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Abstract—This paper develops the Decentralized Linearized and those operating in the dual domain. In the primal domain
Alternating Direction Method of Multipliers (DLM) that min-  methods, each agent averages its local iterate with those of
imizes a sum of local cost functions in a multiagent network. neighbors and descends along its local negative (sub)gradient

The algorithm mimics operation of the decentralized alternating . . . : . . .
direction method of multipliers (DADMM) except that it lin- direction. Typical primal domain methods include the dis-

earizes the optimization objective at each iteration. This results tributed (sub)gradient method (DGM) [13]-[16] and the dual
in iterations that, instead of successive minimizations, implement averaging method [17], [18]. The dual domain methods rewrite

steps whose cost is akin to the much lower cost of the gradient (1) to a constrained form where the constraints force local
descent step used in the distributed gradient method (DGM). The g4 1ions to reach global consensus. The dual ascent method

algorithm is proven to converge to the optimal solution when the . . . .
local cost functions have Lipschitz continuous gradients. Its rate is hence applicable because (sub)gradients of the dual function

of convergence is shown to be linear if the local cost functions are depend on local and neighboring solutions only and can
further assumed to be strongly convex. Numerical experiments thereby be computed without global cooperation [19], [20].
in least squares and logistic regression problems show that the The alternating direction method of multipliers (ADMM)

number of iterations to achieve equivalent optimality gaps are 7 i : ;
similar for DLM and ADMM and both much smaller than those modifies dual ascent by penalizing the constraints with a

of DGM. In that sense, DLM combines the rapid convergence of guadratic term and_the resulting algorithm, _the decentralized
ADMM with the low computational burden of DGM. ADMM (DADMM), improves numerical stability as well as

rate of convergence [21]-[24].

The main advantage of the primal domain methods is
their low computation burden. The operation required at each
iteration is akin to a (sub)gradient step and, hence, entails a
I. INTRODUCTION small computation burden. However, existing primal domain

Consider a multiagent system composednofhetworked Methods suffer from either slow convergence or low accuracy.

agents whose goal is to solve a decentralized optimizati¥¥jth time-varying stepsizes, the distributed gradient method
problem with a separable cost of the form and the dual averaging method converge to the optimal solu-

tion at sublinear rates [16], [17]. If the stepsize is constant, the
distributed gradient method is able to achieve a linear rate of
convergence under the assumption that the local cost functions
have Lipschitz gradients and are strongly convex; however,
The variablez € R” is common to all agents whose aim ighe algorithm converges not to the actual optimizer but to a
to find an optimal argument* = argmin 7", fi(Z). We peighborhood of the optimal solution [15]. The dual domain
say (1) is decentralized because, despite the common goalgéthods, on the other hand, converge relatively fast to the
finding z*, the local cost functiory; : R” — R is known to  exact optimal solution [24] but have high computation burden.
agenti only. The decentralized optimization problef) &rises |ndeed, each agent needs to solve an optimization problem at
in various applications, such as event detection in wireleggch jteration, whose objective is the local cost function plus
sensor networks [2]-[4], state estimation in smart grids [Sdome other term — a linear term in the dual ascent method [19]
[6], spectrum sensing in cognitive radio networks [7]-[9], angnd a quadratic term in DADMM [21]—[23]. Since this local
decentralized machine learning in computer networks [10pptimization problem has no explicit solution unless the local
[12], to name a few. cost function has a special structure, it has to be solved by a
While aggregating all functions at a common location igca| iterative minimization method.

possible, it is more efficient to design decentralized optimiza- This paper develops the decentralized linearized ADMM
tion algorithms in which agents iterate through informatiO(DLM) algorithm that enjoys the advantages of both the primal
exchanges with neighboring agents. Decentralized algorithgigd the dual domain methods, i.e., low computation burden
generating iterates that converge to an optimal argumenf  anq fast convergence to the exact optimal solution. Besides
(1) can be divided into those operating in the primal domaifleveloping DLM we prove its convergence to the optimal
o - . __argument provided that the local cost functions have Lipschitz
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algorithms that are known as linearized ADMM [25]-[27] bulz, = A; — A4 and the unoriented incidence matrix &g =

it is not identical to either of them; see Rem&:kMore closely A; + A,4. The extended oriented (signed) Laplacian is given

related approaches are the decentralized inexact ADMM [28] L, = (1/2)EL'E,,, the unoriented (unsigned) Laplacian by

and ADMM+ [29]. Their differences with DLM and with L, = (1/2)ET'E,, and the degree matrix containing degrees

respect to each other are relatively minor but lead to differedi in the diagonal blocks byD = (1/2)(L, + L.). Let

analyses that provide complementary insights. I, and~, be the largest and smallest eigenvaluesiqf
This paper begins by reformulating the decentralized optiespectively, andy, be the smallest nonzero eigenvalue of

mization problem(I) to a constrained form, which is solvedL,. The eigenvalue§',, v,, and~, are measures of network

through alternating minimization of the augmented Lagrangiamonnectedness [30JVe make the following assumptions on

and linearization of the local cost functions (Sectibp We the local cost functiong;.

further reorganize the iterations and introduce an initialization

condition so that a simpler DLM algorithm is obtained (PrOPOAssumption 1 The local cost functiong; are proper closed

sition/1). We then proceed to analyze convergence propertigsnvex and differentiable.

of DLM (Sectionllll) under the assumptions that the local ob-

jective functions have Lipschitz continuous gradients and afe . . _ . .
strongly convex (Sectiofll-A). The assumption of Lipschitz Assumptlon 2 The local cost functionsf; have Lipschitz

continuous gradients guarantees convergence of the algorit%%qtmuous gradients. There is a positive constft > 0

(Theoreml in Sectionlll-B) while the addition of a strong TSUCh that for 6}” agentsa~nd for any pair Ot points, andz,
convexity assumption establishes a linear rate of convergellutchIdS IVfi(Za) = VL@ < My[[Za — Tl

(Theorem[2 in Sectionllll-C). Numerical experiments are

presented (SectiofV) for least squares (SectidV-A) and Assumption 3 The local cost functiong; are strongly con-
logistic regression (SectioiV-B) problems. The numerical vex. There is a positive constant; > 0 such that for all
results corroborate theoretical findings on DLM. They alsagentsi for any pair of pointsi, and #; it holds [z, —
show the number of iterations to achieve equivalent optimalip]” [V fi(Za) — V fi(Z3)] > my||Za — Zp]|>.

gaps are similar for DLM and DADMM and both much

smaller than those of DGM. In that sense, DLM combines the

rapid convergence of DADMM with the low computationaly papMM: Decentralized ADMM

burden of DGM (SectiolV).
To develop DLM for a problem having the form of)(we

Notation For column vectors, ..., v, we use the notation introduce variables:;; € R? representing local copies of the
v := [v1;...;0,] tO represent the stacked column vector variablez, auxiliary variablesz;; € R” associated with each
For a block matrix)/ we use(M); ; to denote the(i, j)th arc (i, 5) € A, and reformulatel) as

block. Given matriced/, ..., M,, we use diaghM, ..., M,)
to denote the block diagonal matrix who&h diagonal block .

is M;. Let ||v|] be the Euclidean norm of. For a positive min > fi(@:),
definite matrixM, ||v||as := VvT Mv is the norm ofv with
respect toM and (vy,v2) s = vi M, is the inner product

of v; andwv, with respect tol. The constraintsz; = z; and z; = z; force neighboring
agentsi and j to reach consensus on their local copigs
II. ALGORITHM DEVELOPMENT andz;. Since the edges are bidirectional, we have that
. zij = zji = x4, for all(i, j) € A. Insofar as the network is
Consider a connected network composed of a set Ofcojnnec%ed, th?s local (con)sensus implies that the variables in
agentsy = {1,...,n} a.”d. a'set ofn ‘?rCSA - {L,...,m}, the feasible set 0f2) must bex; = z; for all, not necessarily
where each are ~ (i,j) is associated with an Orderedneighboring, agents, j € V. Thus, @) is equivalent to[)

pair (i’j). in(_jica_ting_thati_can commun_icate tg.- Assume for connected networks in the sense that foriadind j the
communication is bidirectional so that if arc~ (i,5) € A optimal arguments of2) must satisfys? = #* and 2, = "

. p o .
the opposite are’ ~ (j,7) € A. We refer to agents adlacemwhere, we recalli* is an optimal solution of).

to 7 as the neighbors of and denote their set a§/; := . - N
{j : (ij) € A}. The cardinality of this set is represented Using the definitions of the arc source and arc destination

) matricesA, and A; we can rewrite|2) in a more compact
by d; : |N;| and referred to as the degree of agéenfurther f s 4 ) BL
. . n . orm. To do so define the vectar := [z;;...;x,] € R™
define the block arc source matrik, € R™P"? containing concatenating all local variables; and the vectorz =
m X n square blockg§A4;).; € RP*? of dimensionp. The 9 ¢ o

block (A,). is not identically null if and only if the arc [Zl;'l“;zan] G]Rh " concatenaing all ?ﬁé’ﬂﬂafyl‘é&gaﬁ'ﬁ:

e ~ (i, ) originatesat nodei in which case(A,).; = I, is 4" r.1tro uce the aggr(cajgate functigh: ._)f elined as
given by thep x p identity matrix. Likewise, define the block () :=>.i=y fix:) and rewrite ) in matrix form as

arc destination matrixl; € R™P*"P containingm x n square min f(z), s.t. Agg—z2=0, Agx—z=0. (3)

blocks (Ag4)c; € RP*P. The block(Aq)e; = I, € RP*P if

the arce ~ (i, j) terminatesat node;j and is null otherwise. Further define the matrixl = [As; A4] € R?™P*"P stacking
The extended oriented incidence matrix is then written #ise arc source and destination matricés and A; and the

(2)
i=1
s.t. x; = 2y, x; = 2z, forall (i,j) € A



matrix B = [—I,,; —In,| stacking the opposite of two where the approximation parameteis a constant. Comparing
identity matrices so thal3j reduces to the DADMM iteration in 6) with the DLM iteration in B)
: ‘ _ we see that the terW f(z(k))” [z — z(k)] + ||z — z(k)]||?

min f(z), st Az+Bz=0. ) in the latter is a quad(ra'sic))ap[proxin(]a?[i]on ;5’|(|a:) at (p())|i|nt
Introduce now Lagrange multipliers, = a;; associated with z(k). The steps in@) and [7) remain unchanged with respect
the constraintss; = z;; and Lagrange multiplier§. = 5;; to DADMM. The DLM algorithm is therefore defined by
associated with the constraints = z;;. Group the multipliers recursive application of8), (6) and (7).
a. in the vectora = [ag;. . .; ] € R™P and the multipliers  Using first order optimality conditions for the minimization
Be in the vectorg = [B1;...;6,] € R™ which are thus problems inl8) and ) yields explicit expressions far(k+1)
associated with the constraigz —z = 0 and Az — 2 =0, andz(k + 1). The resulting equation for(k + 1) is
respectively. Grouping: and 5 in the multiplier A = [a; 8] €
R2™? which is therefore associated with the cons[traéln]:t+ Vi(@(k) + plak +1) = x(k)]

Bz =0, we define the augmented Lagrangian 4 4s + ATA(k) + cAT [Az(k + 1) + Bz(k)] =0, (9)
L(z,2,\) = f(x) + M\[Az + Bz] + 5||Ag; + Bz|)?, which can be solved explicitly for(k + 1) by inverting
) ) ) ) 2 the matrixpl,,, + cAT A. Likewise, the first order optimality
wherec > 0 is an arbitrary strictly positive constant. condition for ) yields

The ADMM algorithm proceeds through alternating min-
imizations of the augmented Lagrangian with respect:to BTA(k) 4+ ¢BT [Az(k + 1) + Bz(k+1)] =0, (10)
and z followed by a gradient ascent update of the Lagrang/v%ch can be solved for
multiplier. Specifically, introduce iteration indek and let By exploiting the sparse structure of’ A and BT B it

xz(k), z(k), and \(k) be variable iterates at time. At each is. possible to see that the variable component) and
iteration the augmented Lagrangian is minimized with respect P b dated b T P Ientl /
to = andz in an alternating fashion z;;(t) can be updated by agehtusing its own local iterates

and iterates of neighboring agents. Instead of developing

(k+1) if we invert the matrixB” B.

x(k 4+ 1) := argmin L(x, z(k), A(k)), (5) that decomposition we first notice that, similar to DADMM,
o the iterations in9), (10) and [7) can be replaced by a
2k +1) = argf“nﬁ(m(k +1),2,A(k)). (6)  simpler set of iterations if the variables are properly initialized.

. . Such initialization is adopted henceforth and specified in the
After updating variables(k + 1) and z(k + 1) the Lagrange following assumption.

multiplier A(k+1) is updated through the dual ascent iteration

Mk +1) = A(k) + c[Az(k+ 1) + Bz(k+1)].  (7) Assumption 4 We require the initial Lagrange multiplier
A(0) = [«(0); B(0)] to satisfya(0) = —F(0) and the initial

Observing the special structures of the cost functjdm) auxiliary variable 2(0) to be such thatE,z(0) = 22(0).

and the matricesd and B, the iterations in§)-(7) can be : , - o 7
implemented in a decentralized manner. This implementati%e f(u];;[hegRgsfme variableg(k) = [¢1(k);...; ¢n(k)] =
is the DADMM algorithm [22]—[24]. o ) € KTF.

The computation cost of a DADMM iteration is dominated |f the initialization condition in Assumptio@# holds, the
by the Lagrangian minimization with respectidn (5). The ayxiliary variablez(k) can be eliminated and the Lagrange
dual update in'{) requires a few operations per agent becauggyltipliers A(k) € R2™? replaced by the smaller dimension

the matricesd and B are as sparse as the graph. The minimizgactor¢(k) € R"?. We summarize the simplified algorithm in
tion with respect ta: in (6) is a simple quadratic minimization the following proposition; see [23], [31].
that can be solved in a closed form. The minimizatior&h in

general, requires implementation of an iterative minimizatioyoposition 1 Consider the sequence of variable§k) gen-
method. The idea of DLM is to avoid this minimization as Weyated by(9), (10) and (7). If Assumptiorid holds, iterates

explain in the following. x(k + 1) can be alternatively generated by the recursion
B. DLM: Decentralized Linearized ADMM z(k+1) =Dt |Lyx(k) — Vf(z(k) —ok)|, (11)
Similar to DADMM, the proposed DLM algorithm also (x4 1) = ¢(k) + cLoz(k + 1), (12)

operates with alternating minimizations with respect:tand ~
z followed by a dual ascent step on the multiplertHowever, Where we define the weighted degree maltix= 2cD + pl,,),
instead of minimizing exactly with respect towe perform an and the weighted unoriented Laplacidn, = cL., + pln,.
inexact minimization in which the functioyf(z) is replaced f See A dis
by a quadratic approximation centered at the current itera?é.oo - See Appendrd. u
In particular, say that past iterategk), z(k) and A(k) are  The initial conditions in Assumptio® are not difficult
given. Then, the primal iterate(k + 1) is defined as to satisfy; e.g., it suffices to set.(0) = £.(0) = 0 and
n . T Py o i(0) = 2,(0) = 0 for all arcse ~ (i,7) and agentsi.

(k1) = argflmvf(x(k)) (@ — (k) + 2||Jf (k)] On the other hand, implementation oflj and (2) does

N Az + Ba(k Az + Bx(k)I2. (8 Mot rely on Assumpuom. Smce_ the_|terat|ons in (11) an(_j
+ k)" [Aw + Ba(k)] + 2” z+ BB, @) (12) are equivalent to the iterations in (9), (10) and (7) with



Algorithm 1 DLM algorithm run by agent variablesz; (k) from the previous iteration. Implementation of

Require: Initialize local variables tac;(0) and¢;(0) = 0. Step 4 requires current neighboring variablegk + 1), which
L: for timesk = 1,2,... do become available through the exchange implemented in Step
2. Compute local solutiom; (k + 1) from [cf. (13)] 3. This variable exchange also makes variables available for
zi(k + 1) = z;(k) the update in Step 2 corresponding to the following time index.

We proceed to analyze the convergence properties of DLM

4 {vfl zi(k) e 3 [ailh) = (B)] + 4B, trer wo pertinent remarks.

JEN;

3:  Transmitz;(k+1) / receivex;(k+1) from neighborsj € A;.

4:  Update local dual variable;(k + 1) as [cf. [4)] Remark 1 As intended, DLM is advantageous over DADMM
due to its lower computation burden. The iterationsli) @nd
ik +1) = ¢i(k) +c Y [wilk+1) —z;(k+1)]. (14) contain simple algebraic operations and a gradient descent
JEN step. The counterpart ofL8) in DADMM is a, most often
5: end for nontrivial, minimization of f;(x;) augmented by a quadratic

term. It is also interesting to compare DLM and DGM [13].
In the latter, agent updates its local variable;(k) as
proper initialization, we implement (11) and (12), not (9), (10)
and (7). To implement (11) and (12) and have Proposition z;(k+1)= >  wyxz;(k) — e(k)Vfi(z:(k)),  (15)
1 hold we just need to make sure thaf0) lies in the JEN;Ui
column space ofE”. Further observe that the matricds
and L,, are linear combinations of the degree matfixand
the unoriented Laplaciafi,, with identity matricesl,,. The
coefficients in these linear combinations arec, andp, which
are parameters of DLM.

As is the case 019), (10) and [7), the operations inl{l) and
(12) can be implemented in a decentralized manner. Consi
the component of the update fa(k + 1) corresponding to
the variablez;(k + 1). Using the definitions of the weighted
degree matrixD, the weighted unoriented Laplacidn,, and
the oriented incidence matri¥,, we can write this component.
of (11) as

i (k + 1) = a;(k) (13)

where ¢(k) is a stepsize sequence that can be chosen as
constant or nonsummable vanishing and the weightsare
elements of a doubly stochastic matfik = [w;;] € R"*"

[32]. The idea of the update irl¥) is to descent along the
negative gradient directior-V f;(x;(k)) while mixing local

é\nd neighboring iterates. This idea can be also construed as
an interpretation ofX13) with the difference being the addition

of the memory termg;(k). In that sense we can think of
DLM as a primal method with memory — as opposed to a dual
method with inexact Lagrangian minimization. Irrespective of
interpretation, the computation cost of DLM is of the same
order as DGM.

Remark 2 DLM differs from the centralized linearized
4 {sz zi(k)) + e Z zi(k) —@;(k)] +¢i(k)|, ADMM in [25], [26] in that the latter linearizes the quadratic
JEN: term (c¢/2)|| Az + Bz||? in the augmented Lagrangian iB) (-
where we define the weighted degige= 2cd; + p such that while DLM linearizes the objective functiofi(z). The central-

= d|ag(d1, ceoydn ). Likewise, using the definition of the ized linearized ADMM in [27] applies to objectives of the form

orlented LaplaciarL, the update inX2) can be written as  f(x) 4+ g(2) and uses linearized versions of these functions in
both, thez(k) iteration in 6) and thez(k) iteration in ).
¢i(k+1) = ¢i(k) +¢ Y [zi(k+1) —2;(k+1)]. (14) This, however, yields an algorithm that is not guaranteed to
JEN; converge to optimal arguments. An extra gradient step is added

The iterations in[13) and @4) have intuitive appeal. The to overcome this limitation. The special structure of the cost
iteration in f13) is reminiscent of gradient descent with stepflinction in 4), namely, that the objective does not contain
size 1/d;. The gradientV f;(z;(k)) is corrected by the sum @ term of the formg(z) precludes this problem. This yields
¢ e, [i(k) — ;(k)] which accounts for the disagreethe simpler linearized algorithm defined £§),((10) and [7)
ment between local variable; (k) and neighboring variables Which we transform into the DLM algorithm defined by1j
z;(k) and the dual variable, (k). In turn, the dual variable and @12).
¢i(k) is just an integration device for past disagreements
¢ ien, [#i(l+1) —z;(I+1)] between local variables; (l)
and neighboring variables;(!) for all times! < k.

An algorithmic summary of DLM is shown in Algorithm  This section analyzes convergence and rate of convergence
1. At time £ = 0 we initialize local variables to arbitrary of the proposed DLM algorithm. We analyze the iterations
x;(0) and ¢;(0) = 0. The latter is one out of many possiblg9), (10) and [7), instead of the iterationsil) and (12)
selections to ensure that the vectof0) is in the column (see also Algorithm 1). Recall that they are equivalent under
space ofEl". For all subsequent times ageingoes through Assumption4 as shown in Propositiof. Sectionlll-A’ pro-
successive steps implementing the primal and dual iteratiorides basic assumptions and supporting lemmas. Seitken
in (13) and (14) as shown in Step 2 and Step 4 of Algorithnproves convergence of DLM, while Sectidit-C| establishes
1, respectively. Implementation of Step 2 requires neighborilaglinear rate of convergence under stronger assumptions.

I1l. CONVERGENCEANALYSIS



A. Preliminaries Likewise, the primal variable differenegk +1) — x* satisfies

The analyses of convergence and rate of convergence are c 1

based on Assumptiori&3. Assumptionl implies that the 9P [e(k +1) = "] = ak +1) — a(k). (19)
aggregate functionf(z) = >, fi(x;) is proper closed pryof: See AppendiAll =
convex and differentiable. Assumptic2 implies that the

aggregate functioryf(xz) has Lipschitz continuous gradients

with constant}. For any pair of points:, andx;, it holds B, Convergence

IVf(ze) = V(x| < Myllxg — . (16) To prove convergence of DLM iterates to an optimal pair
x* ando* of (4) we show that the primal and dual variables
z(k+1) anda(k+1) are closer ta:* anda* than the previous
iteratesz(k) anda(k). More to the point, for a given optimal
pair (z*, a*) define the energy function

Assumption3 implies that the aggregate functiofz) is
strongly convex with constant;. For any pair of pointsz,
andx; it holds

[0 — a3) " [Vf(2a) = V(23)] > myplea — 2] (17)

Assumptionsl andl2 are common in proving convergence of

descent algorithms. Assumptighis also a common require- Recall that the positive definite matri, is defined as

ment to establish linear convergence rates. L, = cL, + pl.,. We show that the energy function
We in\_/estigate convergence the primal variabl&) and 'th Vi e (k) = Vie o (2(K), a(K)) is monotonically decreasing

dual variablea(k), which is a part of the Lagrange multiplieryith an improvement that is related to the squared distance

A(k) = [e(k); B(k)], to their optimal values. Observe that dugetween the two successive poirits(k + 1), a(k + 1)) and
to the consensus constraints, an optimal primal solution hagk), «(k)) as we formally state next.

the formz* = [z*;--- ; Z*] wherez* is an optimal solution

of (1). If the local cost functions are not strongly convex, théflemma 3 Consider iterationg9), (10) and (7) with the initial
there may exist multiple optimal primal solutions; instead, §onditions in Assumptio@. With ~, denoting the smallest
the local cost functions are strongly convex (i.e., Assum@iongjgenvalue of the unoriented Laplacidn, and M; the Lips-

holds), the optimal primal solution is unique. For each optim@hitz continuity constant of the local cost functions’ gradients
primal solution z*, there exist multiple optimal Lagrangedefine the constant

multipliers \* = [a*; 8*] wherea* = —(* as we will prove in
LemmalL. In the analysis of convergence (SectibiB), we §i=(cvu+p—Ms/2)/(cVu+ p). (21)
show thata(k) converges to one of the optimal dual solution
a* whose value depends on the initial dual variabl@). In

establishing a linear rate of convergence (Sectib€), we timesk > 0 we have that the energy functidry- .- (k) =

require that the dual variable is initialized such th40) lies |, (x(k),a(k)) in (20) is monotonically decreasing and
in the column space oF, and consider its convergence to ?s;tigfies ’

unique dual solutiorx* that also lies in the column space o
E,. Existence and uniqueness of suchcenare also proved Vg o« (k+1) < Vi o+ (k) (22)
in Lemmall as we state next.

2 1
;4 —|la—a
c

2
Ly :

Vi o (z,0) := %Hx -z (20)

Assume that the DLM parametersand p are chosen so that
¢ > 0 and that Assumptiondl and 2 hold. Then, for all

=Stk 1)~ a®, ~ llath+ 1) — ah)|”
Lemma 1 Given an optimal primal solution* of (4), there
exist multiple optimal multipliers\* = [a*; 3*] wherea* =
—B3* such that everyz*,\*) is a primal-dual optimal pair.  To guarantee the conditigh> 0 we just need to make or
Among all these optimal duals*, there exists a uniqu&* =, sufficiently large. For future reference further note that we
[*; 3*] such thata* = —(* lies in the column space df,. must havet < 1 for any choice of DLM parametersand p.
Since the energy functiol,- .~ (k) is monotonically de-
creasing and nonnegative, Lemma 3 implies that it must
In the subsequent analyses of convergence and rateeoéntually converge. To prove convergence of the sequence
convergence, we need a couple of equalities that conne¢k) to an optimal solutior:* we need to show not only that
x(k+1), 2(k), a(k+1) anda(k) with a pair of optimal primal the energy functiorV, - (k) converges but that it converges
and dual solutions:* and «*. These equalities are technicato zero for some optimal paifz*,«*). Constructing this
and provided in the following lemma. argument is not difficult if we follow analogous proofs for
the centralized ADMM; see e.g., [26], [33With particular
Lemma 2 Consider iterationg9), (10) and (7) initialized as note, recently [34] also proves convergence of the centralized
in Assumptiordl. Letz* and a* be optimal for(4) and recall ADMM for nonconvex sharing and consensus probleiive.
the definitionL,, = cL., + pI,,,. Then, for all times: > 0, we give the convergence result in the following theorem.
write the gradient differenc&® f(x(k)) — V f(z*) as
Vi(x(k)) — Vf(z*) (18) Thgorem 1_ Qons!der iteratio_ns(9), (10) and (7) with the
- T . initial conditions in Assumptio®. Let Assumptiond and?2
= Ly[z(k) —ax(k+1)] — Eg [a(k+1) =], hold and the constargtin (21) be positive. Then, the sequences

Proof: See Appendi®V. [ ]

Proof: See AppendiAl.



x(k) and a(k) generated by the DLM algorithm convergdet 2* and o* be the unique optimal pair o) for which o*
to an optimal pair of (4). l.e., there exist optimak* and lies in the column space @,. Then, there exists a contraction

A* = [a*; 5*] such that parameters > 0 such the energy function i(20) satisfies
. . : o 1
klgrolo z(k)=2" and klirr;o a(k) =a”. (23) Virar(k+1) < mvx*,a*(k) (24)

Proof: See Appendid/l " Proof: See AppendiVIL [ ]

We emphasize that Theoreh does not specify which

optimal primal and dual solutions(k) and «(k) converge noriented Laplacian eigenvaluds, and 7, the oriented
to. Indeed,z(k) can converge to one of the optimal prima b

. N aplacian eigenvalue,, the strong convexity and Lipschitz
squuqns v a}nd a(k) can converge to one .Of the Corre'constantsnf and My, and the DLM parametersandp — see
;pqndmg .opt|mal dual solutions. However, if Ie&(Q) be (68) in AppendixVI. The result in Theorer@ is analogous to
initialized in the column space OEO,_ from the dual iterate similar results that hold for ADMM [35] and DADMM [24].
alk+ 1) = a(k) + (¢/2)E,x(k + 1) in (37), we know that

NV : The result is also related to the linear convergence results
a(k) always lies in the column space Bf, for all timesk > 0. 9

) . ._of the centralized multi-block ADMM [38], the centralized
Therefore (k) converges to the unique optimal dual SO'““‘"ADMM on quadratic problems [40], as well as the asymptotic
that corresponds ta* and lies in the column space d,; '

! . : linear convergence rate of DADMM [39].
existence and uniqueness of such a dual solution have been] the contraction inequality ir24) we have thaV, (k)

H 4 = T*,a*
proved in Lemmal. shrinks by a factor strictly smaller than 1 at all itera-

. Note that we-n.eed - 0 to have a Proper energy fun.Ct'ontions. Therefore, Theorel indicates linear convergence of
in (22) but that it is possible to have < 0 without violating ; _ |12

) Vi o (k) 10 0. Since Vpx o« (k) = (1/2)||z(k) — z*||2 +
the hypotheses of Theorefin If we choose a negative we ] ’ ! 2 it f "’ that Ile(k 2 al L
just need to make larger to guarante¢ > 0 in (21). As (1/©) |O‘|(_ )7IO‘ I bl ollows 1”1( L* @"||7, also con-
long as¢ > 0, DLM converges to a pair of optimdk*, o*), verges linearly ta) because we have that

The constanty has an explicit expression in terms of the

which shows robustness of DLM to the parametemnd p. |z(k) — 2|2 < Vieor (k+1) (25)
It implies that the cost function of8f, which is the Taylor R k1

expansion of the augmented Lagrangian®j, (nust have a < (1> Ve e (0).

positive definite Hessian. The possibility of selecting negative “\1+96 o

p notwithstanding, our numerical analyses suggest that fastggtestaplish thaz (k) —2* || converges linearly t it suffices
convergence is achieved with a constanthat is slightly {5 \vrite the conventional Euclidean noffm(k) —=*|| in terms

larger than the equivalent constant used in DADMM [24] angs the L, norm |l=(k)—2*||; and take the square root of both

positive constanp of similar order toc — see SectiofV. sides of 25). Substituting the inequalityjz(k) — x*”% >
(cvu + p)|lz(k) — z*||* into (25), we have the following
C. Linear Rate of Convergence corollary of Theoren®.

If we add the strong convexity condition in Assumption

3 to the hypotheses in Theorefhwe can establish a linear Corollary 1 Consider iterationg9), (10) and (7) and assume

rate of convergence for DLM. To do so we use the strorthe same hypotheses of Theor@n Then, there exists a

convexity of the local cost functiong to develop a contraction contraction parameted > 0 such that

inequality for the energy functioft,- .« (z,«) in (20) for a ol 1/2

H * Lk * 1 Vi ax (O)

properly selected optimal pair*, «*) and a properly selected (k) — ¥ < < ) () . (26)

initial multiplier a(0). The particular optimal pair is formed V144 CYu +p

by the unique optimal primal argument — which is unique | e, the primal variablez(k) converges linearly to the unique

because the local cost functiorfisare strongly convex — and gptimal primal variablez*.

the unigue dual optimal solution lying in the column space

of E, — which is unique because we prove so in Lemina Corollarylshows that|xz(k)—2*|| linearly converges t0 if

The initial multiplier «(0) must be selected in the columnthe initial energy functiorV/,- - (0) is finite and the weighted

space ofE,. This is needed because our analysis holds in thaplacian L, = cL,, + pI,, is positive definite. Note that

column space of5, and selectingx(0) in that space ensures||z(k) — x*|| is not necessarily monotonically decreasing as

that a(k) stays in it for all timesk. We emphasize that this V- - (k) is (see Theorer).

setting is different to Lemmé that holds for any pair of

optimal primal and dual solutions and any initial condition thad®emark 3 In Theorem2 and Corollaryl, we require that

satisfies Assumptiod. We present this result in the following(0) lies in the column space df, in addition to the initial

theorem. condition in Assumptiord. Translating the initial condition
of «(0) to that of ¢(0) in Algorithm 1, we can see that the

Theorem 2 Consider iterations(9), (10) and (7) with the initial Lagrange multiplier¢(0) determines where the dual

initial condition in Assumptio® and the further requirement solution converges (Sectidifi-B). To achieve linear rate of

that «(0) lies in the column space &,. Further assume that convergencep(0) must be chosen in the column space of

assumptiond43 hold, that the constant if21) is ¢ > 0, and L, (e.g., ¢(0) = 0) becauses(0) = EX«(0) and L, =




(1/2)ETE, (Sectionlll-C). This is equivalent to choosing
A(0) = [a(0); 5(0)] such that bothy(0) and 3(0) are in the 102
column space ofv,.

IV. NUMERICAL EXPERIMENTS 2|

This section provides numerical experiments to study the
convergence times of DLM as defined by Algorithm 1 for a= 10™
least squares problem (SectibA) and a logistic regression
problem (SectiorlV-B). The local cost functions in the least
squares problem are strongly convex whereas the local func- - |
tions in the logistic regression example are convex but not O DNG, (k) — 03k
strongly convex. We consider various network topologies — 10’"’0 50 100 90> 200 250 300 3w 400
random, line, star, complete, and small world graphs — as well k
as the effect of growing the number of agents in the network.

We also compare the performance of DLM with that of the

decentralized ADMM (DADMM) of [22] as defined byb)-(7) Fig. 1. Comparison of different decentralized optimization algorithms in a
L . . least squares problem. DLM, DADMM, DNG, and DGM with constant and

and the distributed gradlent method (DGM) of [13] as defin nishing stepsizes are shown for a random network with 100 agents

by (15), and an accelerated variant of DGM, the distributeghd 384 edges. DLM has a slope close to DADMM but a much smaller

Nesterov gradient (DNG) method of [16], as defined by computation cost per iteration. DLM has similar computation cost per iteration

as DNG and DGM but converges much faster.
wik+1) = Y wijy;(k) — (k) V fi(yi(k)),
,ieNiUi
yilk +1) = i(k +1) +n(k) (zi(k + 1) — 2i(k)), Algorithm comparisonGiven n = 100 agents select bidirec-

wheren(k) = (k — 1)/(k + 2) is the parameter of Nesterovtional edges at random until obtaining a connected network.
acceleration.ln DGM and DNG, the weight matrix¥ is An example run of DLM, DADMM, DNG, and DGM with

chosen following the maximum-degree rule [32]. Convergené@nstant and vanishing stepsizes are shown for one such

-6

—©—DLM,c=11,p=4
=A=DADMM, ¢ = 0.9
¢ DGM, e(k) = 0.01
C e DGM, e(k) = 0.3/k

iS Studied in terms Of the average abso'ute error netWOI’k in F|g1 In th|S eXample the netWOI’k Contains 384
" edges {n = 768 arcs) out of the4950 possible. Different
e(k) = lz s (k) — 3. parameter combinations are chosen for_ §a<_:h algorithm and
n = results are reported for the one that minimizes the average

absolute errore(k) in (27) after ¥ = 100 iterations. These

The average absolute erre(k) is the average of the local parameters are — 1.1 and p — 4 for DLM, ¢ = 0.9 for

errors |l (k) — 2*|| observed at each agent DADMM, (k) = 0.3/k for DNG, (k) = 0.01 for DGM
with constant stepsize andk) = 0.3/k for DGM with de-
A. Least Squares Regression creasing stepsize. Note that for least squares regression, local

Agenti measures a true signaP € R? through the noisy OPtimization of DADMM boils down to a matrix inversion.
linear transformationy;, = U;i° + w; whereU; € R3%3 js  The convergence rate of DLM is linear as proven in Section
the measurement matrix ang € R? is the noise vector. To Illl More interesting, the difference in the slopes of DLM and
run global least squares regression taking advantage of BRPMM are minimal. The latter requires between 20% to
information collected by all agents we formulate a problerd0% less iterations to achieve a target accuracy. This penalty
as in ) with the local cost function of agent given by in convergence rate is small given that the computation cost
fi(F) = |UiF—y;||? /2. With this particular choice of functions Of €ach DLM iteration involves)(p) operations (cf. steps 2
the iteration in [L3) and, equivalently, Step 2 of Algorithm 1,@nd 4 of Algorithm 1) — in this experiment= 3 — whereas

becomes DADMM re_:quires solution of local optimization problems at
each iteration [22]. Further observe that DLM converges much
zi(k+1) = z;(k) (27) faster than DNG and DGM. This is consistent with earlier

1 theoretical and numerical comparisons of DADMM, DNG, and

— 7| Uik = Ul ui+ c;; [2:(k) — 2;(0)] + &) |- DG (1), [16], [24], P
J i

The iteration inL4) and Step 4 of Algorithm 1 is independentNetwork topology.The slope of the convergence curve of
of the specific form off;(). Elements of the matrix/; are DLM varies with the choice of network topology. Convergence
chosen at random from a normal distribution with zero meawirves for line, star, complete, and small world topologies are
and variance 1. Matrice&; are checked for invertibility by shown in figs.2 and3. The random small world topologies
requiring U U; = 10~* x I3 so that the local functions areare constructed through first forming a cycle topology and then
strongly convex with strong convexity parametef = 10~%.  adding random edges. In all cases we consider 100 agents
A different U; matrix is chosen if this is not satisfied. Theand choose parametarsindp in Algorithm 1 to minimize the
noise vectorsw; € R? follow from a zero-mean Gaussianaverage absolute errefk) in (27) after k = 100 iterations.
distribution with covariance matri [wiwiT] =102 x I5. As seen in Fig2 the fastest and slowest convergence are
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Fig. 2. Convergence of DLM on line, star, complete, and small world graphbig. 4. Convergence of DLM for small world networks of different sizes and

All networks haven = 100 agents. The small world graph is formed by aaverage degrees. Networks with= 100 andn = 500 agents are shown. In
cycle to which 100 extra random edges are added. Convergence is slowesefwh case we add 1 or 7 random edges per agent. The convergence rate of
the line and fastest for the complete graph. The star graph is good at diffusiPigM is more sensitive to the average degree than to the network size.
information with small average degree but large maximum degree. Small

world graphs diffuse information efficiently with small maximum degree.
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formed by a cycle plus a given number of random edges.
The convergence behavior for a small world network with 100
random edges (200 edges in total) is also shown inZ-giith

¢ = 2.8 andp = 2). Each agent in this network communicates
with an average of 4 neighbors. Convergence slope improves
substantially over the line graph while avoiding the excessive
communication cost of a complete graph or the bottleneck of
the star topology. This is, again, not surprising. Small world
networks are good at diffusing information with small degrees
because the addition of random edges decreases the network’s
diameter.

The convergence slope of small world networks depends
on the number of random edges added. In @gve show
convergence curves when we add 100, 300, and 700 random
edges. This corresponds to networks whose average degrees
are 4, 8, and 16, respectively; the parameters are 2.8

Fig. 3. Convergence of DLM on small world networks with different averag@nd p = 2,c=1andp = 2, andc_ = 0-4_ andp = 3,
degree. Convergence slopes for networks with= 100 agents and 100, respectively. The curves corresponding to line and complete

400, or 700 random edges added to the cycle are shown. Convergenc Icg_
the line and complete graphs are also depicted for reference. Adding more

phs are also shown for reference. Adding random edges

random edges to small world networks increases the agents’ average defleSMall world networks increases the agents’ average degree

but expedites convergence.

exhibited by complete (withc
line graphs (withc = 30 and p = 8), respectively. This is
reasonable because these are the graphs for which it take
longest and shortest time possible for the observations of
agent to affect all other agents. The faster convergence r8.Fea
of complete graphs comes at the expense of communication

0.05 and p = 3) and

sle

and expedites convergence. Observe that to reduce commu-
nication cost needed to achieve a target accuracy, there is a
tradeoff in setting the average degree. Increasing the average
degree requires higher communication cost per iteration, but

its gain in expediting convergence becomes marginal when the

network is dense enough. Indeed, when the average degree is
= in this case the network has 100 deterministic edges and
random edges — the speed of convergence is close to that
complete graph, whose average degree is 99.

cost. Agents in the line graph exchange information witBcalability. The experiments above demonstrate a strong de-
one or two neighbors only, whereas in the complete graplendence of the convergence rate of DLM with the network
each agent communicates with all other- 1 agents. Small topology. Here we show that the convergence rate is less
communication cost and steep convergence slope are achiedependent of the network size using small world networks
by the star topology also shown in Fi@.(with ¢ = 3.6 and as a test case. For that matter we consider connected small
p = 5). While aggregate communication cost is small for stavorld networks composed of: k) = 100 agents with100
topologies, the center agent is a communication bottleneck.d&terministic edges and00 random edges; 2 = 100
structure that avoids this problem is a small world networkgents with100 deterministic edges and)0 random edges;
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For this specific choice of functiong(z) the iteration in/L3)
and Step 2 of Algorithm 1 becomes

% {C S [wilk) — (k)] + ik)

JEN;
n i i: yaui exp ( — yauzi(k))
et

1+ exp (— yaulzi(k))

. (30)

The iteration in[14) and Step 4 of Algorithm 1 is independent
of the specific form off;(z). Observe that the local cost
functions f;(z) are convex but not strongly convex. Thus, the
linear convergence guarantees of Sectibrdo not hold. The
numerical results show that, nonetheless, DLM succeeds in
finding z* and does so with a performance very close to the
performance of DADMM — and a much smaller computational

Fig. 5. Comparison of DLM and DADMM on the logistic regression problemCOSt comparable to that of DGM.

In a random small world network composed nof= 100 agents with100
deterministic edges ant)0 random edges, each agértasg; = 50 samples

and each sample is gf = 100 dimension. DLM requires between 20%

As a particular numerical example consider a random small
world network composed of 100 agents with 100

to 30% more iterations to achieve a target accuracy than DADMM, but &eterministic edges anth0 random edges. Each ageinhas

average, each DADMM iteration requires 80 gradient descent iterations.git
follows that in terms of computation cost DADMM is about 60 times mor

expensive than DLM.

3) n = 500 agents with500 deterministic edges and00
random edges; 4p = 500 agents with500 deterministic

50 samples and each sample is of dimensjon=
900. Different from the least squares regression in Section
IV-A, DADMM minimizations required at each step cannot
be computed in closed form. We solve these minimizations
through a local gradient descent algorithm with step§ifeé.

We terminate the local gradient descent when the Euclidean
norm between two successive solutions is less ttart. For

edges and3500 random edges. The corresponding optimanplementation of DADMM and DLM we use the parameters

DLM parameters are 1y = 28 andp = 2; 2) ¢ = 04
andp =3;3)c=3.2andp=2; 4) ¢= 0.6 andp = 3. Fig.

that minimize the absolute erre(k) in (27) after running
k = 400 iterations. These parameters are 1.4 for DADMM

4 shows that convergence rates of DLM are similar for th@ndc = 3 andp = 4 for DLM.

networks with the same average degree, which means similalThe results are shown in Fif. Both algorithms converge
network connectedness, rather than the same network stogvardsz*, but none of them converges linearly. The number
Also observe that the performance of DLM does not degrade iterations required by DLM to achieve a target accuracy

much when the network size increases.

B. Logistic Regression

We consider application of DLM to a logistic regressioH
problem. Agenti has access tg; sample vectors and corre-

sponding classes. Denote the sample vectors;as R? and
the corresponding classes@sc {—1,1} withi=1,...,¢;.
We are interested in observing samples R? and estimating
the probability Fy = 1|u] of observing clasgy = 1. We

postulate that this probability is given by the logistic functio

Ply=1]u] = 1/(1 + exp(—u"Z)) for some vectori to

is larger than those required by DADMM. The difference
is minimal, however. This small increase in the number of
iterations results in a large reduction in the computation cost
of each iteration. Each DLM step requires computation of the
pdate in|27). Each DADMM iteration requires computation
of gradient descent steps that are numerically analogous to
the DLM step in 7). On average, each DADMM iteration

in Fig. 5 requires 80 gradient descent iterations. As DLM
requires between 20% to 30% more iterations to achieve a
target accuracy than DADMM, it follows that in terms of
gomputation cost DADMM is about 60 times more expensive
than DLM.

be determined using the sample and class observation pairs

{ui, ya }i, available a@ll agents. Given this model it follows

that the maximum likelihood estimate of the veciois given
by — see, e.g., [36] —

no qi

¥ = arg@inz Z log (1 + exp (—yiluga?) ) (28)

=1 =1
This problem has the form irl) with the local functions
defined as

qi

5461 = 3t 1+ o))

=1

(29)

V. CONCLUSION

We introduced DLM, a decentralized version of the lin-
earized alternating direction method of multipliers to solve
optimization problems with separable objectives. The method
is a variation of the decentralized alternating direction method
of multipliers (DADMM). The main difference is that instead
of performing a minimization step in the primal domain, an
objective cost linearization is used to yield a step whose com-
putational cost is akin to that of a gradient descent step. This
modification results in DLM having a computational cost per
iteration that is one to two orders of magnitude smaller than
the cost of DADMM. The algorithm was proven to converge
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to optimal arguments at a linear rate when the local objecti®nce by initialization hypothesiél/2)E, xz(0)
functions have Lipschitz continuous gradients and are stronggytrue for all timesk > 0.

convex. Numerical experiments were conducted for a leastUsing (36) to eliminatez(k) from the update forx(k) in
squares problems as well as for a logistic regression proble(35) yields

In both cases the number of iterations required by DLM to 1
achieve a target accuracy are of the same order of thosdk + 1) = a(k) + c[Asx(k +1) — 5 (As + Ag)a(k + 1)]
required by DADMM. Besides having a much smaller total c

computational cost than DADMM, DLM also outperforms the = a(k) + §E0x(k +1). (37)
distributed gradient method (DGM) and its accelerated variaffere we use the definition of the oriented edge incidence

z(0), (36)

APPENDIX |
PROOF OFPROPOSITIONL

Proof: The proof is analogous to similar results in [23], [31
and given here for completeness. Substituting the multipliéﬁ

updateA(k) = A(k + 1) — c[Az(k 4+ 1) + Bz(k + 1)] in (7)
into the update for the primal variablegk + 1) in (9) leads
to

Vi(@(k) + plek+1) — x(k)] (31)
+ ATA(k +1) — cAT"B[z(k + 1) — z(k)] = 0.
Similarly, substituting the multiplier updatgk) = A(k+1)—

matrix £, = As — Ag. Multiplying both sides of 87) by
ET and using the definitions of the oriented Laplacian matrix
= (1/2)ETE, and the vector(k) = ETa(k), we obtain

}he update for(k+1) in (12). Likewise, usel36) to eliminate

k+ 1) andz(k) from (34) so as to write
Vi @(®) + (SELBu+ pluy) [2(k+1) = (k)]
+Ela(k+1)=0.

From the definitionEX a(k + 1) = ¢(k + 1) and the equality
#(k+1) = ¢(k)+ Lox(k+1) in (12), we know thatET a(k +
1) = ¢(k)+ Loz(k+1). Using this equality and the definition
of the unoriented Laplacia,, = (1/2)EL E,, rewrite 38)

(38)

c[Az(k + 1) + Bz(k 4+ 1)] in (7) into the expression for the to

auxiliary variablez(k + 1) in (10) leads to

BTA(k+1)=0. (32)

Recalling the definitions aB = [—1I,,,; —Linp] @andA(k+1) =
[a(k + 1); B(k + 1)] it follows from (32) that a(k + 1) =
—0B(k + 1) for all k¥ > 0. Since we havex(0) = —3(0) b
hypothesis, it follows that.(k) = —3(k) for all £ > 0. Using
this fact, the definition ofA = [A,; A4], and the definition of
the oriented incidence matrik, = A, — A;, we conclude
that for allk > 0

ATNE) = ATa(k) — ATa(k) (33)

Further observe that from the definitions df = [A,; A4],
B = [—1I,,p; —Inp) and the unoriented incidence matiik, =
Ay + Ag, it follows that ATB = [AT| AT [~ Lnp; —Lmp) =
—AT — AT = —ET. Substituting this expression arigd] into
(31) yields

= ETa(k).

Vf(x(k) + pl(k+1) — x(k)] (34)
+ Ela(k+1) + cE} [2(k+ 1) — z(k)] = 0.
Now consider [f) and recall that\(k) = [a(k); B(k)] to

separate the equality along thé€k) and (k) directions

ak+1) = alk)+c[Aa(k+1)—2(k+1)], (35)
Bk+1) = B(k) +c[Agm(k + 1) — z(k +1)].

Since we know from32) and the initialization hypothesis that
—0(k) for all £ > 0 we can sum up the two equalities

a(k) =
in (35) to obtainc[A,z(k) — z(k)] + c[Agz (k) —
for all kK > 0. Reorder terms to write

S Bua(k) = 5 (A, + Adr(k) = =(),

z(k)] =0

(36)

Vf(z(k)) + (cLy + plnp) [x(k: +1) - x(k)]

+ (k) + cLox(k+ 1) = 0. (39)
Regrouping terms irid8) and observing that the degree matrix
is D= (1/2)(L, + L,) yield

(2¢D + plLyp)x(k + 1)

= (cLu + plnp)a(k) = Vf(x(k)) — ¢(k).  (40)
The update forz(k + 1) in (11) follows from (40) by using
the notationsD = 2cD + pl,,, and L, = cL,, + plyp. [ |

APPENDIXII
PROOF OFLEMMA 1

Proof: Write down the KKT conditions for the decentralized
optimization problem ini4) so as to obtain the equalities

Vf(z*)+ AT * =0, (41)
BT\ =0, (42)
Ax* 4+ Bz* =0. (43)
The definition of the matrixB = [—I,,,; —I,] and the

equality BTA\* = 0 in (42) imply that the optimal multiplier
A* = [a*; f*] must satisfya™ = —3*.

Using the fact ofa* = —3* and the definitions ofA =
[As; Ag) and E, = A; — Ag, we can rewrite41) as

Vf(x*)+Era* =0.

For any optimal primal solution:*, (44) suggests that there
are multiple optimal dual solutions*. To see so, observe that
the oriented Laplaciai, = (1/2)ETE, € R"*"? is rank
deficient. Therefore, the rank df? € R™*™? is less than
np, which is no more thanmp for any connected network

(44)

where we also use the definition of the unoriented edgéth n > 1 agents. Consequently, there are multiple vectors

incidence matrixk, = A, + Ay to write the first equality.

o* € R™P satisfying @4).
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Given an optimal dual solutios that satisfiesv f(x*) + APPENDIX IV
ETa& = 0, its projection onto the column space Bf, denoted PROOF OFLEMMA 3
by «*, is also an optimal dual solution. This is true becau
according to the property of projectiod;’ [& — a*] = 0
and henceE’a = ETa*. Therefore,a* satisfiesV f(z*) +
Efa* =0 and is an optlmal dual solution, showing that there
exists an optimal dual variable* lying in the column space

Proof: From Assumptiond] and2 the aggregate cost function
f(x) is convex and has Lipschitz continuous gradients with
constantM¢, therefore it holds, see e.g., [37],

of B, EIIVf(w(k)) — V(") (51)
We prove uniqueness of such am® by contradiction. < [a(k) - x*]T IV f(z(k) — V f(2*)]
Consider two vector#,r, and E,r, both lying in the column -
space ofE, wherer,,r, € R™ and E,r, # E,r. If they = [z(k+1) —2*]" [Vf(a(k) — Vf(")]
are both optimal dual solutions, then frody + [z(k) — 2(k + 1 )]T [Vf(z(k)) — Vf(z)].
Vf(z* (k) + E} Eorq =0, (45) We consider the two terms on the right-hand side %) (
Vf(x*(k)) + EXEyry = 0. separately. For the first summand Bil) substitute the result
i o i in (18) of Lemmal2 for the factorV f(z(k)) — V f(z*) so as
Subtracting the two equalities i#%) yields to write
T
Bo Belra =] =0 @O Lo+ )" [V () — VS ") (52)
Observing that| EX E, [r, — ]| > /27| Eo[ra —13]|| where = [w(k+1) —2*]" L, [2(k) — 2(k + 1)]

7, is the smallest nonzero eigenvalue valuelgf= ET E, /2 T .
and hence,/2, is the smallest nonzero singular valueff, — [k +1) =2 By [a(k+1) — 7]
(46) implies tha_1t||Eo[r_a - rp]|| = 0, which contradicts with According to 19) we know that(c/2)E,[z(k + 1) — 2*] =
E,r, # E,ry. Since this is absurd we must haktgr, = F,ry, a(k +1) — a(k), hence62) can be rewritten as

implying that there is a unique optimal dual solutiah lying X

in the column space of,. B o(k+ 12T [Vf(x(k) — Vi) (53)
= le(k+1) — 2" L, [a(k) — a(k +1)]
PrOOE OFL LHMA 2 - 2falk+ 1) - a®)" lalk +1) - o],

Proof : In this proof we reuse some intermediate resulidse the the definition of the Euclidean norm with respect to
from the proofs of Propositiodl and Lemma2. Begin by the matrix L,, to conclude that
consideringl87) and reorder terms to conclude that under the

T =
initial conditions a(0) = —3(0) and E,z(0) = 22(0), we 2@k +1) —2"]" Ly [z(k) —a(k +1)] (54)
have that =lla(k)—2* |17 ~lla(k + 1)~z |} ~la(k)—z(k - D)3,
gon(k +1)=ak+1)— ak). (47) which can be easily verified by expanding the squares and
~ canceling terms in the right hand side. Further observe that
Further consider38) and use the definitiol, = cL, + T
plop = (¢/2)ETE, + pl,,,, to write 2[a(k+1) —a(k)]" [a(k+1) — o] (55)

V) + Eufalk+ 1) — o(k)] + ETa(k+ 1) —0. @gy = loetk+D=a®lP=llatt)= " [P+ alk+1)— o’}
For a pair of optimal primal and dual solutions and a*, which can be easily verified as well by expanding the squares

combining the KKT condition&7 f(z*) + AT \* = 0 [cf. (41)] and cancgling terms in thg right—hand. sjt;le. Substitutby) (
and BT\* = 0 [cf. (42)] yields and 65 into (63) and using the definition of the energy

function V.« o~ (k) in (20), yields

V@) + Ejat =0, (49)
_ _ [2(k+1) — 2|7 [V f(x(k)) = V f(z")] (56)
as we have shown irdd). Now we consider the other KKT — Voo (k) — (k+1)
condition Az* + Bz* = 0 [cf. (43)]. From the definitions * ’“1 )
of A = [A,; Ag) and B = [—I,p; — I, We separate the — §Hx(k‘+ 1) — x(k)”%u — E||Oé(k +1) — a(k)|%

condition intoAsx* — 2z* = 0 and Agx* — 2* = 0. Subtracting
the two equalities and using the definition of the orientebhe second summand in the right-hand side 1) (can
incidence matrixE, = A, — Ay, it follows that E,2* = 0 be upper bounded using the basic inequalfty,,7,) <

and consequently (Mg /D)|Irall®+ (1/My)||ro|?, wherer,, r, € R™ and M >
¢ 0, to write
3 Bot” =0. (50) .
. . , [z(k) —x(k+1)]" [Vf(z(k)) — Vf(z7)] (57)
Subtracting 49) from (48) yields [18) and subtracting50) M; 1
from (47) yields [19). [ ] (k) — x(k +1)|* + Mf\\vf(l’(k)) - Vf())?



Substituting the equality in56) and the upper bound irb7)
for the corresponding terms ob1) yields after regrouping
terms

Voo o (k) = Vi o (k 4 1) (58)

> el +1) — 2(k)2 + 2k +1) ~ a1

w—MpIn,/2
Observe the fact that the smallestgigenvalué,oﬁs Yut+p
such that the smallest eigenvaluelof — My 1,,,/2 is ¢y, +
p— My /2. Hencecy, +p— My /2 > 0 guarantees thafz(k +
D= @2, = e+ 1) - a(R)]2, where¢ =
(eyu+p—My/2)/(cyu+p). Also, we know that|a(k+1) —
a(k)||? > €lla(k + 1) — a(k)||? as¢ < 1. Substituting these
inequalities into/$8) yields 22) and completes the proofm

APPENDIXV
PROOF OFTHEOREM/1

Proof: Lemma3 implies thatV,- .~ (k) is monotonically non-
increasing. Sincey,, +p—2M; > 0 by hypothesis, we know
that L, > 0 as its smallest eigenvaluey, + p > 0, and

thusV,- (k) is nonnegative. These two facts guarantee con-
vergence of/- - (k), which further guarantees convergence

of (1/2)|lz(k + 1) — x(k)} + (1/c)lla(k + 1) — a(k)|?
to 0. Again, due toL, = 0 we conclude that both:(k +
1) — z(k) and a(k + 1) — a(k) converge to 0. From the
convergence of:(k + 1) — z(k) and B8), we conclude that
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Consider the equality

Via,da (k) = Viy,a, (k) (62)
. 2 . .
=—(x(k),2a — Tv)f, — E<a(k)v Qg — Gup)
Loy 1oy 1o o0 1.
+ §||33aHLu + g”aaH - §H3«"bHiu - EHabH .

Since (&4, &) is a limit point of (z(k), a(k)), using 61) and
taking the limit of 62) leads to

Na — Ny = — <i‘a7$a - xb>[~,u - E<@a7@a - OA‘b>
Lo 2 oo 1,09 1 e
2l + Sl - L, - La
1 . 1. . .
== 5llza A i G| (63)

Similarly, since(Z, &;) is a limit point of (z(k), a(k)), using
(61) and taking the limit of 62) leads to
A 2, .

Na — M = — <xbaxa - 1’b>iu - E<abv Qg — O‘b>

1. e 1.2 19 1 e

+ §||$a||iu + EH%” - §||$b||iu - EHabH

1 1
=5l = 2ol7, + = llda — du||*.

(64)

Thus we must havel /2)(|&, —@5]|2 +(1/¢)||da —as||* =0,
which proves that the limit point ofz(k), o(k)) is unique.m

APPENDIX VI

Vf(z(k))+ETa(k+1) converges to 0, which further implies

thatV f (z(k+1))+EX a(k+1) converges to 0 by the Lipschitz

continuity of V f (). From the convergence of(k+1)—a(k) Proof: We begin the proof in a way similar to what we have

and B7), we conclude thafc/2)E,z(k) converges to 0. done in the proof of Lemma. Instead of using the fact that the
Let z* anda* be a pair of optimal primal and dual solutionsiggregate cost functiofi(x) is convex (cf. Assumptiot) and

of (4) whose values are finite. Monotonicity and nonnegativitpas Lipschitz gradients with constaitf; (cf. Assumptior2)

of V- - (k) imply that the sequencér(k),a(k)) lies in a in Lemma3, here we observe that the aggregate cost function

compact region. Thereforéz(k), a(k)) has at least a subse-f(z) is strongly convex with constamt (cf. Assumptiori).

quence that converges to a limit point. From the discussifmirther, we consider the relation betweefk + 1) — 2* and

above, for any limit poin(z, &) we know thatV f(i)+ ETa  Vf(x(k + 1)) — Vf(2*) instead of that between(k) — z*

and (¢/2)E,# = 0. Hence, we conclude that any limit pointand V f(z(k)) — V f(z*). Under Assumptioi8 it holds

(z, &) satisfies the KKT conditions (cf4€) and ©60)) and is mllz(k +1) — %2

an optimal solution to4). T .
To complete the proof, it remains to show that the sequence [2(k +1) =2 [Vf(z(k+1)) = V(z")]
ok + 1) — 2] [Vf(2(k)) - V()]

(z(k),a(k)) only has a unique limit point. Letz,,&,) and
+[e(k +1) = 2*)" [Vf((k + 1) = Vf((k))].

(Zv, &p) be any two limit points of(z(k), a(k)). As we have
proved above, bothi,,, &@,) and(i;, &) are optimal solutions

Manipulating the first term at the right-hand side 6E) as we
have done in the proof of Lemni(cf. (52)-(55)), we obtain

to (4). Similar to 20), we define the energy functions
, (89) the equality (cf.56))

B [2(k+1) — 2*]" [V f(2(k)) — V f(z")]
= Vi o (k) = Vi o (B + 1)

— Sl 1) — ()2, ~ <llalk+ 1) — (k)|

PROOF OFTHEOREM2

(65)
<

2
L.
2
L.,
Also, we letV;, 4, (k) = Vi, a, (x(k), a(k)) andVz, 4, (k) =
Viy.a, (@(k), a(k)). From 22) we have

’ 2

1 .
+ 2= a,
c

Via.ao (T, 0) == %Hx — Iq

(66)

1 .
+ *HO(—O&;,
C

1
Viy.ap (T, @) i= 5”3: — Ip

Vi oo (k) > Vi, a,(k+1), (60) Substituting [66) into (65) yields
Viy.an (k) > Vi, o, (k +1). myllz(k +1) — 22 (67)
Hence we know the limits < [ak+1) — 2" [Vf(@(k+1) = VF(x(k))]
klim Via.a, (k) =14 < 00, (61) + Vs ax (k) — Ve o (B + 1)
o 1 1
lim Vi, g, (k) = 1 < oo, — Sl + 1) =22, = Zllatk+1) - a(k)|*



Next, we prove that there exists a contraction parameter
mf — 9/2
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these two inequalities as well €82 and [73), the sufficient
condition of B9) is

s=min{ R e o (= - 82D ) 7
(cyu +p)/2 — M7 /(20) } ~o 2 '
p(elu + p)* /(1 = 1)(2070)] + M7/ (e0) - (cvu; p % ~ W) ok + 1) — o(8)[
such that it holds 5 Yollk
Ve e (k +1) (69) = o, MM llek) — ",
< mygle(k+1) —z*|* + %llx(kz +1)— x(k)ll%u which is true for the contraction parameter- 0 in (68) since
k1) — 2T [V ek 1) - @), AR D — I 2t 1) — 2B > Jla(k) - 2.

In (68), 1 is an arbitrary constant satisfying > 1 and@ is
an arbitrary constant satisfyirgyn; > ¢ > MJ%/(c'yu + p)2.
Observe that such @& exists since by hypothesis s (cvy, +
p)? > M7 /2 and guarantees to be positive.

To prove 69), we develop lower bounds for its left-hand
side terms and upper bounds for its right-hand side terms,
Observing thatV f(z) is Lipschitz continuous with constant

(1]

M and substituting the expression Gff (z(k)) — V f(z*) in
(18), we have [3]
M e (k)" 7
> [V f(x(k)) = V(=)
= |Lula(k) — 2k +1)] = Efla(k + 1) =% 3]

Using the basic inequalitifv, — v || > (1/p)||vall? —(1/(u—
1))||vs|? that holds for any: > 1, we separate the right-hand [6]

side of [70) and obtain 7]
MF||z(k) — *||? (71) o
1 . 1 -
> ;IIEOT[a(kH) —a’]|? - ﬁllLu[x(k) —a(k+1)]|*.
- . [ [9]

Since the largest eigenvalue df, is cI['y, + p, we have

[ Lufz(k) = x(k + DI* < (cLu + p)?[|lz(k) — x(k + 1)|? (10

also, since bothx(k + 1) and a* lie in the column space of

E, and the smallest nonzero eigenvaluelgf= (ETE,)/2

is v, it holds || ET [a(k +1) — o*]||* > 27,||a(k + 1) — a* |

Using these inequalitie¥1) leads to (11

0 .

“llalk+1) ~a IIF < 2 qullx( ) — | (72) 112
5u(cFu +p)° >
—||lx(k)—x(k+ 1)|".
der 1y o=z DI

Again from the basic inequality and Lipschitz continuity of
Vf(z), for any6 > 0 it holds [14]

. ng(k )2 — 2—19||Vf(x(k +1) =V f(w (k)
[26]
> = Stk +1) = oI = M+ 1) - 2(R) P

Since the largest and smallest eigenvalued pfare cl',, + p 7]

and ¢y, + p (which is positive by hypothesis), respectively,
ek + 1) = a(B)[2. > (e + p)la(k + 1) — 2(k)[* and (18]

la(k+1) —2*|2 < (el + p)|lw(k+ 1) — 2*||2. Combining

Combining |67) and 69) yields the claim in(24).
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