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Sampling of graph signals with successive
local aggregations

Antonio G. Marques, Santiago Segarra, Geert Leus, and Alejandro Ribeiro

Abstract—A new scheme to sample signals defined in the nodes
of a graph is proposed. The underlying assumption is that such
signals admit a sparse representation in a frequency domain related
to the structure of the graph, which is captured by the so-called
graph-shift operator. Most of the works that have looked at this
problem have focused on using the value of the signal observed
at a subset of nodes to recover the signal in the entire graph.
Differently, the sampling scheme proposed here uses as input
observations taken at a single node. The observations correspond
to sequential applications of the graph-shift operator, which are
linear combinations of the information gathered by the neighbors
of the node. When the graph corresponds to a directed cycle
(which is the support of time-varying signals), our method is
equivalent to the classical sampling in the time domain. When the
graph is more general, we show that the Vandermonde structure
of the sampling matrix, which is critical to guarantee recovery
when sampling time-varying signals, is preserved. Sampling and
interpolation are analyzed first in the absence of noise and then
noise is considered. We then study the recovery of the sampled
signal when the specific set of frequencies that is active is not
known. Moreover, we present a more general sampling scheme,
under which, either our aggregation approach or the alternative
approach of sampling a graph signal by observing the value of
the signal at a subset of nodes can be both viewed as particular
cases. The last part of the paper presents numerical experiments
that illustrate the results developed through both synthetic graph
signals and a real-world graph of the economy of the United States.

Index Terms—Graph signal processing, Sampling, Interpolation,
Error covariance, Support selection

I. INTRODUCTION

Sampling (and subsequent interpolation) is a cornerstone
problem in classical signal processing [1]. The emergence of
new fields of knowledge such as network science and big data
is generating a pressing need to extend the results existing for
classical time-varying signals to signals defined on graphs [2]–
[4]. This not only entails modifying the algorithms currently
available for time-varying signals, but also gaining intuition on
what concepts are preserved (and lost) when a signal is defined,
not in the classical time grid, but in a more general graph
domain.

This paper investigates the sampling and posterior recovery of
signals that are defined in the nodes of a graph. The underlying
assumption is that such signals admit a sparse representation in
a (frequency) domain which is related to the structure of the
graph where these signals reside. Most of the current efforts in
this field have been focused on using the value of the signal
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observed at a subset of nodes to recover the signal in the
entire graph [5]–[9]. Our proposal in this paper is different.
We present a new sampling method that accounts for the graph
structure, can be run at a single node and only requires access
to information of neighboring nodes. Moreover, we also show
that the proposed method shares similarities with the classical
sampling and interpolation of time-varying signals. When the
graph corresponds to a directed cycle, which is the support
of classical time-varying signals, our method is equivalent
to classical sampling. When the graph is more general, the
Vandermonde structure of the sampling matrix, which is critical
to guarantee recovery in classical sampling [1], is preserved.
Such a structure not only facilitates the interpolation process,
but also helps to draw some connections between the proposed
method and the sampling of time-varying signals. Sampling and
interpolation are analyzed first in the absence of noise, where the
conditions that guarantee recovery are identified. The conditions
depend both on the structure of the graph and the particular
node taking the observations. They also reveal that one way to
understand bandlimited graph signals is to think of signals that
can be well approximated by only observing the value of the
signal at a small neighborhood. We then analyze the sampling
and reconstruction process when noise is present and when the
specific frequencies where the signal is sparse are not known.
For the noisy case, an interpolator based on the Best Linear
Unbiased Estimator (BLUE) is designed and the effect on the
corresponding error covariance matrix of different noise models
is discussed. For the case of unknown frequency support, we
also provide conditions under which the signal can be identified.
This second problem falls into the category of sparse signal
reconstruction [10]–[13] where the main idea is to leverage the
structure of the observation matrix to facilitate recovery. The last
contribution is the design of a generalization of our sampling
method that considers a subset of nodes, each of them taking
multiple observations. Within that generalization, the approach
of sampling a graph signal by observing the value of the signal
at a subset of nodes can be viewed as a particular case. Hence,
this generalization will also be useful to compare and establish
relationships between existing approaches to sample signals in
graphs and our proposed method.

The paper is organized as follows. Section II introduces the
new aggregation sampling method, compares it to the existing
selection sampling method and shows that for classical time-
varying signals both methods are equivalent. Section III analyzes
our sampling method in more detail and applies it to sample
bandlimited graph signals. The analysis includes conditions for
recovery, which are formally stated in Section III-B. Section IV
investigates the effect of noise in aggregation sampling. It also
discusses how to select sampling nodes and observation schemes
that lead to a good recovery performance. Corresponding mod-
ifications in the interpolation in order to recover the signal
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when the support is not known are discussed in Section V.
Section VI proposes a generalization under which the existing
selection sampling and the proposed aggregation sampling can
be viewed as particular cases. Several illustrative numerical
results are presented in Section VII. A few concluding remarks
are provided in Section VIII, which closes the paper.
Notation: Boldface capital letters denote matrices and boldface
lowercase letters column vectors. Generically, the entries of a
matrix X and a vector x are denoted as Xij and xi; however,
when contributing to avoid confusion, the alternative notation
[X]ij and [x]i will be used. The notations T and H stand
for transpose and transpose conjugate, respectively; ⊗ is the
Kronecker product; trace(X) :=

∑
iXii is the trace of the

square matrix X and det(X) is its determinant; diag(x) is a
diagonal matrix satisfying [diag(x)]ii = [x]i; vec(X) is the
column-wise vectorized version of matrix X; ei is the i-th N×1
canonical basis vector (all entries of ei are zero except the
i-th one, which is one); EK := [e1, ..., eK ] is a tall matrix
collecting the K first canonical basis vectors; and 0 and 1
are, respectively, the all-zeros and all-ones matrices (if the
dimensions are not clear from the context, a subscript will be
used). The modulus (remainder) obtained after dividing x by N
is denoted as modN (x).

II. SAMPLING OF GRAPH SIGNALS

Let G = (N , E) denote a directed graph. The set of nodes
or vertices N has cardinality N , and the set of links E is such
that (i, j) ∈ E if and only if node i is connected to node j. The
set Ni : { j |(j, i) ∈ E} contains all nodes with an incoming
connection to i and is termed the incoming neighborhood of
i. For any given graph we define the adjacency matrix A as a
sparse N × N matrix with non-zero elements Aij if and only
if (j, i) ∈ E . The value of Aij captures the strength of the
connection between i and j. When the graph is unweighted,
the non-zero elements of A are set to one. The focus of this
paper is not on analyzing G, but a graph signal defined on the
set of nodes N . Such a signal can be represented as a vector
x = [x1, . . . , xN ]T ∈ RN where the i-th component represents
the value of the signal at node i, or, equivalently, as a function
f : N → R, defined on the vertices of the graph.

The graph G is endowed with a graph-shift operator S defined
as an N ×N matrix whose entry (i, j), denoted as Sij , can be
non-zero only if i = j or (j, i) ∈ E . The sparsity pattern of
the matrix S captures the local structure of G but we make
no specific assumptions on the values of the non-zero entries
of S. Common choices for S are the adjacency matrix of the
graph [3], [14], the Laplacian [2], and its generalizations [15].
The intuitive interpretation of S is that it represents a linear
transformation that can be computed locally at the nodes of the
graph. If y = [y1, . . . , yN ]T is defined as y = Sx, then node i
can compute yi provided that it has access to the values of xj
at its incoming neighbors j ∈ Ni. We assume henceforth that S
is diagonalizable, so that there exists a N ×N matrix V and a
N ×N diagonal matrix Λ that can be used to decompose S as

S = VΛV−1. (1)

In particular, (1) is true for normal matrices satisfying SSH =
SHS. In that case, we have that V is unitary, which implies
V−1 = VH , and leads to the decomposition S = VΛVH .

Let C denote a fat K ×N selection matrix whose elements
satisfy: Cij ∈ {0, 1},

∑
j Cij = 1 for all i, and

∑
i Cij ≤ 1 for
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Fig. 1: Sampling in the time domain as aggregation sampling in Gdc.
In aggregation sampling we apply the shift operator S successively and
sample the resulting signal observed at a given node (here, node 1). For
Gdc, successive applications of S = Adc amount to rotating x through
the graph. Hence, the selection of elements of the aggregated signal
reduces to conventional sampling.

all j. A natural definition of sampling for a graph signal is to
obtain the sampled signal as [8]

x̄ := Cx. (2)

Given the structure of C, x̄ is a selection of K out of the N
elements of x and K/N is the sampling rate. Uniform sampling
sets are obtained when C = [e1, eN/K+1, . . . , eN−N/K+1]T

and the selection of the first K elements of x is accomplished
by setting C = ET

K := [e1, . . . , eK ]T . In general, it is not clear
how to choose good selection matrices C. This is in contrast
to conventional sampling of signals in the time domain where
uniform sampling is advantageous.

An equally valid, yet less intuitive, definition is to fix a node,
say i, and consider the sampling of the signal seen by this
node as the shift operator S is applied recursively. To describe
this sampling methodology more clearly, define the l-th shifted
signal y(l) := Slx and further define the N ×N matrix

Y := [y(0),y(1), . . . ,y(N−1)] = [x,Sx, . . . ,SN−1x], (3)

that groups the signal x and the result of the first N − 1
applications of the shift operator. Associating the i-th row of
Y with node i, we define the successively aggregated signal at
i as yi := (eTi Y)T = YTei. Sampling is now reduced to the
selection of K out of the N elements (rows) of yi, which we
accomplish with a selection matrix C [cf. (2)]

ȳi := Cyi = C
(
YTei

)
. (4)

We say that the signal ȳi samples x with successive local
aggregations. This nomenclature follows from the fact that y(l)

can be computed recursively as y(l) := Sy(l−1) and that the i-th
element of this vector can be computed using signals associated
with itself and its incoming neighbors,

y
(l)
i =

∑
j∈Ni

Sijy
(l−1)
j . (5)

We can then think of the signal yi as being computed locally
at node i using successive variable exchanges with neighboring
nodes. In fact, it is easy to show that y(l)

i can be expressed as a
linear combination of the values of xj at nodes j whose distance
(number of hops) from node i is less than or equal to l. This
implies that the sampled signal ȳi in (4) is a selection of values
that node i can determine locally. An underlying idea behind
the sampling in (4) is to incorporate the structure of the shift
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into the sampling procedure. Indeed, S and y(l) play important
roles in other graph-processing algorithms such as shift-invariant
graph filters [3], where the output of the filter can be viewed as
a linear combination of the shifted signals y(l).

To understand the difference between selection sampling [cf.
(2)] and aggregation sampling [cf. (4)], it is instructive to
consider their application to a signal defined in the time domain.
Classical time domain signals can be represented as graph
signals defined on top of a directed cycle graph [2], [8], as
illustrated in Fig. 1. Let Gdc and Adc denote the directed cycle
graph and its adjacency matrix, respectively. In Gdc, node i is
connected only to node j = modN (i)+1, so that the elements of
Adc are zero except for the ones in the first cyclic subdiagonal,
which are one. For a signal x defined on Gdc, we consider
selection sampling and aggregation sampling when using the
shift operator S = Adc and the uniform selection matrix
C = [e1, eN/K+1, . . . , eN−N/K+1]T . In selection sampling, the
sampled signal is obtained using (2) as x̄ = Cx. In aggregation
sampling, subsequent applications of the shift matrix S = Adc

are considered. Each of these shifts amounts to rotating the
signal clockwise. It follows that the aggregated signal y1 in
(3) is given by y1 = [x1, xN , xN−1, . . . , x2], which upon
multiplication by C [cf. (4)] results in a vector ȳ1 = Cy1

that contains the same elements that x̄ contains. Hence, when
S = Adc both methods can be viewed as generalizations of
conventional sampling. However, for more general topologies,
selection and aggregation sampling produce different outcomes.
In selection sampling we move through nodes to collect samples
at points uniquely identified by C, whereas in aggregation
sampling we move the signal through the graph while collecting
samples at a fixed node.

III. SAMPLING OF BANDLIMITED GRAPH SIGNALS

Recovery of x from its sampled version is possible under the
assumption that x admits a sparse representation. The common
practice when addressing the problem of sampling signals in
graphs is to suppose that the graph-shift operator S plays a key
role in explaining the signals of interest x. More specifically,
that x can be expressed as a linear combination of a subset of
the columns of V = [v1, ...,vN ], or, equivalently, that the vector
x̂ = V−1x is sparse. In this context, vectors vk are interpreted
as the graph frequency basis and x̂k as the corresponding
signal frequency coefficients. To simplify exposition, it will be
assumed throughout that the active frequencies are the first K
ones, which are associated with the largest eigenvalues [5], [16],
so that x̂ = [x̂1, ..., x̂K , 0, ..., 0]T . However, the results in the
paper can be applied to any set of active frequencies K of
size K provided that K is known. For convenience, we define
VK := [v1, ...,vK ] and x̂K := [x̂1, ..., x̂K ]T so that we may
write x̂ = [x̂TK | 01×N−K ]T . For x̂ to be sparse, it is reasonable
to assume that S is involved in the generation of x.

When G = Gdc, setting the shift operator either to S = Adc

or to S = Ldc := I − Adc gives rise to the Fourier basis F.
More formally, since S is circulant, its right eigenvectors are
V = F, with Fij := e+j2π(i−1)(j−1)/N/

√
N and j :=

√
−1.

Selecting S = Adc has the additional advantage of satisfying
Λii = e−j2π(i−1)/N , i.e., the eigenvalues of the shift operator
correspond to the classical discrete frequencies. Interpretations
for the eigenvalues of the Laplacian matrix Ldc also exist [2].

A. Selection sampling of bandlimited graph signals
Under the selection sampling approach [5]–[9], sampling a

graph signal amounts to setting x̄ = Cx [cf. (2)]. Since the
K × N binary matrix C selects the observed nodes, the issue
then is how to design C, i.e., which nodes to select, and how
to recover the original signal x from its samples x̄.

To answer this, it is assumed that x is bandlimited, so
that it can be expressed as a linear combination of the K
principal eigenvectors in V. The sampled signal x̄ is then
x̄ = Cx = CVK x̂K . Hence, if matrix CVK is invertible,
x̂K can be recovered from x̄ and, thus, the original signal x is
obtained as

x = VK x̂K = VK(CVK)−1x̄. (6)

Perfect signal reconstruction can be guaranteed by selecting a
subset of K nodes such that the corresponding rows in VK are
linearly independent. In the classical domain of time-varying
signals, VK = FEK has a row-wise Vandermonde structure,
which implies that any subset of K rows is invertible. However,
for an arbitrary graph this is not guaranteed and algorithms to
select a specific subset that guarantees recovery are required [6].
The role of the Vandermonde structure of the sampling matrix
will be analyzed in more detail in the ensuing sections.

B. Aggregation sampling of bandlimited graph signals
As explained in (4), under the aggregation approach the

sampled signal is formed by observations of the shifted signals
y(l) = Slx taken at a given node i. Under this approach,
the graph-shift operator S plays a role not only in explaining
and recovering x, but also in sampling x. Another reason to
consider this scheme is that the entries of y(l) can be found
by sequentially exchanging information among neighbors. This
implies that: a) for setups where graph vertices correspond to
nodes of an actual network, the procedure can be implemented
distributedly; and b) if recovery is feasible, the observations at
a single node can recover the signal in the entire graph.

As done before, we first analyze how the bandlimitedness
of x is manifested on the sampled signal. Then, we identify
under which conditions recovery is feasible and describe the
corresponding interpolation algorithm. For ease of exposition,
the dependence of yi on x̂ is given in the form of a lemma.
Lemma 1: Define the N×1 vector υi := VTei, which collects
the values of the frequency basis {vk}Kk=1 at node i, and the
N ×N (column-wise) Vandermonde matrix

Ψ :=


1 . . . 1
λ1 . . . λN
...

...
λN−1

1 . . . λN−1
N

 . (7)

Then, the shifted signal yi can be expressed as

yi = Ψdiag(υi)x̂. (8)

Proof: Using the spectral decomposition of S, signal y(l) can
be written as

y(l) = Slx = (VΛlV−1)x = (VΛl)x̂. (9)

Based on the definitions of yi and υi, it follows that

yi = YTei = (VV−1Y)Tei

= (V−1Y)TVTei = (V−1Y)Tυi. (10)
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Since the l-th column of matrix Y is y(l−1), it can be
written as (VΛl−1)x̂ [cf. (9)]. Hence, the l-th column of
matrix (V−1Y) can be written as Λl−1x̂ or, equivalently, as
diag(x̂)[λl−1

1 , ..., λl−1
N ]T . Leveraging the fact that the vector

containing the l-th power of the eigenvalues corresponds to the
row l + 1 of matrix Ψ, the shifted signal yi can be expressed
as

yi = (V−1Y)Tυi = (diag(x̂)ΨT )Tυi

= Ψdiag(x̂)υi = Ψdiag(υi)x̂, (11)

which is the claim in the lemma.

Notice that while in Section III-A the relationship between the
sparse frequency coefficients x̂ and the signal to be sampled was
simply given by x = Vx̂, now it is given by yi = Ψdiag(υi)x̂.

Next, we use Lemma 1 to identify under which conditions
recovery is feasible. To do this, let us define the N ×K matrix
Ψi = Ψdiag(υi)EK . Then, the sampled signal ȳi is

ȳi = Cyi = CΨdiag(υi)x̂ = CΨix̂K , (12)

where C is the binary K×N selection matrix, and x̂K the vector
collecting the non-zero elements of x̂. To simplify exposition,
for the time being we will assume that C = ET

K , i.e., that
the observations correspond to the original signal and the first
K−1 shifts. This assumption can be relaxed, as discussed in
Remark 1.

If matrix CΨi is invertible, then x̂K can be recovered from
ȳi [cf. (12)] and, hence, x can be found as [cf. (6)]

x = VK x̂K = VK(CΨi)
−1ȳi. (13)

The expression in (13) shows how x can be interpolated from
ȳi. The interpolator VK(CΨi)

−1 may be decomposed into
three factors (VK)(ET

Kdiag(υi)EK)−1(CΨEK)−1 to reveal
its dependence on the support where the signal is bandlimited,
the node taking the samples and the spectrum of the graph.

Equation (13) requires CΨi being invertible. Hence, perfect
reconstruction can be guaranteed by selecting samples such
that the corresponding rows in Ψi are linearly independent.
While for the selection sampling described in Section III-A there
is no straightforward way to check the invertibility of CVK

(existing algorithms typically do that by inspection [6]), for
the aggregation sampling described in (8)-(13) the invertibility
of CΨi can be guaranteed if the conditions presented in the
following proposition hold.
Proposition 1: Let x and ȳi be, respectively, a bandlimited
graph signal with at most K non-zero frequency components
and the output of the sampling process defined in (12). Then,
the N entries of signal x can be recovered from the K samples
in ȳi if the two following conditions hold
i) The first K eigenvalues of the graph-shift operator S are
distinct; i.e., λi 6= λj for all i 6= j, i ≤ K and j ≤ K.
ii) The K first entries of υi are non-zero.
Proof: To prove the proposition it suffices to show that under i)
and ii), CΨi is invertible [cf. (13)]. Matrix CΨi can be under-
stood as the multiplication of two matrices: matrix (CΨEK)
and matrix (ET

Kdiag(υi)EK). Condition ii) guarantees that the
second matrix is invertible. Moreover, condition i) guarantees
invertibility of the first matrix. To see this, note that (ΨEK) is
a N×K (column-wise) Vandermonde matrix. Hence C(ΨEK)
is a selection of the first K rows of (ΨEK), which is also
Vandermonde. Any square Vandermonde matrix has full rank

provided that the basis (i.e., the eigenvalues of S) are distinct,
as required in condition i).

One of the implications of Proposition 1 is that there is no need
to compute or observe the entire vector yi, since its first K
entries suffice to guarantee recovery. Hence, linear combinations
of signals at nodes that are in a neighborhood of radius K − 1
suffice to reconstruct the entire graph signal. The conditions in
the proposition are easy to check, providing additional insights
on aggregation sampling. Condition i) refers to the structure
of the entire graph. It states that if a graph has two identical
frequencies and the signal of interest is a linear combination
of both of them, the sampling will fail. This problem is not
present in classical sampling, because {e−j2π(k−1)/N}Nk=1 are
all distinct. Condition ii) refers to the specific node where the
samples are taken. It states that any node in the network can be
used to sample the signal provided that (eTk υi) 6= 0 for k ≤ K;
i.e., that the chosen node participates in the specific frequencies
on which signal x is expressed. It also points to the fact that if
|eTk υi| is non-zero but small for some k, the interpolation matrix
associated with i may be poorly conditioned. For the particular
case of S = Adc, condition ii) is always satisfied since all the
entries of F are non-zero.

From the above discussion, one can also understand bandlim-
ited graph signals as signals that can be identified locally by
relying on observations within a given number of hops. This
does not necessarily imply that the variation of the signal among
close-by nodes is small, but that the pattern of variation can be
inferred just by looking at close-by nodes. This discussion will
be revisited in Section V. For the recovery to be implemented
locally too, the nodes need to know VK and {λk}Kk=1, i.e. the
structure of the graph where the signal resides.
Remark 1: The structure of the selection matrix C and, in
particular, the fact that CΨEK is a Vandermonde matrix are
instrumental to guarantee the recovery of x. Note that CΨEK

is Vandermonde not only when C = ET
K , but also when

C = [e1, e1+N0
, . . . , e1+(K−1)N0

]T , provided that 1 ≤ N0 ≤
N/K and λN0

k1
6= λN0

k2
for all k1 6= k2, where k1 ≤ K

and k2 ≤ K. By setting N0 = N/K, the counterpart of the
classical time sampling theorem (which considers uniformly
spaced samples) is recovered. Moreover, if none of the frequen-
cies of interest {λk}Kk=1 is zero, selection patterns of the form
C = [en0

, en0+N0
, . . . , en0+(K−1)N0

]T are also guaranteed to
lead to invertible matrices. In this case, the resultant matrix is a
product of a Vandermonde and a non-zero diagonal matrix. For
reference in the following sections, we define here the K ×
N matrix CK(n0, N0) := [en0

, en0+N0
, . . . , en0+(K−1)N0

]T

and the set of admissible K × N selection matrices CK :={
CK(n0, N0) | N0 = 1, . . . , N/K and n0 = 1, . . . , N −
N0(K − 1)

}
.

IV. SAMPLING AND INTERPOLATION IN THE PRESENCE OF
NOISE

If the samples are noisy, perfect reconstruction is, in general,
unfeasible and new issues arise. In Section IV-A, we estimate
x for a general noise model using a Best Linear Unbiased
Estimator (BLUE). We then specify noise models that are likely
to arise in graph domains. In Section IV-B, we discuss the effect
on the interpolation error of selecting the sampling node and the
selection matrix.
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A. BLUE interpolation
Consider now that the shifted sampled signal yi is corrupted

by additive noise, so that the observed signal zi is given by
zi = yi + wi. The noise wi is assumed to be zero-mean,
independent of the graph signal, and colored with a covariance
matrix R

(i)
w := E[wiw

H
i ]. For notational convenience, we define

also w̄i = Cwi and R̄
(i)
w = CR

(i)
w CH .

To design the interpolator in the presence of noise, we
leverage that the relation between z̄i and x is given by

z̄i = CΨix̂K + w̄i, (14)
x = VK x̂K . (15)

The BLUE estimator of x̂K , which minimizes the least squares
error, is then given by [17]

ˆ̂x
(i)

K =
(
ΨH
i CH(R̄(i)

w )−1CΨi

)−1

ΨH
i CH(R̄(i)

w )−1z̄i, (16)

provided that the inverse in (16) exists. Additionally, for the
particular case of Gaussian noise in (14), the estimator in
(16) coincides with the Minimum Variance Unbiased (MVU)
estimator which attains the Cramér-Rao lower bound. In this
case, it also holds true that the inverse of the error covariance
matrix associated with (16) corresponds to the Fisher Informa-
tion Matrix (FIM) [17]. Clearly the larger the number of rows
in (14), the better the estimation is. When the selection matrix
C selects exactly K rows (and not more), (16) reduces to

ˆ̂x
(i)

K = (CΨi)
−1

z̄i. (17)

After obtaining ˆ̂x
(i)

K – either via (16) or (17) –, the time signal
recovered at the i-th node x̂(i) can be found as

x̂(i) = VK
ˆ̂x

(i)

K . (18)

Finally, the error covariance matrices for the frequency and time
estimators R̂

(i)
e := E[(x̂K − ˆ̂x

(i)

K )(x̂K − ˆ̂x
(i)

K )H ] and R
(i)
e :=

E[(x− x̂(i))(x− x̂(i))H ] are [17]

R̂(i)
e =

(
ΨH
i CH(R̄(i)

w )−1CΨi

)−1
, (19)

R(i)
e = VKR̂(i)

e VH
K . (20)

Note that R
(i)
e depends on the noise model, the frequencies

of the graph, the node taking the observations, and the sample-
selection scheme adopted (cf. Remark 1).

The expressions in (19)-(20) can be used to assess the
performance of the estimation. Multiple alternatives to quantify
the estimation error exist, as analyzed by the theory of optimal
design of experiments [18]. The most common approach is to
find an estimator that minimizes the trace of the error covariance

e1 := trace(R(i)
e ), (21)

which corresponds to the minimization of the Mean Square
Error (MSE). Other common error metrics based on the error
covariance matrix are the largest eigenvalue

e2 :=λmax(R(i)
e ), (22)

the log determinant

e3 :=log det(R̂(i)
e ), (23)

and the inverse of the trace of its inverse

e4 :=
[
trace

(
R̂(i)−1

e

)]−1

. (24)

Notice that the error metrics e3 and e4 are computed based
on the error covariance matrix for the frequency estimator R̂

(i)
e

instead of the time estimator, since R
(i)
e is a singular matrix [cf.

(20)].
The results presented so far consider a generic R

(i)
w , so that

they can be used regardless of the color of the noise. Three
particular examples of interest are presented next.
• White noise in the observed signal zi. This implies that

wi is white and R
(i)
w = σ2I, with σ2 denoting the noise

power. In this case, the K×K matrix R̄
(i)
w is given by

R̄(i)
w = σ2I. (25)

• White noise in the original signal x. With w denoting the
white additive noise present in x, we can use the linear
observation model to write wi = Ψdiag(υi)V

−1w. Then,
the N × N error covariance matrix is simply given by
R

(i)
w = σ2Ψdiag(υi)V

−1(V−1)Hdiag(υi)
HΨH . When

the shift is a normal matrix, V is unitary and the previous
expression reduces to R

(i)
w = σ2Ψ|diag(υi)|2ΨH . As

before, the K ×K error covariance matrix is obtained by
selecting the rows and columns of the previous expression

R̄(i)
w = σ2CΨ|diag(υi)|2ΨHCH . (26)

Expression (26) shows not only that the noise is correlated,
but also that the correlation depends on the spectrum of
S, the node collecting the observations, and the specific
selection of observations.

• White noise in the active frequency coefficients x̂K . With
ŵK denoting the white additive noise present in x̂K ,
we can use the linear observation model to write wi =
Ψdiag(υi)EKŵK =ΨiŵK . It follows that the N×N and
K×K error covariance matrices are R

(i)
w = σ2ΨiΨ

H
i and

R̄(i)
w = σ2CΨiΨ

H
i CH . (27)

This model can be appropriate for scenarios where the
signal of interest is the output of a given “graph process”
– e.g., a diffusion process – and the noise is present in the
input of that process. This noise model can also arise when
the signal to be sampled has been previously processed with
a low-pass graph filter [14], [19].

There are many other noise models that can be of interest
in graph setups. Matrix R̄

(i)
w can be a non-negative weighted

sum of (25)-(27), e.g., if noise is present in both the original
signal and the observation process. Alternatively, the noise at
a specific node can be rendered dependent on the number of
neighbors. This last situation would be reasonable, for example,
in distributed setups where the information of neighboring nodes
is exchanged via noisy channels.

B. Selection of the sampling set
The two elements that define the set of samples to be

interpolated are: the node i that aggregates the information and
the elements of yi selected by C.

1) Selection of the sampling node: The recovery results in
Section III-B show that any node i can be used to sample
and recover the entire graph signal, provided that the entries
of υi corresponding to the active frequencies in x̂ are non-zero.
However, when noise is present, R

(i)
e is different for each i.

In this context, it is reasonable to select as a sampling node
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one leading to a small error. Note that selecting the best node
requires the computation of N closed-form expressions, which
involve matrix inversions. In scenarios where computational
complexity is a limiting factor, the structure of the noise-
covariance and the interpolation matrices can be exploited. E.g.,
when white noise is present in x̂K , after substituting (27) into
(19) and (20), it follows that

R̂(i)
e = σ2I, R(i)

e = σ2VKVH
K . (28)

Consequently, for this particular noise model, the estimator
performance is independent of the node choice. This is true for
every error metric [cf. (21)-(24)]. The result is intuitive: given
that the noise and the signal are present in the same frequencies,
it is irrelevant if a node amplifies or attenuates a particular
frequency. Differently, if the white noise is present in zi, we
can substitute (25) into (19) to obtain

R̂(i)
e = σ2

(
EH
Kdiag(υi)

HΨHCHCΨdiag(υi)EK

)−1
. (29)

Thus, if we are interested in minimizing, e.g., the error metric
e4 [cf. (24)], our objective may be reformulated as finding the
optimal node i∗ such that

i∗=arg max
i

trace
(
EH
Kdiag(υi)

HΨHCHCΨdiag(υi)EK

)
.

(30)
For a selection matrix of the form C = CK(n0, N0) (cf.
Remark 1), the k-th diagonal element of the matrix in (30) can
be written as |[υi]k|2

∑K−1
m=0 |λk|2 (n0+mN0). The trace is simply

the sum of those elements, so that, using the closed form for a
geometric sum, (30) can be rewritten as

i∗=arg max
i

K∑
k=1

|[υi]k|2
|λk|2n0 − |λk|2(n0+N0K)

1− |λk|2N0
. (31)

Thus, the optimal sampling node i∗ will be one with large
values of |[υi]k| for the active frequencies k ≤ K. The relative
importance of frequency k is given by the fraction in (31), which
depends on the modulus of the associated eigenvalue and the
structure of C (values of n0 and N0).

2) Design of the sample selection: For general sampling
schemes, designing C is an inherently combinatorial problem,
where the set of candidate matrices C has cardinality N choose
K. The approach when using aggregation sampling is to lever-
age the Vandermonde structure – together with the error metrics
in (21)-(24) and the noise models in (25)-(27) – to render the
optimization of C tractable.

We start by recalling that any matrix in the set of admissible
selection matrices CK defined in Remark 1 is guaranteed to lead
to a feasible recovery. The cardinality of CK is much smaller
than that of C: N0 can take at most N/K values, and n0 at
most (N −N0(K − 1)). This leads to a significant reduction of
the computational burden. Moreover, in some cases the noise
structure can be exploited to readily determine the optimal
observation strategy. E.g., for the case of white noise in x̂K , it
is immediate to see that the performance is independent of the
sample-selection scheme [cf. (28)]. For the case where the white
noise is present in zi, let us assume that C = CK(n0, N0),
where N0 is fixed and we want to design n0.

If we adopt e3 in (23) as our error metric, the goal is to
find the value n∗0 that minimizes det

(
R̂

(i)
e

)
. To achieve this,

consider two different selection matrices CA = CK(n0, N0)
and CB = CK(n0 + 1, N0). Using (29) and assuming without

loss of generality that σ2 = 1, the error covariance for CB is
given by R̂

(i)
e,B = (EH

Kdiag(υi)
HΨHCH

BCBΨdiag(υi)EK)−1.
A similar expression can be written for R̂

(i)
e,A. Since Ψ is

Vandermonde, it is not difficult to show that ΨHCH
BCBΨ can

be written as ΛHΨHCH
ACAΨΛ. This implies that

R̂
(i)−1

e,B = EH
KΛHdiag(υi)

HΨHCH
ACAΨdiag(υi)ΛEK

= (EH
KΛHEK)R̂

(i)−1

e,A (EH
KΛEK). (32)

For the first equality we have used that the product of diagonal
matrices is commutative and for the second one that right and
left multiplying by the canonical matrix amounts to selecting
the columns and rows of the multiplied matrix. Using (32), we
have that

det
(
R̂

(i)
e,A

)
= det

(
R̂

(i)
e,B

) K∏
k=1

|λk|2, (33)

which results in the following optimal strategy for the solution
of e3: if

∏K
k=1 |λk|2 ≤ 1 then n∗0 = 1, otherwise n∗0 should be

as large as possible; see Remark 2. Equivalently, the optimal
strategy states that if one application of S has an overall effect
of amplification in the active frequencies, then we should aim
to apply it as many times as possible, whereas if the opposite is
true, we should avoid its application. As expected, the optimal
design of C given by (33) depends on the topology of the
graph (spectrum of S) and the properties of x (set of active
frequencies).

One can also look at selection matrices that are not in CK . In
that case, the Vandermonde structure cannot be leveraged and
the problem has to be formulated as a binary optimization over
C ∈ C. Although of interest, developing approximate solutions
for C that exploit the structure of aggregation sampling is out
of the scope of this paper and is left as future work.

It is worth stressing that the selection matrix C that minimizes
the error does not have to be the same for all nodes. Hence, both
the selection of the sampling node and the sampling shifts can
be combined to obtain the best local reconstruction across all
nodes in the graph.
Remark 2: Designing C entails selecting K out of the N
entries in yi. However, yi has only N entries because Y has
only N columns [cf. (3)]. Strictly speaking, this restriction is not
required and more columns could be added to Y. As a matter
of fact, if for a given noisy graph signal applying S attenuates
the noise while amplifying the signal, the sampling procedure
will benefit from further applications of S, even beyond the
size of the graph N . In practice, the maximum number of
applications will be limited by the computational and signaling
cost associated with the application of the shift.

V. IDENTIFYING THE SUPPORT OF THE GRAPH SIGNAL

In the previous sections, it has been assumed that the fre-
quency support of x corresponded to the K principal eigenvec-
tors, which are the ones associated with the largest eigenvalues.
However, the results presented also hold true as long as the basis
support, i.e., the frequencies that are present in x, are known.
To be specific, let K := {k1, . . . , kK} denote the set of indices
where the signal x is sparse and, based on it, define the N ×K
matrices VK := [vk1 , . . . ,vkK ] and EK := [ek1 , . . . , ekK ].
Then, all the results presented so far hold true if VK is replaced
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with VK, and EK , when used to select the active frequencies,
is replaced with EK.

A related but more challenging problem is to design the sam-
pling and interpolation procedures when the frequency support
K is not known. Generically, this problem falls into the class
of sparse signal reconstruction [10], [12], [13]. However, the
particularities of our setup can be exploited to achieve stronger
results. In particular, for the sampling procedure proposed in this
paper, the so-called sensing matrix – the one relating the signal
of interest to the observed samples – has a useful Vandermonde
structure that can be exploited.

A. Noiseless joint recovery and support identification
Consider the noiseless aggregation sampling of Section III-B,

where we know that x̂ is K-sparse but we do not know the
support of the K non-zero entries [cf. (12)]

ȳi = Cyi = CΨdiag(υi)x̂. (34)

When the support is known, it was shown that a matrix C that
selects the first K rows of Ψ is enough for perfect reconstruction
(cf. Proposition 1).

If we reformulate the recovery problem as

x̂∗ := arg min
x̂

||x̂||0 (35)

s.t. Cyi = CΨdiag(υi)x̂,

for the unknown support case, there is no guarantee that the
solution x̂∗ coincides with the K-sparse representation of the
observed signal. When the frequency support is known, and
provided that the selection matrix satisfies the conditions in
Remark 1, selecting K rows of Ψdiag(υi)EK leads to a (one-
to-one) invertible transformation. When the support is unknown,
guaranteeing identifiability requires selecting a higher number
of rows (samples) [10]. The following proposition, whose proof
leverages the Vandermonde structure of Ψ, states this result
formally. To simplify notation, the proposition assumes that
K ≤ N/2, but the result holds true also when that is not the
case.
Proposition 2: Let x and C be, respectively, a bandlimited
graph signal with at most K non-zero frequency components and
a selection matrix with 2K rows of the form C = C2K(n0, N0)
(cf. Remark 1). Then, if all the entries in υi are non-zero and all
the eigenvalues of S are non-zero and satisfy that λN0

k 6= λN0

k′

for all k 6= k′, it holds that
i) the solution to (35) is unique; and
ii) the original graph signal can be recovered as x = Vx̂∗.
Proof : The proof proceeds in two steps. The first step is to
show that the 2K × N matrix M := CΨdiag(υi) has full
spark [10], i.e., that any selection of 2K of its columns has
rank 2K and, hence, it leads to an invertible 2K × 2K matrix.
To prove this, let F = {f1, . . . , f2K} be a set containing the
indices of the selected columns and define the N×2K canonical
matrix EF = [ef1

, . . . , ef2K
]. Using this notation, the matrix

containing the columns of M indexed by F is MEF , which
can be alternatively written as

MEF=CΨdiag(υi)EF=(CΨEF )(ET
Fdiag(υi)EF ). (36)

This shows that MEF is invertible because it can be written as
the product of two invertible matrices. The latter is true because:
a) conditions C = C2K(n0, N0), λN0

k 6= λN0

k′ for all k 6= k′, and
λk 6= 0 for all k guarantee that (CΨEF ) is invertible because it

is a product of a diagonal and a Vandermonde full-rank matrices
(cf. Remark 1); and b) condition [υi]k 6= 0 for all k guarantees
that (ET

Fdiag(υi)EF ) is an invertible diagonal matrix. This is
true for any F . The second step is to show that 2K observations
guarantee identifiability. To see why this is the case, assume that
two different feasible solutions x̂A and x̂B exist. This would
imply that M(x̂A−x̂B) = 0. Nevertheless, the vector (x̂A−x̂B)
has, at most, 2K non-zero components and any choice of 2K
columns of M generates a full rank square matrix, which forces
x̂A = x̂B and contradicts the assumption of multiple solutions.
Notice that although the proposition requires all the eigenvalues
to be non-zero and distinct, only the ones associated with K
need to satisfy those requirements.

This result reinforces the intuition that bandlimited graph
signals can be recovered by observing a local neighborhood.
Suppose that x is a bandlimited signal with K = 1, which
implies that x can be written as x = αvk. If the value of
k is known, then node i can interpolate the entire signal as
x = (xi/[vk]i)vk. If the support is not known, one sample is
not enough, but 2K = 2 samples suffice. Note that the first
two shifts, which are linear combinations of the signal values
within the one-hop neighborhood of i, yield [yi]1 = xi and
[yi]2 = Siixi+

∑
j∈Ni

Sijxj = λk̂xi. Then, node i can identify
the active frequency by finding the frequency index k̂ satisfying
λk̂ = [yi]2/[yi]1. Once k̂ is known, the corresponding frequency
coefficient can be estimated as before and the entire graph signal
is given by x = (xi/[vk̂]i)vk̂.

From a computational perspective, the presence of the 0-norm
in (35) renders the optimization non-convex, thus challenging to
solve. A straightforward way to convexify it is to replace the
0-norm with a 1-norm. Conditions under which this process is
guaranteed to identify the frequency support can be found by
analyzing the coherence and the restricted isometry property
(RIP) of matrix CΨdiag(υi) [10], [11]. Unfortunately, deter-
mining the conditioning of all submatrices of a deterministic
matrix (and, hence, the RIP) is challenging [20]. For aggregation
sampling, the coherence of the matrix CΨdiag(υi), denoted
as µi(C), is easier to find and it depends on the most similar
pair of eigenvalues in Λ. The corresponding sparsity bound is
K ≤

(
1 + µi(C)−1

)
/2 [10], [12]. Less restrictive bounds can

be found using the results for deterministic sensing matrices and
t-averaged mutual coherence in [12].

B. Noisy joint recovery and support identification
If noise is present and the frequency support of the signal

is unknown, the (K-sparse) least squares estimate of x̂ can be
found as the solution to the following optimization problem

x̂∗ := arg min
x̂
‖(R̄(i)

w )−1/2
(
Cyi −CΨdiag(υi)x̂

)
‖22 (37)

s.t. ||x̂||0 ≤ K

where the matrix multiplication (R̄
(i)
w )−1/2 in the objective ac-

counts for the fact of the noise being colored. As in the noiseless
case, a straightforward approach to convexify the problem is
to replace the 0-norm with the 1-norm and solve the problem
x̂∗1 := arg minx̂ ‖(R̄

(i)
w )−1/2

(
Cyi−CΨdiag(υi)x̂

)
‖22 +γ||x̂||1

for different values of the parameter γ.
The challenges for support identification and the penalty paid

in terms of error performance are related to those in the previous
sections [10]–[12]. If the conditioning of matrix CΨdiag(υi) is
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poor, which depends heavily on how similar the eigenvalues
in Λ are, the performance will be bad. An alternative to have
performance guarantees is to model matrix CΨdiag(υi) as
random. This can be the case if, for example, C is designed
as random or if there is noise in the application of S.

VI. SPACE-SHIFT SAMPLING OF GRAPH SIGNALS

This section presents an alternative – more general – sam-
pling setup that combines the selection sampling presented
in Section III-A with the aggregation sampling proposed in
Section III-B, termed space-shift sampling.

Let us start by defining Z = Y +W as the noisy counterpart
of Y [cf. (3)]. Note that the i-th row of Z corresponds to zi,
the observed shifted signal at node i. We are now interested in
collecting samples at different nodes and shifts, i.e., we want to
sample matrix Z. To do so, we first define the vectorized version
of Z as z

¯
= vec(ZT ). Recall that signal zi can be related to x̂K

via zi = ΨEKdiag(ῡi)x̂K + wi [cf. (14)], where ῡi = ET
Kυi.

To write a similar equation relating z
¯

to x̂K , we need to define

the N2×N matrix Υ and its corresponding reduced NK ×K
matrix Ῡ as

Υ :=

 diag(υ1)
...

diag(υN )

 , Ῡ :=

 diag(ῡ1)
...

diag(ῡN )

 . (38)

Based on this, z
¯

can be written as

z
¯

=
(
I⊗ (ΨEK)

)
Ῡx̂K + w

¯
, (39)

where w
¯

is a vector of length N2 obtained by concatenating
the noise vectors wi for all nodes i. This implies that (39) is a
system of N2 linear equations with K < N variables. Thus, our
objective is to select K of these equations in order to estimate
x̂K – and, hence, x through (18) – while minimizing the error
introduced by the noise w

¯
. Suppose that for a given node index

i we consider the problem of selecting K equations out of
the N equations in positions {(i−1)N + n}Nn=1, then space-
shift sampling reduces to local aggregation sampling at node i.
Similarly, if we restrict ourselves to select K equations out of
the N equations in positions {1 + (n− 1)N}Nn=1, the problem
reduces to selection sampling. In this sense, the formulation
in (39) is more general. To implement the selection of the
K equations out of the N2 options in (39), we use a binary
selection matrix C as done in previous sections but, in this case,
the size of C is K ×N2. The reduced square system of linear
equations can then be written as [cf. (14)]

z̄
¯

= C
(
I⊗ (ΨEK)

)
Ῡx̂K + Cw

¯
. (40)

The error covariance matrices R̂e
¯

and Re
¯

computed based on
the solution of (40) are [cf. (19) and (20)]

R̂e
¯

=
(
Ῡ
H

(I⊗ (ΨEK))
H

CH

× (CRw
¯
CH)−1 ×C (I⊗ (ΨEK)) Ῡ

)−1

, (41)

Re
¯

= VKR̂e
¯
VH
K , (42)

where Rw
¯

is the covariance matrix of w
¯

. In this case,
the noise models introduced in Section IV-A are also rel-
evant. For white noise in the observations, we have that
Rw

¯
= σ2I; for white noise in the original signal, we have

that Rw
¯

= σ2 (I⊗Ψ) ΥΥH (I⊗Ψ)
H ; and for white noise

in the active frequency coefficients, we have that Rw
¯

=

σ2 (I⊗ (ΨEK)) ῩῩ
H

(I⊗ (ΨEK))
H .

A. Structured observability pattern
In the previous discussion, no structure was assumed in the

selection matrix C. A case of particular interest is when the
sampling schemes are implemented in a distributed manner
using message passing. Suppose that the sampling is performed
at node i. To compute y(l)

i , the node i needs to have access to
y

(l′)
j for all j ∈ Ni and l′ < l. To simplify notation, and without

loss of generality, we will assume that the sampling node is
i = 1 and that the neighbors of i= 1 are i = 2, . . . , N1 + 1.
Suppose also that node i=1 computes L1 shifts, from y

(0)
1 up

to y(L1)
1 . This implies that node i = 1 has access to L1 + 1 of

its own samples and to L1 samples of each of its N1 neighbors.
The selection matrix C can then be written as

C=

[
ET
L1+1 0L1+1×(N2−N))

0N1L1×N IN1
⊗ET

L1
0N1L1×(N2−NN1−N)

]
. (43)

Matrix C has 1 + L1(1 + N1) rows, one per observation. The
first 1+L1 rows correspond to the samples at node i=1 and the
remaining L1N1 to the samples at its neighbors. Note also that
matrix C (I⊗ (ΨEK)) Ῡ is not full (row) rank. The reason is
that all the samples obtained at node i= 1, except for the first
one, are linear combinations of the samples at its neighbors. This
implies that the number of frequencies that can be recovered
using (43) is, at most, 1 + L1N1.

Structured observation models different from the one in (43)
can be also of interest. For example, one can consider setups
where nodes from different parts of the graph take a few samples
each and forward those samples to a central fusion center.
In such a case, since the nodes gathering data need not be
neighbors, the problem of some of the samples being a linear
combination of the others will not necessarily be present.

VII. NUMERICAL EXPERIMENTS

The purpose of this section is to illustrate and gain some intu-
ition about some of the theoretical results presented. We start by
illustrating perfect recovery of synthetic noiseless graph signals
when the frequency support is not known (Section VII-A). We
then present results for real-world graph signals corresponding
to the exchange among the different sectors of the economy of
the United States. These are used to test recovery under the
presence of noise (Section VII-B) as well as to illustrate the
space-shift sampling method (Section VII-C).

A. Noiseless recovery and support selection
In this set of experiments we consider realizations of a

symmetric Erdős-Rényi random graph with N = 20 nodes
and edge probability p [21]. With A = VΛAVH denoting
the adjacency matrix of a specific realization, three different
graph-shift operators are considered: S1 = A, S2 = I − A,
and S3 = 0.5A2. Notice that, even though the support of S3
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Fig. 2: Recovery rate of bandlimited signals in random graphs when the frequency support is unknown. Signals are recovered through the 1-norm
relaxation of problem (35) for different numbers of observations K and three different graph-shift operators S1 = A (blue circle), S2 = I−A
(red cross), and S3 = 0.5A2 (magenta square). Random graphs with different edge probabilities were considered: (a) 0.15 , (b) 0.20, and (c)
0.25. The shift operator S3 consistently outperforms the others, which can be attributed to a lower matrix coherence.
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Fig. 3: Heat map of the graph-shift operator S of the economic network.
It is sparse across the real economic sectors (from sector 1 to 62) while
the artificial sectors AV and FU are highly connected.

differs from that of S1 and S2, the graph-shift operator S3

still preserves the notion of locality as defined by a two-hop
neighborhood. Note also that the three shift operators share the
same set of eigenvectors V, so that the bandwidth K of a given
signal is the same for all of them. The experiments focus on
recovering a signal of bandwidth K = 3 whose frequency
support is unknown using the 1-norm relaxation. To assess
recovery, Fig. 2 plots the success rate – fraction of realizations
for which the actual signal was recovered – for graph-shifts S1,
S2 and S3, and different numbers of observations. Ten random
graph realizations and five signal realizations per graph were
considered. For each of these realizations, every node tries to
reconstruct the signal. Each point in the plots represents the
average success rate. The three plots correspond to realizations
generated using different edge probabilities: p = 0.15, p = 0.20,
and p = 0.25. The recovery rate for S3 = 0.5A2 is consistently
higher than the one for the other shift operators considered.
This is not surprising: when squaring the adjacency matrix to
generate S3, the dissimilarity between any pair of eigenvalues is
increased, which reduces the matrix coherence µi(C) associated
with S3 = 0.5A2 and facilitates sparse recovery (cf. last
paragraph in Section V-A).

B. Recovery in the presence of noise
The Bureau of Economic Analysis of the U.S. Department

of Commerce publishes a yearly table of input and outputs
organized by economic sectors [22]. More precisely, we have

a set N of 62 industrial sectors as defined by the North Amer-
ican Industry Classification System and a similarity function
U : N × N → R+ where U(i, i′) represents how much of
the production of sector i, expressed in trillions of dollars per
year, was used as an input of sector i′ on average during years
2008, 2009, and 2010. Moreover, for each sector we are given
two economic markers: the added value (AV) generated and the
level of production destined to the market of final users (FU).
Thus, we define a graph on the set of N = 64 nodes comprising
the original 62 sectors plus the two artificial ones (AV and FU)
and an associated symmetric graph-shift operator S̄ defined as
S̄ij = (U(i, j) + U(j, i))/2. We then threshold S̄ in order to
increase its sparsity by setting to 0 all the values lower than 0.01,
giving rise to S in Fig. 3. The shift S = VΛVH is normal given
that it is symmetric. Associated with this graph, we consider the
signal x ∈ R64 that collects the total production – in trillion of
dollars – of each sector (including AV and FU) during year
2011. Signal x is approximately bandlimited in S since most of
the elements of x̂ = VHx are close to zero; see Fig. 4a (top).
In particular, the reconstructed signal x4 = V4x̂4 obtained by
just keeping the first K = 4 frequency coefficients attains a
reconstruction error of 3.5×10−3 computed as the ratio between
the energy of the error and the energy of the original signal.
This small reconstruction error is nonetheless noticeable when
plotting the original signal x and the reconstructed one x4; see
Fig. 4a (bottom). To present a reasonable scale for illustration,
sectors AV and FU are not included in Fig. 4, since x4 takes
out-of-scale values for these sectors.

In Sections VII-B1 to VII-B3 we consider the bandlimited
signal x4 as noiseless and add different types of Gaussian noise
to analyze the interpolation performance at different nodes.
Differently, in Section VII-B4 we interpret x as a noisy version
of x4 and analyze the reconstruction error when interpolating x
from just 4 samples.

1) White noise in the observed signal: We perform aggrega-
tion sampling of multiple noisy versions of x4 via successive ap-
plications of S at different economic sectors (nodes). The noisy
versions of x4 are generated by adding noise to the observed
signal as described in (25). The noise power σ2 is the same
for all nodes and its value is set so that, when averaged across
nodes, the linear signal to noise ratio (SNR) for the first, second,
third and fourth observations in each node is 2, 10, 50, and 250,
respectively. The increase in the SNR is attributable to the fact
that successive applications of S increase the signal magnitude
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Fig. 4: (a) Top: Frequency representation of the graph signal x in the basis of eigenvectors of the graph-shift S. The signal is approximately
bandlimited. Bottom: Signal x (blue) and its reconstruction x4 (magenta) when keeping only the first 4 frequency components. (b) Empirical
(red circle) and theoretical (blue star) reconstruction errors for different sampling nodes when white noise is added to the observed signal. (c)
Empirical (red circle) and theoretical (blue star) reconstruction errors when white noise is added directly to the signal x4. (d) Signal x4 (blue)
and the best reconstruction achieved when sampling an economic sector for the three types of noise considered: white noise in the observations
(magenta), white noise in the signal (orange) and white noise in the active frequency components (green). (e) Reconstruction errors for different
sampling nodes when interpolating signal x based on four observations. (f) Signal x (blue) and the best reconstruction (magenta) achieved when
performing local aggregation sampling of economic sectors.

while σ2 remains constant. In Fig. 4b we plot both the empirical
reconstruction error at different nodes (averaged across 1,000
noisy realizations of x4) and the theoretical average error given
by the trace of R

(i)
e [cf. (20)-(21)]. We first observe that for all

64 nodes the theoretical and empirical errors coincide. A more
surprising observation is that the quality of the reconstruction
depends heavily on the node collecting the samples. The error
is minimized when the samples are taken at the artificial sectors
AV and FU. This is reasonable since these two nodes – unlike
other sectors – are closely related to every other sector of
the economy (cf. Fig. 3). Furthermore, the sectors achieving
the worst reconstruction errors are ‘Publishing Industries’ and
‘Ground Passenger Transportation’ corresponding to nodes 34
and 31. The heat map in Fig. 3 shows that these two nodes
(especially 31) are poorly connected to the rest of the network.
A more rigorous explanation can be provided by analyzing
vectors ῡ34 = ET

4 υ34 and ῡ31 = ET
4 υ31 (cf. Lemma 1). Even

though both vectors have all four components different from
zero, which guarantees perfect reconstruction in the noiseless
case (cf. Proposition 1), they possess an element whose absolute
value is in the order of 10−4, increasing the sensitivity of the
reconstruction in the presence of noise. For all other nodes the
smallest element of ῡi is at least one order of magnitude larger,
hence sensitivity to noise is much smaller. Fig. 4d presents
the reconstruction obtained by aggregation sampling in node
46 corresponding to ‘Professional Services’ – best among real
economic sectors, i.e., excluding AV and FU – which achieves
an error of 0.26.

2) White noise in the original signal: Here we consider that
noise is added to x4 [cf. (26)] and quantify the reconstruction

error when the aggregation sampling is performed at each of
the 64 nodes. The noise power σ2 is set to induce a linear SNR
of 102. As was the case in the previous section, the average
empirical error (across 1,000 realizations) matches closely our
theoretical estimates; see Fig. 4c. Moreover, the specific nodes
that lead to a good (bad) interpolation performance are very
similar to those in the previous noise model. Indeed, sectors
34 and 31 have the highest reconstruction error whereas AV
and FU attain the best reconstructions. Fig. 4d shows the best
reconstruction – excluding AV and FU – which amounts to
an error of 0.001 and corresponds to the sector ‘Professional
Services’ at node 46.

3) White noise in the active frequencies: Here white noise is
added to x̂4, as described in (27). As before, the noise power
σ2 is set to induce a linear SNR of 102. The average empirical
reconstruction error associated with each node (across 1,000
noisy realizations of x4) is the same regardless of the node. This
validates the analysis in (28), which stated that for this noise
model the quality of the reconstruction is node independent.
In Fig. 4d we present an example of such a reconstruction,
achieving an error of 0.01.

4) Real-world noisy signal: We interpret the graph signal x
as a noisy realization of a signal of bandwidth 4. Hence, our goal
is to obtain the best reconstruction of x based on 4 observations.
As described in (20) and shown before, interpolation perfor-
mance is highly node dependent. Indeed, the reconstruction error
when keeping the first 4 observations at each node spans 5 orders
of magnitude depending on the sampling node, although for
most nodes it is contained between 10−3 and 10−1; see Fig. 4e.
The best reconstruction among the real sectors is achieved
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by ‘Insurance Carriers’ (node 40). The best and the median
reconstructions are acceptable, attaining errors of 0.0035 and
0.019, respectively. Fig. 4f depicts the best reconstruction.

C. Space-shift sampling

In Section VII-B4 we analyzed the accuracy of interpolating
the U.S. economic activity after aggregation sampling in differ-
ent economic sectors. The minimum and median reconstruction
errors are presented in the first row of Table I, where the recon-
struction error is quantified as the ratio between the energy of
the error and that of the original signal. An alternative approach
is to implement selection sampling, i.e. to sample the signal x in
4 different sectors – excluding the artificial sectors AV and FU
– and interpolate the whole signal from these 4 observations,
as explained in Section III-A. Recall that reconstruction is not
guaranteed for every subset of 4 nodes since we must have
invertibility of (CVK) [cf. (6)]. By analyzing the minimum and
median reconstruction errors – see the two first rows in Table I
– it is clear that the node aggregation sampling outperforms
the node selection sampling. This is intuitive since most of the
energy of the signal is contained in the two first frequencies [cf.
Fig. 4a(top)], which are associated with the largest eigenvalues.
Hence, after successive implementations of the graph-shift, the
error in estimating these frequencies is reduced, resulting in a
smaller error in the interpolation of the whole signal.

As developed in Section VI, more general sampling strategies
can be implemented. For example, we can sample the value of
the signal at 4 nodes after the application of one, two or three
graph-shifts. The results – listed in rows 3, 4 and 5 of Table I
– reveal that reduction in the median error after each graph-
shift application is conspicuous, especially when going from no
applications – median error of 4.2 – to one application – median
error of 0.03. A different alternative is a sampling strategy that
selects the original signal and the signal after one shift in two
different sectors. The results, listed in the last row of Table I,
show that this configuration leads to a very good reconstruction
performance: 0.0035 minimum error and 0.039 median error.
Note that with this sampling configuration, the two sectors are
only required to compute the aggregated activity of their one-
hop neighbors.

The performance attained by a specific sampling scheme
depends on factors like the operating conditions of the network,
the structure of the graph, the noise model, and the properties of
the signal. As a general rule, when sampling an approximately
bandlimited signal whose active frequencies are associated with
large eigenvalues of S, aggregation sampling is expected to
give rise to a better interpolation. Successive applications of
S amplify the active frequencies, entailing a better estimation
of these frequencies and reducing the interpolation error. By
contrast, when the active frequencies are associated with small
eigenvalues of S, selection sampling is preferred. Space-shift
sampling strategies are useful whenever some active frequencies
are related to large eigenvalues and others are related to small
eigenvalues. Moreover, space-shift sampling is also a suitable
alternative when the magnitudes of the eigenvalues associated
with the active frequencies are unknown.

VIII. CONCLUSIONS

A novel scheme for sampling bandlimited graph signals – that
admit a sparse representation in the frequency domain – was

Sampling strategy Min. error Median error
[x]i [Sx]i [S2x]i [S3x]i .0035 .019
[x]i [x]j [x]k [x]l .0039 4.2
[Sx]i [Sx]j [Sx]k [Sx]l .0035 .030
[S2x]i [S2x]j [S2x]k [S2x]l .0035 .0055
[S3x]i [S3x]j [S3x]k [S3x]l .0035 .0040
[x]i [Sx]i [x]j [Sx]j .0035 .039

TABLE I: Minimum and median reconstruction error – energy of the
error as a fraction of the energy of the signal x – for different sam-
pling strategies. The first sampling strategy corresponds to aggregation
sampling (cf. Section III-B), i.e., observing the same node i after
successive applications of 0, 1, 2, and 3 graph-shifts S. The second
sampling strategy corresponds to selection sampling (cf. Section III-A),
i.e., observing the value of the signal x at 4 different nodes i, j, k, l. The
remaining strategies correspond to more general space-shift sampling
schemes (cf. Section VI).

proposed. The scheme was based on the aggregation of local
information at a single node after successive applications of the
graph-shift operator. This contrasted most existing works, which
focus on sampling the value of the signal observed at a subset
of nodes. Our scheme was shown to be equivalent to classical
sampling for directed cycle graphs whereas, for more general
graphs, the Vandermonde structure of the sampling matrix was
exploited to determine the conditions for perfect reconstruction
in the absence of noise. Reconstruction under correlated noise
was analyzed, and design criteria to select the sampling node and
shifts leading to optimal noisy reconstruction were discussed.
Scenarios where the specific set of frequencies present in the
bandlimited signal is not known were also investigated and con-
nections with sparse signal reconstruction were drawn. Finally, a
more general sampling scheme was presented which contained,
as particular cases, the selection sampling as well as our local
aggregation approach. The various sampling and interpolation
scenarios were illustrated through numerical experiments in both
synthetic and real-world graph signals.
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