)]T [α(k + 1)− α∗] (55)

= ‖α(k+1)− α(k)‖2− ‖α(k)− α∗‖2+ ‖α(k+1)− α∗‖2,
which can be easily verified as well by expanding the squares
and canceling terms in the right-hand side. Substituting (54)
and (55) into (53) and using the definition of the energy
function Vx∗,α∗(k) in (20), yields

[x(k+1)− x∗]T [∇f(x(k))−∇f(x∗)] (56)

= Vx∗,α∗(k)− Vx∗,α∗(k + 1)

− 1
2
‖x(k + 1)− x(k)‖2

L̃u
− 1

c
‖α(k + 1)− α(k)‖2.

The second summand in the right-hand side of (51) can
be upper bounded using the basic inequality〈ra, rb〉 ≤
(Mf/4)‖ra‖2 +(1/Mf )‖rb‖2, wherera, rb ∈ Rnp andMf >
0, to write

[x(k)− x(k + 1)]T [∇f(x(k))−∇f(x∗)] (57)

≤ Mf

4
‖x(k)− x(k + 1)‖2 +

1
Mf

‖∇f(x(k))−∇f(x∗)‖2.
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Substituting the equality in (56) and the upper bound in (57)
for the corresponding terms of (51) yields after regrouping
terms

Vx∗,α∗(k)− Vx∗,α∗(k + 1) (58)

≥ 1
2
‖x(k + 1)− x(k)‖2

L̃u−Mf Inp/2
+

1
c
‖α(k + 1)− α(k)‖2.

Observe the fact that the smallest eigenvalue ofL̃u is cγu +ρ
such that the smallest eigenvalue ofL̃u −MfInp/2 is cγu +
ρ−Mf/2. Hencecγu +ρ−Mf/2 > 0 guarantees that‖x(k+
1) − x(k)‖2

L̃u−Mf Inp/2
≥ ξ‖x(k + 1) − x(k)‖2

L̃u
whereξ =

(cγu +ρ−Mf/2)/(cγu +ρ). Also, we know that‖α(k+1)−
α(k)‖2 ≥ ξ‖α(k + 1) − α(k)‖2 as ξ < 1. Substituting these
inequalities into (58) yields (22) and completes the proof.

APPENDIX V
PROOF OFTHEOREM 1

Proof: Lemma3 implies thatVx∗,α∗(k) is monotonically non-
increasing. Sincecγu +ρ−2Mf > 0 by hypothesis, we know
that L̃u Â 0 as its smallest eigenvaluecγu + ρ > 0, and
thusVx∗,α∗(k) is nonnegative. These two facts guarantee con-
vergence ofVx∗,α∗(k), which further guarantees convergence
of (1/2)‖x(k + 1) − x(k)‖2

L̃u
+ (1/c)‖α(k + 1) − α(k)‖2

to 0. Again, due toL̃u Â 0 we conclude that bothx(k +
1) − x(k) and α(k + 1) − α(k) converge to 0. From the
convergence ofx(k + 1) − x(k) and (38), we conclude that
∇f(x(k))+ET

o α(k+1) converges to 0, which further implies
that∇f(x(k+1))+ET

o α(k+1) converges to 0 by the Lipschitz
continuity of∇f(x). From the convergence ofα(k+1)−α(k)
and (37), we conclude that(c/2)Eox(k) converges to 0.

Let x∗ andα∗ be a pair of optimal primal and dual solutions
of (4) whose values are finite. Monotonicity and nonnegativity
of Vx∗,α∗(k) imply that the sequence(x(k), α(k)) lies in a
compact region. Therefore,(x(k), α(k)) has at least a subse-
quence that converges to a limit point. From the discussion
above, for any limit point(x̂, α̂) we know that∇f(x̂)+ET

o α̂
and (c/2)Eox̂ = 0. Hence, we conclude that any limit point
(x̂, α̂) satisfies the KKT conditions (cf. (49) and (50)) and is
an optimal solution to (4).

To complete the proof, it remains to show that the sequence
(x(k), α(k)) only has a unique limit point. Let(x̂a, α̂a) and
(x̂b, α̂b) be any two limit points of(x(k), α(k)). As we have
proved above, both(x̂a, α̂a) and(x̂b, α̂b) are optimal solutions
to (4). Similar to (20), we define the energy functions

Vx̂a,α̂a
(x, α) :=

1
2

∥∥x− x̂a

∥∥2

L̃u
+

1
c

∥∥α− α̂a

∥∥2
, (59)

Vx̂b,α̂b
(x, α) :=

1
2

∥∥x− x̂b

∥∥2

L̃u
+

1
c

∥∥α− α̂b

∥∥2
.

Also, we letVx̂a,α̂a
(k) = Vx̂a,α̂a

(x(k), α(k)) andVx̂b,α̂b
(k) =

Vx̂b,α̂b
(x(k), α(k)). From (22) we have

Vx̂a,α̂a
(k) ≥ Vx̂a,α̂a

(k + 1), (60)

Vx̂b,α̂b
(k) ≥ Vx̂b,α̂b

(k + 1).

Hence we know the limits

lim
k→∞

Vx̂a,α̂a
(k) = ηa < ∞, (61)

lim
k→∞

Vx̂b,α̂b
(k) = ηb < ∞.

Consider the equality

Vx̂a,α̂a
(k)− Vx̂b,α̂b

(k) (62)

=− 〈x(k), x̂a − x̂b〉L̃u
− 2

c
〈α(k), α̂a − α̂b〉

+
1
2
‖x̂a‖2L̃u

+
1
c
‖α̂a‖2 − 1

2
‖x̂b‖2L̃u

− 1
c
‖α̂b‖2.

Since(x̂a, α̂a) is a limit point of (x(k), α(k)), using (61) and
taking the limit of (62) leads to

ηa − ηb =− 〈x̂a, x̂a − x̂b〉L̃u
− 2

c
〈α̂a, α̂a − α̂b〉

+
1
2
‖x̂a‖2L̃u

+
1
c
‖α̂a‖2 − 1

2
‖x̂b‖2L̃u

− 1
c
‖α̂b‖2

=− 1
2
‖x̂a − x̂b‖2L̃u

− 1
c
‖α̂a − α̂b‖2. (63)

Similarly, since(x̂b, α̂b) is a limit point of (x(k), α(k)), using
(61) and taking the limit of (62) leads to

ηa − ηb =− 〈x̂b, x̂a − x̂b〉L̃u
− 2

c
〈α̂b, α̂a − α̂b〉

+
1
2
‖x̂a‖2L̃u

+
1
c
‖α̂a‖2 − 1

2
‖x̂b‖2L̃u

− 1
c
‖α̂b‖2

=
1
2
‖x̂a − x̂b‖2L̃u

+
1
c
‖α̂a − α̂b‖2. (64)

Thus we must have(1/2)‖x̂a−x̂b‖2L̃u
+(1/c)‖α̂a−α̂b‖2 = 0,

which proves that the limit point of(x(k), α(k)) is unique.

APPENDIX VI
PROOF OFTHEOREM 2

Proof: We begin the proof in a way similar to what we have
done in the proof of Lemma3. Instead of using the fact that the
aggregate cost functionf(x) is convex (cf. Assumption1) and
has Lipschitz gradients with constantMf (cf. Assumption2)
in Lemma3, here we observe that the aggregate cost function
f(x) is strongly convex with constantmf (cf. Assumption3).
Further, we consider the relation betweenx(k + 1)− x∗ and
∇f(x(k + 1)) − ∇f(x∗) instead of that betweenx(k) − x∗

and∇f(x(k))−∇f(x∗). Under Assumption3 it holds

mf‖x(k + 1)− x∗‖2 (65)

≤ [x(k + 1)− x∗]T [∇f(x(k + 1))−∇f(x∗)]

= [x(k + 1)− x∗]T [∇f(x(k))−∇f(x∗)]

+ [x(k + 1)− x∗]T [∇f(x(k + 1))−∇f(x(k))] .

Manipulating the first term at the right-hand side of (65) as we
have done in the proof of Lemma3 (cf. (52)-(55)), we obtain
the equality (cf. (56))

[x(k+1)− x∗]T [∇f(x(k))−∇f(x∗)] (66)

= Vx∗,α∗(k)− Vx∗,α∗(k + 1)

− 1
2
‖x(k + 1)− x(k)‖2

L̃u
− 1

c
‖α(k + 1)− α(k)‖2.

Substituting (66) into (65) yields

mf‖x(k + 1)− x∗‖2 (67)

≤ [x(k + 1)− x∗]T [∇f(x(k + 1))−∇f(x(k))]
+ Vx∗,α∗(k)− Vx∗,α∗(k + 1)

− 1
2
‖x(k + 1)− x(k)‖2

L̃u
− 1

c
‖α(k + 1)− α(k)‖2.
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Next, we prove that there exists a contraction parameter

δ = min
{

mf − θ/2
(cΓu + ρ)/2 + (µM2

f )/(cγo)
, (68)

(cγu + ρ)/2−M2
f /(2θ)

µ(cΓu + ρ)2/[(µ− 1)(2cγo)] + µM2
f /(cγo)

}
> 0,

such that it holds

δVx∗,α∗(k + 1) (69)

≤ mf‖x(k + 1)− x∗‖2 +
1
2
‖x(k + 1)− x(k)‖2

L̃u

− [x(k + 1)− x∗]T [∇f(x(k + 1))−∇f(x(k))].

In (68), µ is an arbitrary constant satisfyingµ > 1 and θ is
an arbitrary constant satisfying2mf > θ > M2

f /(cγu + ρ)2.
Observe that such aθ exists since by hypothesismf (cγu +
ρ)2 > M2

f /2 and guaranteesδ to be positive.
To prove (69), we develop lower bounds for its left-hand

side terms and upper bounds for its right-hand side terms.
Observing that∇f(x) is Lipschitz continuous with constant
Mf and substituting the expression of∇f(x(k))−∇f(x∗) in
(18), we have

M2
f ‖x(k)−x∗‖2 (70)

≥ ‖∇f(x(k))−∇f(x∗)‖2
= ‖L̃u[x(k)− x(k + 1)]− ET

o [α(k + 1)− α∗]‖2.
Using the basic inequality‖vb−va‖2 ≥ (1/µ)‖va‖2−(1/(µ−
1))‖vb‖2 that holds for anyµ > 1, we separate the right-hand
side of (70) and obtain

M2
f ‖x(k)− x∗‖2 (71)

≥ 1
µ
‖ET

o [α(k+1)− α∗]‖2 − 1
µ−1

‖L̃u[x(k)− x(k+1)]‖2.

Since the largest eigenvalue of̃Lu is cΓu + ρ, we have
‖L̃u[x(k) − x(k + 1)]‖2 ≤ (cΓu + ρ)2‖x(k) − x(k + 1)‖2;
also, since bothα(k + 1) and α∗ lie in the column space of
Eo and the smallest nonzero eigenvalue ofLo = (ET

o Eo)/2
is γo it holds ‖ET

o [α(k + 1)−α∗]‖2 ≥ 2γo‖α(k + 1)−α∗‖2.
Using these inequalities (71) leads to

δ

c
‖α(k + 1)− α∗‖2 ≤ δ

2cγo
µM2

f ‖x(k)− x∗‖2 (72)

+
δµ(cΓu + ρ)2

2cγo(µ− 1)
‖x(k)− x(k + 1)‖2.

Again from the basic inequality and Lipschitz continuity of
∇f(x), for any θ > 0 it holds

−[x(k + 1)− x∗]T [∇f(x(k + 1))−∇f(x(k))] (73)

≥− θ

2
‖x(k + 1)−x∗‖2 − 1

2θ
‖∇f(x(k + 1))−∇f(x(k))‖2

≥− θ

2
‖x(k + 1)− x∗‖2 − 1

2θ
M2

f ‖x(k + 1)− x(k)‖2.

Since the largest and smallest eigenvalues ofL̃u arecΓu + ρ
and cγu + ρ (which is positive by hypothesis), respectively,
‖x(k + 1) − x(k)‖2

L̃u
≥ (cγu + ρ)‖x(k + 1) − x(k)‖2 and

‖x(k +1)−x∗‖2
L̃u
≤ (cΓu + ρ)‖x(k +1)−x∗‖2. Combining

these two inequalities as well as (72) and (73), the sufficient
condition of (69) is
(

mf − θ

2
− δ(cΓu + ρ)

2

)
‖x(k + 1)− x∗‖2 (74)

+

(
cγu + ρ

2
− M2

f

2θ
− δµ(cΓu + ρ)2

2cγo(µ− 1)

)
‖x(k + 1)− x(k)‖2

≥ δ

2cγo
µM2

f ‖x(k)− x∗‖2,

which is true for the contraction parameterδ > 0 in (68) since
2‖x(k + 1) − x∗‖2 + 2‖x(k + 1) − x(k)‖2 ≥ ‖x(k) − x∗‖2.
Combining (67) and (69) yields the claim in (24).
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