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Abstract—This paper considers decentralized consensus optimiza-
tion problems where nodes of a network have access to different
summands of a global objective function. Nodes cooperate to mini-
mize the global objective by exchanging information with neighbors
only. A decentralized version of the alternating directions method
of multipliers (DADMM) is a common method for solving this
category of problems. DADMM exhibits linear convergence rate to
the optimal objective but its implementation requires solving a convex
optimization problem at each iteration. This can be computationally
costly and may result in large overall convergence times. The
decentralized quadratically approximated ADMM algorithm (DQM),
which minimizes a quadratic approximation of the objective function
that DADMM minimizes at each iteration, is proposed here. The
consequent reduction in computational time is shown to have minimal
effect on convergence properties. Convergence still proceeds at a lin-
ear rate with a guaranteed constant that is asymptotically equivalent
to the DADMM linear convergence rate constant. Numerical results
demonstrate advantages of DQM relative to DADMM and other
alternatives in a logistic regression problem.

Index Terms—Multi-agent network, decentralized optimization,
Alternating Direction Method of Multipliers.

I. INTRODUCTION

Decentralized algorithms are used to solve optimization prob-
lems where components of the objective are available at different
nodes of a network. Nodes access their local cost functions only
but try to minimize the aggregate cost by exchanging information
with their neighbors. Specifically, consider a variable x̃ ∈ Rp and
a connected network containing n nodes each of which has access
to a local cost function fi : Rp → R. The nodes’ goal is to find
the optimal argument of the global cost function

∑n
i=1 fi(x̃),

x̃∗ = argmin
x̃

n∑
i=1

fi(x̃). (1)

Problems of this form arise in, e.g., decentralized control [2]–
[4], wireless communication [5], [6], sensor networks [7]–[9], and
large scale machine learning [10]–[12]. In this paper we assume
that the local costs fi are twice differentiable and strongly convex.

There are different algorithms to solve (1) in a decentralized
manner which can be divided into two major categories. The ones
that operate in the primal domain and the ones that operate in
the dual domain. Among primal domain algorithms, decentralized
(sub)gradient descent (DGD) methods are well studied [13]–[15].
They can be interpreted as either a mix of local gradient descent
steps with successive averaging or as a penalized version of (1)
with a penalty term that encourages agreement between adjacent
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nodes. This latter interpretation has been exploited to develop the
network Newton (NN) methods that attempt to approximate the
Newton step of this penalized objective in a distributed manner
[16], [17]. The methods that operate in the dual domain consider
a constraint that enforces equality between nodes’ variables. They
then ascend on the dual function to find optimal Lagrange multi-
pliers with the solution of (1) obtained as a byproduct [7], [18]–
[20]. Among dual descent methods, decentralized implementation
of the alternating directions method of multipliers (ADMM),
known as DADMM, is proven to be very efficient with respect to
convergence time [7], [18], [19].

A fundamental distinction between primal methods such as
DGD and NN and dual domain methods such as DADMM is
that the former compute local gradients and Hessians at each
iteration while the latter minimize local pieces of the Lagrangian
at each step – this is necessary since the gradient of the dual
function is determined by Lagrangian minimizers. Thus, iterations
in dual domain methods are, in general, more costly because they
require solution of a convex optimization problem. However, dual
methods also converge in a smaller number of iterations because
they compute approximations to x̃∗ instead of descending towards
x̃∗. Having complementary advantages, the choice between primal
and dual methods depends on the relative cost of computation and
communication for specific problems and platforms. Alternatively,
one can think of developing methods that combine the advantages
of ascending in the dual domain without requiring solution of an
optimization problem at each iteration. This can be accomplished
by the decentralized linearized ADMM (DLM) algorithm [21],
[22], which replaces the minimization of a convex objective
required by ADMM with the minimization of a first order linear
approximation of the objective function. This yields per-iteration
problems that can be solved with a computational cost akin to
the computation of a gradient and a method with convergence
properties closer to DADMM than DGD.

If a first order approximation of the objective is useful, a
second order approximation should decrease convergence times
further. The decentralized quadratically approximated ADMM
(DQM) algorithm that we propose here minimizes a quadratic
approximation of the Lagrangian minimization of each ADMM
step. This quadratic approximation requires computation of local
Hessians but results in an algorithm with convergence properties
that are: (i) better than the convergence properties of DLM; (ii)
asymptotically identical to the convergence behavior of DADMM.
The technical contribution of this paper is to prove that (i) and
(ii) are true from both analytical and practical perspectives.

We begin the paper by discussing solution of (1) with DADMM
and its linearized version DLM (Section II). Both of these
algorithms perform updates on dual and primal auxiliary variables
that are identical and computationally simple. They differ in
the manner in which principal primary variables are updated.
DADMM solves a convex optimization problem and DLM solves



2

a regularized linear approximation. We follow with an explanation
of DQM that differs from DADMM and DLM in that it minimizes
a quadratic approximation of the convex problem that DADMM
solves exactly and DLM approximates linearly (Section III). We
also explain how DQM can be implemented in a distributed
manner (Proposition 1 and Algorithm 1). Convergence properties
of DQM are then analyzed (Section IV) where linear convergence
is established (Theorem 1 and Corollary 1). Key in the analysis is
the error incurred when approximating the exact minimization of
DADMM with the quadratic approximation of DQM. This error
is shown to decrease as iterations progress (Proposition 2) faster
than the rate that the error of DLM approaches zero (Proposi-
tion 3). This results in DQM having a guaranteed convergence
constant strictly smaller than the DLM constant that approaches
the guaranteed constant of DADMM for large iteration index
(Section IV-A). We corroborate analytical results with numerical
evaluations in a logistic regression problem (Section V). We show
that DQM does outperform DLM and show that convergence paths
of DQM and DADMM are almost identical (Section V-A). Overall
computational cost of DQM is shown to be smaller, as expected.

Notation. Vectors are written as x ∈ Rn and matrices as A ∈
Rn×n. Given n vectors xi, the vector x = [x1; . . . ;xn] represents
a stacking of the elements of each individual xi. We use ‖x‖ to
denote the Euclidean norm of vector x and ‖A‖ to denote the
Euclidean norm of matrix A. The gradient of a function f at point
x is denoted as ∇f(x) and the Hessian is denoted as ∇2f(x).
We use σ(B) to denote the singular values of matrix B and λ(A)
to denote the eigenvalues of matrix A.

II. DISTRIBUTED ALTERNATING DIRECTIONS METHOD OF
MULTIPLIERS

Consider a connected network with n nodes and m edges where
the set of nodes is V = {1, . . . , n} and the set of ordered edges
E contains pairs (i, j) indicating that i can communicate to j.
We restrict attention to symmetric networks in which (i, j) ∈ E
if and only if (j, i) ∈ E and define node i’s neighborhood as
the set Ni = {j | (i, j) ∈ E}. In problem (1) agent i has
access to the local objective function fi(x̃) and agents cooperate
to minimize the global cost

∑n
i=1 fi(x̃). This specification is

more naturally formulated by defining variables xi representing
the local copies of the variable x̃. We also define the auxiliary
variables zij associated with edge (i, j) ∈ E and rewrite (1) as

{x∗i }ni=1 := argmin
x

n∑
i=1

fi(xi), (2)

s. t. xi = zij , xj = zij , for all (i, j) ∈ E .

The constraints xi = zij and xj = zij enforce that the variable xi

of each node i is equal to the variables xj of its neighbors j ∈ Ni.
This condition in association with network connectivity implies
that a set of variables {x1, . . . ,xn} is feasible for problem (2)
if and only if all the variables xi are equal to each other, i.e., if
x1 = · · · = xn. Therefore, problems (1) and (2) are equivalent in
the sense that for all i and j the optimal arguments of (2) satisfy
x∗i = x̃∗ and zij = x̃∗, where x̃∗ is the optimal argument of (1).

To write problem (2) in a matrix form, define As ∈ Rmp×np

as the block source matrix which contains m × n square blocks
(As)e,i ∈ Rp×p. The block (As)e,i is not identically null if
and only if the edge e corresponds to e = (i, j) ∈ E in
which case (As)e,i = Ip. Likewise, the block destination matrix

Ad ∈ Rmp×np contains m×n square blocks (Ad)e,i ∈ Rp×p. The
square block (Ad)e,i = Ip when e corresponds to e = (j, i) ∈ E
and is null otherwise. Further define x := [x1; . . . ;xn] ∈ Rnp

as a vector concatenating all local variables xi, the vector
z := [z1; . . . ; zm] ∈ Rmp concatenating all auxiliary variables
ze = zij , and the aggregate function f : Rnp → R as
f(x) :=

∑n
i=1 fi(xi). We can then rewrite (2) as

x∗ := argmin
x

f(x), s. t. Asx− z = 0, Adx− z = 0. (3)

Define now the matrix A = [As;Ad] ∈ R2mp×np which
stacks the source and destination matrices, and the matrix B =
[−Imp;−Imp] ∈ R2mp×mp which stacks two negative identity
matrices of size mp to rewrite (3) as

x∗ := argmin
x

f(x), s. t. Ax + Bz = 0. (4)

DADMM is the application of ADMM to solve (4). To develop
this algorithm introduce Lagrange multipliers αe = αij and
βe = βij associated with the constraints xi = zij and xj = zij in
(2), respectively. Define α := [α1; . . . ;αm] as the concatenation
of the multipliers αe which yields the multiplier of the constraint
Asx − z = 0 in (3). Likewise, the corresponding Lagrange
multiplier of the constraint Adx−z = 0 in (3) can be obtained by
stacking the multipliers βe to define β := [β1; . . . ;βm]. Grouping
α and β into λ := [α;β] ∈ R2mp leads to the Lagrange multiplier
λ associated with the constraint Ax+Bz = 0 in (4). Using these
definitions and introducing a positive constant c > 0 we write the
augmented Lagrangian of (4) as

L(x, z,λ) := f(x) + λT (Ax + Bz) +
c

2
‖Ax + Bz‖2 . (5)

The idea of ADMM is to minimize the Lagrangian L(x, z,λ)
with respect to x, follow by minimizing the updated Lagrangian
with respect to z, and finish each iteration with an update of the
multiplier λ using dual ascent. To be more precise, consider the
time index k ∈ N and define xk, zk, and λk as the iterates at
step k. At this step, the augmented Lagrangian is minimized with
respect to x to obtain the iterate

xk+1 = argmin
x

f(x)+λT
k (Ax + Bzk)+

c

2
‖Ax + Bzk‖2 . (6)

Then, the augmented Lagrangian is minimized with respect to the
auxiliary variable z using the updated variable xk+1 to obtain

zk+1 = argmin
z

f(xk+1) (7)

+ λT
k (Axk+1 + Bz) +

c

2
‖Axk+1 + Bz‖2 .

After updating the variables x and z, the Lagrange multiplier λk

is updated through the dual ascent iteration

λk+1 = λk + c (Axk+1 + Bzk+1) . (8)

The DADMM algorithm is obtained by observing that the struc-
ture of the matrices A and B is such that (6)-(8) can be
implemented in a distributed manner [7], [18], [19].

The updates for the auxiliary variable z and the Lagrange
multiplier λ are not costly in terms of computation time. However,
updating the primal variable x can be expensive as it entails the
solution of an optimization problem [cf. (6)]. The DLM algorithm
avoids this cost with an inexact update of the primal variable
iterate xk+1. This inexact update relies on approximating the
aggregate function value f(xk+1) in (6) through a regularized
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linearization of the aggregate function f in a neighborhood of
the current variable xk. This regularized approximation takes the
form f(x) ≈ f(xk) +∇f(xk)T (x−xk) + (ρ/2)‖x−xk‖2 for a
given positive constant ρ > 0. Consequently, the update formula
for the primal variable x in DLM replaces the DADMM exact
minimization in (6) by the minimization of the quadratic form

xk+1 = argmin
x

f(xk) +∇f(xk)T (x− xk) +
ρ

2
‖x− xk‖2

+ λT
k (Ax + Bzk) +

c

2
‖Ax + Bzk‖2 . (9)

The first order optimality condition for (9) implies that the updated
variable xk+1 satisfies

∇f(xk) + ρ(xk+1 − xk) + ATλk + cAT (Axk+1 + Bzk) = 0.
(10)

According to (10), the updated variable xk+1 can be computed
by inverting the positive definite matrix ρI+ cATA. This update
can also be implemented in a distributed manner.

The sequence of variables xk generated by DLM converges
linearly to the optimal argument x∗ [21]. Although this is the
same rate of DADMM, linear convergence constant of DLM is
smaller than the one for DADMM (see Section IV-A), and can
be much smaller depending on the condition number of the local
functions fi (see Section V-A). To close the gap between these
constants we can use a second order approximation of (6). This
is the idea of DQM that we introduce in the following section.

III. DQM: DECENTRALIZED QUADRATICALLY
APPROXIMATED ADMM

DQM uses a local quadratic approximation of the primal func-
tion f(x) around the current iterate xk. If we let Hk := ∇2f(xk)
denote the primal function Hessian evaluated at xk the quadratic
approximation of f at xk is f(x) ≈ f(xk)+∇f(xk)T (x−xk)+
(1/2)(x−xk)THk(x−xk). Using this approximation in (6) yields
the DQM update that we therefore define as

xk+1 := argmin
x

f(xk) +∇f(xk)T (x− xk) (11)

+
1

2
(x− xk)THk(x− xk)

+ λT
k (Ax + Bzk) +

c

2
‖Ax + Bzk‖2 .

Comparison of (9) and (11) shows that in DLM the quadratic term
(ρ/2)‖xk+1 − xk‖2 is added to the first-order approximation of
the primal objective function, while in DQM the second order
approximation of the primal objective function is used to reach a
more accurate approximation for f(x). Since (11) is a quadratic
program, the first order optimality condition yields a system of
linear equations that can be solved to find xk+1,

∇f(xk) + Hk(xk+1−xk) + ATλk + cAT (Axk+1 + Bzk) = 0.
(12)

This update can be solved by inverting the matrix Hk + cATA
which is invertible if, as we are assuming, f(x) is strongly convex.

The DADMM updates in (7) and (8) are used verbatim in
DQM, which is therefore defined by recursive application of
(12), (7), and (8). It is customary to consider the first order
optimality conditions of (7) and to reorder terms in (8) to rewrite

the respective updates as

BTλk + cBT (Axk+1 + Bzk+1) = 0,

λk+1 − λk − c (Axk+1 + Bzk+1) = 0. (13)

DQM is then equivalently defined by recursive solution of the
system of linear equations in (12) and (13). This system, as is the
case of DADMM and DLM, can be reworked into a simpler form
that reduces communication cost. To derive this simpler form we
assume a specific structure for the initial vectors λ0 = [α0;β0],
x0, and z0 as introduced in the following assumption.

Assumption 1 Define the oriented incidence matrix as Eo :=
As − Ad and the unoriented incidence matrix as Eu := As +
Ad. The initial Lagrange multipliers α0 and β0, and the initial
variables x0 and z0 are chosen such that:
(a) The multipliers are opposites of each other, α0 = −β0.
(b) The initial primal variables satisfy Eux0 = 2z0.
(c) The initial multiplier α0 lies in the column space of Eo.

Assumption 1 is minimally restrictive. The only non-elementary
condition is (c) but that can be satisfied by α0 = 0. Nulling all
other variables, i.e., making β0 = 0, x0 = 0, and z0 = 0 is a
trivial choice to comply with conditions (a) and (b) as well. An
important consequence of the initialization choice in (1) is that if
the conditions in Assumption 1 are true at time k = 0 they stay
true for all subsequent iterations k > 0 as we state next.

Lemma 1 Consider the DQM algorithm as defined by (12)-(13).
If Assumption 1 holds, then for all k ≥ 0 the Lagrange multipliers
αk and βk, and the variables xk and zk satisfy:
(a) The multipliers are opposites of each other, αk = −βk.
(b) The primal variables satisfy Euxk = 2zk.
(c) The multiplier αk lies in the column space of Eo.

Proof: See Appendix A. �

The validity of (c) in Lemma 1 is important for the convergence
analysis of Section IV. The validity of (a) and (b) means that
maintaining multipliers αk and βk is redundant because they
are opposites and that maintaining variables zk is also redundant
because they can be computed as zk = Euxk/2. It is then possible
to replace (12)-(13) by a simpler system of linear equations as we
explain in the following proposition.

Proposition 1 Consider the DQM algorithm as defined by (12)-
(13) and define the sequence φk := ET

o αk. Further define
the unoriented Laplacian as Lu := (1/2)ET

uEu, the oriented
Laplacian as Lo = (1/2)ET

o Eo, and the degree matrix as
D := (Lu +Lo)/2. If Assumption 1 holds true, the DQM iterates
xk can be generated as

xk+1 = (2cD + Hk)−1 [(cLu + Hk)xk −∇f(xk)− φk] ,

φk+1 = φk + cLoxk+1. (14)

Proof: See Appendix B. �

Proposition 1 states that by introducing the sequence of vari-
ables φk, the DQM primal iterates xk can be computed through
the recursive expressions in (14). These recursions are simpler
than (12)-(13) because they eliminate the auxiliary variables zk
and reduce the dimensionality of λk – twice the number of edges
– to that of φk – the number of nodes. Further observe that if
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(14) is used for implementation we don’t have to make sure that
the conditions of Assumption 1 are satisfied. We just need to pick
φ0 := ET

o α0 for some α0 in the column space of E0 – which is
not difficult, we can use, e.g., φ0 = 0. The role of Assumption
1 is to state conditions for which the expressions in (12)-(13) are
an equivalent representation of (14) that we use for convergence
analyses.

The structure of the primal objective function Hessian Hk, the
degree matrix D, and the oriented and unoriented Laplacians Lo

and Lu make distributed implementation of (14) possible. Indeed,
the matrix 2cD+Hk is block diagonal and its i-th diagonal block
is given by 2cdiI +∇2fi(xi) which is locally available for node
i. Likewise, the inverse matrix (2cD + Hk)−1 is block diagonal
and locally computable since the i-th diagonal block is (2cdiI +
∇2fi(xi))

−1. Computations of the products Luxk and Loxk+1

can be implemented in a decentralized manner as well, since the
Laplacian matrices Lu and Lo are block neighbor sparse in the
sense that the (i, j)-th block is not null if and only if nodes i
and j are neighbors or j = i. Therefore, nodes can compute their
local parts for the products Luxk and Loxk+1 by exchanging
information with their neighbors. By defining components of the
vector φk as φk := [φ1,k, . . . ,φn,k], the update formula in (14)
for the individual agents can then be written block-wise as

xi,k+1 =
(
2cdiI +∇2fi(xi,k)

)−1 [
cdixi,k + c

∑
j∈Ni

xj,k

+∇2fi(xi,k)xi,k −∇fi(xi,k)− φi,k

]
, (15)

where xi,k corresponds to the iterate of node i at step k.
Notice that the defintion Lu := (1/2)ET

uEu = (1/2)(As +
Ad)T (As + Ad) is used to simplify the i-th component of
cLuxk as c

∑
j∈Ni

(xi,k + xj,k) which is equivalent to cdixi,k +

c
∑

j∈Ni
xj,k. Further, using the definition Lo = (1/2)ET

o Eo =

(1/2)(As −Ad)T (As −Ad), the i-th component of the product
cLoxk+1 in (16) can be simplified as c

∑
j∈Ni

(xi,k − xj,k).
Therefore, the second update formula in (14) can be locally
implemented at each node i as

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1) . (16)

The proposed DQM method is summarized in Algorithm 1. The
initial value for the local iterate xi,0 can be any arbitrary vector
in Rp. The initial vector φi,0 should be in column space of ET

o .
To guarantee satisfaction of this condition, the initial vector is
set as φi,0 = 0. At each iteration k, updates of the primal and
dual variables in (15) and (16) are computed in Steps 2 and 4,
respectively. Nodes exchange their local variables xi,k with their
neighbors j ∈ Ni in Step 3, since this information is required for
the updates in Steps 2 and 4.

DADMM, DQM, and DLM occupy different points in a tradeoff
curve of computational cost per iteration and number of iterations
needed to achieve convergence. The computational cost of each
DADMM iteration is large in general because it requires solution
of the optimization problem in (6). The cost of DLM iterations
is minimal because the solution of (10) can be reduced to the
inversion of a block diagonal matrix; see [22]. The cost of
DQM iterations is larger than the cost of DLM iterations because
they require evaluation of local Hessians as well as inversion
of the matrices 2cdiI + ∇2fi(xi,k) to implement (15). But the
cost is smaller than the cost of DADMM iterations except in

Algorithm 1 DQM method at node i
Require: Initial local iterates xi,0 and φ0.

1: for k = 0, 1, 2, . . . do
2: Update the local iterate xi,k+1 as

xi,k+1 =
(
2cdiI+∇2fi(xi,k)

)−1
[
cdixi,k + c

∑
j∈Ni

xj,k

+∇2fi(xi,k)xi,k −∇fi(xi,k)− φi,k

]
.

3: Exchange iterates xi,k+1 with neighbors j ∈ Ni.
4: Update local dual variable φk+1 as

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1) .

5: end for

cases in which solving (6) is easy. In terms of the number of
iterations required until convergence, DADMM requires the least
and DLM the most. The foremost technical conclusions of the
convergence analysis presented in the following section are: (i)
convergence of DQM is strictly faster than convergence of DLM;
(ii) asymptotically in the number of iterations, the per iteration
improvements of DADMM and DQM are identical. It follows
from these observations that DQM achieves target optimality in a
number of iterations similar to DADMM but with iterations that
are computationally cheaper.

IV. CONVERGENCE ANALYSIS

In this section we show that the sequence of iterates xk

generated by DQM converges linearly to the optimal argument
x∗ = [x̃∗; . . . ; x̃∗]. As a byproduct of this analysis we also
obtain a comparison between the linear convergence constants of
DLM, DQM, and DADMM. To derive these results we make the
following assumptions.

Assumption 2 The network is such that any singular value of
the unoriented incidence matrix Eu, defined as σ(Eu), satisfies
0 < γu ≤ σ(Eu) ≤ Γu where γu and Γu are constants; the
smallest non-zero singular value of the oriented incidence matrix
Eo is γo > 0.

Assumption 3 The local objective functions fi(x) are twice
differentiable and the eigenvalues of their local Hessians ∇2fi(x)
are bounded within positive constants m and M where 0 < m ≤
M <∞ so that for all x ∈ Rp it holds

mI � ∇2fi(x) � MI. (17)

Assumption 4 The local Hessians ∇2fi(x) are Lipschitz contin-
uous with constant L so that for all x, x̂ ∈ Rp it holds∥∥∇2fi(x)−∇2fi(x̂)

∥∥ ≤ L ‖x− x̂‖. (18)

The eigenvalue bounds in Assumption 2 are measures of
network connectivity. Note that the assumption that all the sin-
gular values of the unoriented incidence matrix Eu are positive
implies that the graph is non-bipartite. The conditions imposed
by assumptions 3 and 4 are typical in the analysis of second
order methods; see, e.g., [23, Chapter 9]. The lower bound for
the eigenvalues of the local Hessians ∇2fi(x) implies strong
convexity of the local objective functions fi(x) with constant
m, while the upper bound M for the eigenvalues of the local
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Hessians ∇2fi(x) is tantamount to Lipschitz continuity of local
gradients ∇fi(x) with Lipschitz constant M . Further note that as
per the definition of the aggregate objective f(x) :=

∑n
i=1 fi(xi),

the Hessian H(x) := ∇2f(x) ∈ Rnp×np is block diagonal with
i-th diagonal block given by the i-th local objective function
Hessian ∇2fi(xi). Therefore, the bounds for the local Hessians’
eigenvalues in (17) also hold for the aggregate function Hessian.
Thus, we have that for any x ∈ Rnp the eigenvalues of the Hessian
H(x) are uniformly bounded as

mI � H(x) � MI. (19)

Assumption 4 also implies an analogous condition for the aggre-
gate function Hessian H(x) as we show in the following lemma.

Lemma 2 Consider the definition of the aggregate function
f(x) :=

∑n
i=1 fi(xi). If Assumption 4 holds true, the aggregate

function Hessian H(x) =: ∇2f(x) is Lipschitz continuous with
constant L. I.e., for all x, x̂ ∈ Rnp we can write

‖H(x)−H(x̂)‖ ≤ L‖x− x̂‖. (20)

Proof: See Appendix C. �

DQM can be interpreted as an attempt to approximate the pri-
mal update of DADMM. Therefore, we evaluate the performance
of DQM by studying a measure of the error of the approximation
in the DQM update relative to the DADMM update. In the primal
update of DQM, the gradient ∇f(xk+1) is estimated by the
approximation ∇f(xk) + Hk(xk+1 − xk). Therefore, we can
define the DQM error vector eDQM

k as

eDQM
k := ∇f(xk) + Hk(xk+1 − xk)−∇f(xk+1). (21)

Based on the definition in (21), the approximation error of DQM
vanishes when the difference of two consecutive iterates xk+1−xk

approaches zero. This observation is formalized in the following
proposition by introducing an upper bound for the error vector
norm ‖eDQM

k ‖ in terms of the difference norm ‖xk+1 − xk‖.

Proposition 2 Consider the DQM method as introduced in (12)-
(13) and the error eDQM

k defined in (21). If Assumptions 1-4 hold
true, the DQM error norm ‖eDQM

k ‖ is bounded above by∥∥∥eDQM
k

∥∥∥ ≤ min

{
2M‖xk+1 − xk‖,

L

2
‖xk+1 − xk‖2

}
. (22)

Proof: See Appendix D. �

Proposition 2 asserts that the error norm ‖eDQM
k ‖ is bounded

above by the minimum of a linear and a quadratic term of the
iterate difference norm ‖xk+1 − xk‖. Hence, the approximation
error vanishes as the sequence of iterates xk converges. We will
show in Theorem 1 that the sequence ‖xk+1 − xk‖ converges to
zero which implies that the error vector eDQM

k converges to the
null vector 0. Notice that after a number of iterations the term
(L/2)‖xk+1−xk‖ becomes smaller than 2M , which implies that
the upper bound in (22) can be simplified as (L/2)‖xk+1−xk‖2
for sufficiently large k. This is important because it implies that
the error vector norm ‖eDQM

k ‖ eventually becomes proportional
to the quadratic term ‖xk+1 − xk‖2 and, as a consequence, it
vanishes faster than the term ‖xk+1 − xk‖.

Utilize now the definition in (21) to rewrite the primal variable
DQM update in (12) as

∇f(xk+1) + eDQM
k + ATλk + cAT (Axk+1+Bzk) = 0. (23)

Comparison of (23) with the optimality condition for the
DADMM update in (6) shows that they coincide except for
the gradient approximation error term eDQM

k . The DQM and
DADMM updates for the auxiliary variables zk and the dual
variables λk are identical [cf. (7), (8), and (13)], as already
observed.

Further let the pair (x∗, z∗) stand for the unique solution of
(2) with uniqueness implied by the strong convexity assumption
and define α∗ as the unique optimal multiplier that lies in the
column space of Eo – see Lemma 1 of [21] for a proof that such
optimal dual variable exists and is unique. To study convergence
properties of DQM we modify the system of DQM equations
defined by (13) and (23), which is equivalent to the system (12)
– (13), to include terms that involve differences between current
iterates and the optimal arguments x∗, z∗, and α∗. We state this
reformulation in the following lemma.

Lemma 3 Consider the DQM method as defined by (12)-(13) and
its equivalent formulation in (13) and (23). If Assumption 1 holds
true, then the optimal arguments x∗, z∗, and α∗ satisfy

∇f(xk+1)−∇f(x∗) + eDQM
k + ET

o (αk+1 −α∗)

−cET
u (zk − zk+1) = 0, (24)

2(αk+1 −αk)− cEo(xk+1 − x∗) = 0, (25)
Eu(xk − x∗)− 2(zk − z∗) = 0. (26)

Proof: See Appendix E. �

With the preliminary results in Lemmata 2 and 3 and Proposi-
tion 2 we can state our convergence results. To do so, define the
energy function V : Rmp×mp → R as

V (z,α) := c‖z− z∗‖2 +
1

c
‖α−α∗‖2. (27)

The energy function V (z,α) captures the distances of the vari-
ables zk and αk to the respective optimal arguments z∗ and α∗.
To simplify notation we further define the variable u ∈ R2mp and
matrix C ∈ R2mp×2mp as

u :=

[
z
α

]
, C :=

[
cImp 0

0 (1/c)Imp

]
. (28)

Based on the definitions in (28), the energy function in (27) can be
alternatively written V (z,α) = V (u) = ‖u−u∗‖2C, where u∗ =
[z∗;α∗]. The energy sequence V (uk) = ‖uk − u∗‖2C converges
to zero at a linear rate as we state in the following theorem.

Theorem 1 Consider the DQM method as defined by (12)-(13),
let the constant c be such that c > 4M2/(mγ2u), and define the
sequence of non-negative variables ζk as

ζk := min

{
L

2
‖xk+1 − xk‖, 2M

}
. (29)

Further, consider arbitrary constants µ, µ′, and η with µ, µ′ > 1
and ηk ∈ (ζk/m, cγ

2
u/ζk). If Assumptions 1-4 hold true, then the

sequence ‖uk − u∗‖2C generated by DQM satisfies

‖uk+1 − u∗‖2C ≤
1

1 + δk
‖uk − u∗‖2C , (30)

where the sequence of positive scalars δk is given by

δk = min

{
(µ− 1)(cγ2u − ηkζk)γ2o

µµ′(cΓ2
uγ

2
u + 4ζ2k/c(µ

′ − 1))
,

m− ζk/ηk
cΓ2

u/4 + µM2/cγ2o

}
.

(31)
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Proof: See Appendix F. �

Notice that δk is a decreasing function of ζk and that ζk is
bounded above by 2M . Therefore, if we substitute ζk by 2M in
(31), the inequality in (30) is still valid. This substitution implies
that the sequence ‖uk − u∗‖2C converges linearly to zero with
a coefficient not larger than 1 − δ with δ = δk following from
(30) with ζk = 2M . The more generic definition of ζk in (29) is
important for the rate comparisons in Section IV-A. Observe that
in order to guarantee that δk > 0 for all k ≥ 0, ηk is chosen from
the interval (ζk/m, cγ

2
u/ζk). This interval is non-empty since the

constant c is chosen as c > 4M2/(mγ2u) ≥ ζ2k/(mγ2u).
The linear convergence in Theorem 1 is for the vector uk which

includes the auxiliary variable zk and the multipliers αk. Linear
convergence of the primal variables xk to the optimal argument
x∗ follows as a corollary that we establish next.

Corollary 1 Under the assumptions in Theorem 1, the sequence
of squared norms ‖xk − x∗‖2 generated by the DQM algorithm
converges R-linearly to zero, i.e.,

‖xk − x∗‖2 ≤ 4

cγ2u
‖uk − u∗‖2C. (32)

Proof : Notice that according to (26) we can write ‖Eu(xk −
x∗)‖2 = 4‖zk − z∗‖2. Since γu is the smallest singular value of
Eu, we obtain that ‖xk − x∗‖2 ≤ (4/γ2u)‖zk − z∗‖2. Moreover,
according to the relation ‖uk−u∗‖2C = c‖zk−z∗‖2+(1/c)‖αk−
α∗‖2 we can write c‖zk−z∗‖2 ≤ ‖uk−u∗‖2C. Combining these
two inequalities yields the claim in (32). �

As per Corollary 1, convergence of the sequence xk to x∗

is dominated by a linearly decreasing sequence. Notice that the
sequence of squared norms ‖xk−x∗‖2 need not be monotonically
decreasing as the energy sequence ‖uk+1 − u∗‖2C is.

A. Convergence rates comparison

Based on the result in Corollary 1, the sequence of iterates xk

generated by DQM converges. This observation implies that the
sequence ‖xk+1 − xk‖ approaches zero. Hence, the sequence of
scalars ζk defined in (29) converges to 0 as time passes, since
ζk is bounded above by (L/2)‖xk+1 − xk‖. Using this fact that
limk→∞ ζk = 0 to compute the limit of δk in (31) and further
making µ′ → 1 in the resulting limit we have that

lim
k→∞

δk = min

{
(µ− 1)γ2o
µΓ2

u

,
m

cΓ2
u/4 + µM2/cγ2o

}
. (33)

Notice that the limit of δk in (33) is identical to the constant
of linear convergence for DADMM [19]. Therefore, we conclude
that as time passes the constant of linear convergence for DQM
approaches the one for DADMM.

To compare the convergence rates of DLM, DQM and DADMM
we define the error of the gradient approximation for DLM as

eDLM
k = ∇f(xk) + ρ(xk+1 − xk)−∇f(xk+1), (34)

which is the difference of exact gradient ∇f(xk+1) and the DLM
gradient approximation ∇f(xk) + ρ(xk+1 − xk). Similar to the
result in Proposition 2 for DQM we can show that the DLM error
vector norm ‖eDLM

k ‖ is bounded by a factor of ‖xk+1 − xk‖.

Proposition 3 Consider the DLM algorithm with updates in (7)-
(9) and the error vector eDLM

k defined in (34). If Assumptions
1-4 hold true, the DLM error vector norm ‖eDLM

k ‖ satisfies∥∥eDLM
k

∥∥ ≤ (ρ+M)‖xk+1 − xk‖. (35)

Proof: See Appendix D. �

The result in Proposition 3 differs from Proposition 2 in that the
DLM error ‖eDLM

k ‖ vanishes at a rate of ‖xk+1−xk‖ whereas the
DQM error ‖eDQM

k ‖ eventually becomes proportional to ‖xk+1−
xk‖2. This results in DLM failing to approach the convergence
behavior of DADMM as we show in the following theorem.

Theorem 2 Consider the DLM method as introduced in (7)-
(9). Assume that the constant c is chosen such that c >
(ρ + M)2/(mγ2u). Moreover, consider µ, µ′ > 1 as arbitrary
constants and η as a positive constant chosen from the interval
((ρ + M)/m, cγ2u/(ρ+M)). If Assumptions 1-4 hold true, then
the sequence ‖uk − u∗‖2C generated by DLM satisfies

‖uk+1 − u∗‖2C ≤
1

1 + δ
‖uk − u∗‖2C , (36)

where the scalar δ is given by

δ=min

{
(µ− 1)(cγ2u − ηk(ρ+M))γ2o

µµ′(cΓ2
uγ

2
u+4(ρ+M)2/c(µ′−1))

,
m− (ρ+M)/ηk
cΓ2

u/4+µM2/cγ2o

}
(37)

Proof: See Appendix F. �

Based on the result in Theorem 2, the sequence ‖uk+1−u∗‖2C
generated by DLM converges linearly to 0. This result is similar
to the convergence properties of DQM as shown in Theorem 1;
however, the constant of linear convergence 1/(1 + δ) in (36) is
smaller than the constant 1/(1 + δk) in (33).

V. NUMERICAL ANALYSIS

In this section we compare the performances of DLM, DQM
and DADMM in solving a logistic regression problem. Consider
a training set with points whose classes are known and the goal
is finding the classifier that minimizes the loss function. Let
q be the number of training points available at each node of
the network. Therefore, the total number of training points is
nq. The training set {sil, yil}ql=1 at node i contains q pairs of
(sil, yil), where sil is a feature vector and yil ∈ {−1, 1} is
the corresponding class. The goal is to estimate the probability
P (y = 1 | s) of having label y = 1 for a given feature vector
s whose class is not known. Logistic regression models this
probability as P (y = 1 | s) = 1/(1 + exp(−sT x̃)) for a linear
classifier x̃ that is computed based on the training samples. It
follows from this model that the maximum log-likelihood estimate
of the classifier x̃ given the training samples {{sil, yil}ql=1}ni=1 is

x̃∗ := argmin
x̃∈Rp

n∑
i=1

q∑
l=1

log
[
1 + exp(−yilsTil x̃)

]
. (38)

The optimization problem in (38) can be written in the form (1).
To do so, simply define the local objective functions fi as

fi(x̃) =

q∑
l=1

log
[
1 + exp(−yilsTil x̃)

]
. (39)
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Fig. 1: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DADMM, DQM,
and DLM versus number of iterations for a random network of
size n = 10. The convergence path of DQM is similar to the one
for DADMM and they outperform DLM by orders of magnitude.
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Fig. 2: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DADMM, DQM,
and DLM versus runtime for the setting in Fig. 1. The computa-
tional cost of DQM is lower than DADMM and DLM.

We define the optimal argument for decentralized optimization as
x∗ = [x̃∗; . . . ; x̃∗]. Note that the reference (ground true) logistic
classifiers x̃∗ for all the experiments in this section are pre-
computed with a centralized method.

A. Comparison of DLM, DQM, and DADMM

We compare the convergence paths of the DLM, DQM, and
DADMM algorithms for solving the logistic regression problem
in (38). Edges between the nodes are randomly generated with
the connectivity ratio rc. Observe that the connectivity ratio rc is
the probability of two nodes being connected.

In the first experiment we set the number of nodes as n = 10
and the connectivity ratio as rc = 0.4. Each agent holds q = 5
samples and the dimension of feature vectors is p = 3. Fig. 1 illus-
trates the relative errors ‖xk − x∗‖/‖x0 − x∗‖ for DLM, DQM,
and DADMM versus the number of iterations. Notice that the
parameter c for the three methods is optimized by cADMM = 0.7,
cDLM = 5.5, and cDQM = 0.7. The convergence path of DQM is
almost identical to the convergence path of DADMM. Moreover,
DQM outperforms DLM by orders of magnitude. To be more
precise, the relative errors ‖xk − x∗‖/‖x0 − x∗‖ for DQM and
DADMM after k = 300 iterations are below 10−9, while for DLM
the relative error after the same number of iterations is 5× 10−2.
Conversely, achieving accuracy ‖xk − x∗‖/‖x0 − x∗‖ = 10−3

for DQM and DADMM requires 91 iterations, while DLM
requires 758 iterations to reach the same accuracy. Hence, the
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Fig. 3: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DADMM, DQM,
and DLM versus number of iterations for a random network of
size n = 100. The performances of DQM and DADMM are still
similar. DLM is impractical in this setting.
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Fig. 4: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DADMM, DQM,
and DLM versus runtime for the setting in Fig. 2. The convergence
time of DADMM is slightly faster relative to DLM, while DQM
is the most efficient method among these three algorithms.

number of iterations that DLM requires to achieve a specific
accuracy is 8 times more than the one for DQM.

Observe that the computational complexity of DQM is lower
than DADMM. Therefore, DQM outperforms DADMM in terms
of convergence time or number of required operations until
convergence. This phenomenon is shown in Fig 2 by comparing
the relative of errors of DLM, DQM, and DADMM versus CPU
runtime. According to Fig 2, DADMM achieves the relative error
‖xk − x∗‖/‖x0 − x∗‖ = 10−10 after running for 3.6 seconds,
while DLM and DQM require 1.3 and 0.4 seconds, respectively,
to achieve the same accuracy.

We also compare the performances of DLM, DQM, and
DADMM in a larger scale logistic regression problem by setting
size of network n = 100, number of sample points at each node
q = 20, and dimension of feature vectors p = 10. We keep the rest
of the parameters as in Fig. 1. Convergence paths of the relative
errors ‖xk − x∗‖/‖x0 − x∗‖ for DLM, DQM, and DADMM
versus the number of iterations are illustrated in Fig. 3. Different
choices of parameter c are considered for these algorithms and
the best for each is chosen for the final comparison. The optimal
choices of parameter c for DADMM, DLM, and DQM are
cADMM = 0.68, cDLM = 12.3, and cDQM = 0.68, respectively.
The results for the large scale problem in Fig. 3 are similar to
the results in Fig. 1. We observe that DQM performs as well
as DADMM, while both outperform DLM. To be more precise,
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Fig. 5: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DQM for param-
eters c = 0.2, c = 0.4, c = 0.8, and c = 1 when the network is
formed by n = 10 nodes and the connectivity ratio is rc = 0.4.
The best performance belongs to c = 0.8.

DQM and DADMM after k = 900 iterations reach the relative
error ‖xk − x∗‖/‖x0 − x∗‖ = 3.4×10−7, while the relative error
of DLM after the same number of iterations is 2.9× 10−1. Con-
versely, achieving the accuracy ‖xk − x∗‖/‖x0 − x∗‖ = 0.3 for
DQM and DADMM requires 52 iterations, while DLM requires
870 iterations to reach the same accuracy. Hence, in this setting
the number of iterations that DLM requires to achieve a specific
accuracy is 16 times more than the one for DQM. These numbers
show that the advantages of DQM relative to DLM are more
significant in large scale problems.

Notice that in large scale logistic regression problems we
expect larger condition number for the objective function f . In
these scenarios we expect to observe a poor performance by the
DLM algorithm that only operates on first-order information. This
expectation is satisfied by comparing the relative errors of DLM,
DQM, and DADMM versus runtime for the large scale problem
in Fig. 4. In this case, DLM is even worse than DADMM that has
a very high computational complexity. Similar to the result in Fig.
3, DQM has the best performance among these three methods.

B. Effect of the regularization parameter c

The parameter c has a significant role in the convergence of
DADMM. Likewise, choosing the optimal choice of c is critical
in the convergence of DQM. We study the effect of c by tuning
this parameter for a fixed network and training set. We use all the
parameters in Fig. 1 and we compare performance of the DQM
algorithm for the values c = 0.2, c = 0.4, c = 0.8, and c = 1.
Fig. 5 illustrates the convergence paths of the DQM algorithm for
different choices of the parameter c. The best performance among
these choices is achieved for c = 0.8. The comparison of the plots
in Fig. 5 shows that increasing or decreasing the parameter c is
not necessarily leads to a faster convergence. We can interpret c
as the stepsize of DQM which the optimal choice may vary for
the problems with different network sizes, network topologies,
condition numbers of objective functions, etc.

C. Effect of network topology

According to (31) the constant of linear convergence for DQM
depends on the bounds for the singular values of the oriented
and unoriented incidence matrices Eo and Eu. These bounds are
related to the connectivity ratio of network. We study how the
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Fig. 6: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DQM for random
graphs with different connectivity ratios rc. The linear conver-
gence of DQM accelerates by increasing the connectivity ratio.

network topology affects the convergence speed of DQM. We
use different values for the connectivity ratio to generate random
graphs with different number of edges. In this experiment we
use the connectivity ratios rc = {0.2, 0.3, 0.4, 0.6} to generate
the networks. The rest of the parameters are the same as the
parameters in Fig. 1. Notice that since the connectivity parameters
of these graphs are different, the optimal choices of c for these
graphs are different. The convergence paths of DQM with the
connectivity ratios rc = {0.2, 0.3, 0.4, 0.6} are shown in Fig. 6.
The optimal choices of the parameter c for these graphs are c0.2 =
0.28, c0.3 = 0.25, c0.4 = 0.31, and c0.6 = 0.28, respectively.
Fig. 6 shows that the linear convergence of DQM accelerates by
increasing the connectivity ratio of the graph.

VI. CONCLUSIONS

A decentralized quadratically approximated version of the al-
ternating direction method of multipliers (DQM) is proposed for
solving decentralized optimization problems where components of
the objective function are available at different nodes of a network.
DQM minimizes a quadratic approximation of the convex problem
that DADMM solves exactly at each step, and hence reduces
the computational complexity of DADMM. Under some mild
assumptions, linear convergence of the sequence generated by
DQM is proven. Moreover, the constant of linear convergence
for DQM approaches that of DADMM asymptotically. Numerical
results for a logistic regression problem verify the analytical
results that convergence paths of DQM and DADMM are similar
for large iteration index, while the computational complexity of
DQM is significantly smaller than DADMM.

APPENDIX A
PROOF OF LEMMA 1

According to the update for the Lagrange multiplier λ in (13),
we can substitute λk by λk+1 − c (Axk+1 + Bzk+1). Applying
this substitution into the first equation of (13) leads to

BTλk+1 = 0. (40)

Observing the definitions B = [−Imp;−Imp] and λ = [α;β],
and the result in (40), we obtain αk+1 = −βk+1 for k ≥ 0.
Considering the initial condition α0 = −β0, we obtain that αk =
−βk for k ≥ 0 which follows the first claim in Lemma 1.
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Based on the definitions A = [As;Ad], B = [−Imp;−Imp],
and λ = [α;β], we can split the update for the Lagrange
multiplier λ in (8) as

αk+1 = αk + c[Asxk+1 − zk+1], (41)
βk+1 = βk + c[Adxk+1 − zk+1]. (42)

Observing the result that αk = −βk for k ≥ 0, summing up the
equations in (41) and (42) yields

(As + Ad)xk+1 = 2zk+1. (43)

Considering the definition of the oriented incidence matrix Eu =
As+Ad, we obtain that Euxk = 2zk holds for k > 0. According
to the initial condition Eux0 = 2z0, we can conclude that the
relation Euxk = 2zk holds for k ≥ 0.

Subtract the update for βk in (42) from the update for αk in
(41) and consider the relation βk = −αk to obtain

αk+1 = αk +
c

2
(As −Ad)xk+1. (44)

Substituting As −Ad in (44) by Eo implies that

αk+1 = αk +
c

2
Eoxk+1. (45)

Hence, if αk lies in the column space of matrix Eo, then αk+1

also lies in the column space of Eo. According to the third
condition of Assumption 1, α0 satisfies this condition, therefore
αk lies in the column space of matrix Eo for all k ≥ 0.

APPENDIX B
PROOF OF PROPOSITION 1

The update for the multiplier λ in (8) implies that we can
substitute λk by λk+1 − c(Axk+1 + Bzk+1) to simplify (12) as

∇f(xk)+Hk(xk+1−xk)+ATλk+1 +cATB (zk − zk+1) = 0.
(46)

Considering the first result of Lemma 1 that αk = −βk for k ≥ 0
in association with the definition A = [As;Ad] implies that the
product ATλk+1 is equivalent to

ATλk+1 = AT
s αk+1 + AT

d βk+1 = (As −Ad)Tαk+1. (47)

According to the definition Eo := As −Ad, the right hand side
of (47) can be simplified as

ATλk+1 = ET
o αk+1. (48)

Based on the structures of the matrices A and B, and the
definition Eu := As + Ad, we can simplify ATB as

ATB = −AT
s −AT

d = −ET
u . (49)

Substituting the results in (48) and (49) into (46) leads to

∇f(xk) + Hk(xk+1 − xk) + ET
o αk+1 + cET

u (zk+1 − zk) = 0.
(50)

The second result in Lemma 1 states that zk = Euxk/2.
Multiplying both sides of this equality by ET

u from left we obtain
that ET

u zk = ET
uEuxk/2 for k ≥ 0. Observing the definition

of the unoriented Laplacian Lu := ET
uEu/2, we obtain that the

product ET
u zk is equal to Luxk for k ≥ 0. Therefore, in (50) we

can substitute ET
u (zk+1 − zk) by Lu(xk+1 − xk) and write

∇f(xk) + (Hk + cLu) (xk+1 − xk) + ET
o αk+1 = 0. (51)

Observe that the new variables φk are defined as φk := ET
o αk.

Multiplying both sides of (45) by ET
o from the left hand side and

considering the definition of oriented Laplacian Lo = ET
o Eo/2

follows the update rule of φk in (14), i.e.,

φk+1 = φk + cLoxk+1. (52)

According to the definition φk = ET
o αk and the update formula

in (52), we can conclude that ET
o αk+1 = φk+1 = φk+cLoxk+1.

Substituting ET
o αk+1 by φk + cLoxk+1 in (51) yields

∇f(xk) + (Hk + cLu) (xk+1−xk) +φk + cLoxk+1 = 0. (53)

Observing the definition D = (Lu + Lo)/2 we rewrite (53) as

(Hk + 2cD)xk+1 = (Hk + cLu)xk −∇f(xk)− φk. (54)

Multiplying both sides of (54) by (Hk + 2cD)
−1 from the left

hand side yields the first update in (14).

APPENDIX C
PROOF OF LEMMA 2

Consider two arbitrary vectors x := [x1; . . . ;xn] ∈ Rnp

and x̂ := [x̂1; . . . ; x̂n] ∈ Rnp. Since the aggregate function
Hessian is block diagonal where the i-th diagonal block is
given by ∇2fi(xi), we obtain that the difference of Hessians
H(x)−H(x̂) is also block diagonal where the i-th diagonal block
H(x)ii −H(x̂)ii is

H(x)ii −H(x̂)ii = ∇2fi(xi)−∇2fi(x̂i). (55)

Consider any vector v ∈ Rnp and separate each p components
of vector v and consider it as a new vector called vi ∈ Rp,
i.e., v := [v1; . . . ;vn]. Observing the relation for the difference
H(x) − H(x̂) in (55), the symmetry of matrices H(x) and
H(x̂), and the definition of Euclidean norm of a matrix that
‖A‖ =

√
λmax(ATA), we obtain that the squared difference

norm ‖H(x)−H(x̂)‖2 can be written as

‖H(x)−H(x̂)‖2 = max
v

vT [H(x)−H(x̂)]2v

‖v‖2
(56)

= max
v

∑n
i=1 v

T
i

[
∇2fi(xi)−∇2fi(x̂i)

]2
vi

‖v‖2

Using the Cauchy-Schwarz inequality we can write

vT
i

[
∇2fi(xi)−∇2fi(x̂i)

]2
vi ≤

∥∥∇2fi(xi)−∇2fi(x̂i)
∥∥2‖vi‖2

(57)
Substituting the upper bound in (57) into (56) implies that the
squared norm ‖H(x)−H(x̂)‖2 is bounded above as

‖H(x)−H(x̂)‖2 ≤ max
v

∑n
i=1

∥∥∇2fi(xi)−∇2fi(x̂i)
∥∥2 ‖vi‖2

‖v‖2
.

(58)
Observe that Assumption 3 states that local objective functions
Hessian ∇2fi(xi) are Lipschitz continuous with constant L, i.e.
‖∇2fi(xi)−∇2fi(x̂i)‖ ≤ L‖xi−x̂i‖. Considering this inequality
the upper bound in (58) can be changed by replacing ‖∇2fi(xi)−
∇2fi(x̂i)‖ by L‖xi − x̂i‖ which yields

‖H(x)−H(x̂)‖2 ≤ max
v

L2
∑n

i=1 ‖xi − x̂i‖2 ‖vi‖2∑n
i=1 ‖vi‖2

. (59)

Note that for any sequences of scalars such as ai and bi, the
inequality

∑n
i=1 a

2
i b

2
i ≤ (

∑n
i=1 a

2
i )(
∑n

i=1 b
2
i ) holds. If we divide
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both sides of this relation by
∑n

i=1 b
2
i and set ai = ‖xi− x̂i‖ and

bi = ‖vi‖, we obtain∑n
i=1 ‖xi − x̂i‖2 ‖vi‖2∑n

i=1 ‖vi‖2
≤

n∑
i=1

‖xi − x̂i‖2 . (60)

Combining the two inequalities in (59) and (60) leads to

‖H(x)−H(x̂)‖2 ≤ max
v

L2
n∑

i=1

‖xi − x̂i‖2 . (61)

Since the right hand side of (61) does not depend on v we
can eliminate the maximization with respect to v. Further, note
that according to the structure of vectors x and x̂, we can
write ‖x− x̂‖2 =

∑n
i=1 ‖xi − x̂i‖2. These two observations in

association with (61) imply that

‖H(x)−H(x̂)‖2 ≤ L2 ‖x− x̂‖2 , (62)

Computing the square roots of terms in (62) yields (20).

APPENDIX D
PROOFS OF PROPOSITIONS 2 AND 3

The fundamental theorem of calculus implies that the difference
of gradients ∇f(xk+1)−∇f(xk) can be written as

∇f(xk+1)−∇f(xk) =

∫ 1

0

H(sxk+1+(1−s)xk)(xk+1−xk) ds.

(63)
By computing norms of both sides of (63) and considering that
norm of integral is smaller than integral of norm we obtain that

‖∇f(xk+1)−∇f(xk)‖≤
∫ 1

0

‖H(sxk+1+(1−s)xk)(xk+1−xk)‖ds.
(64)

The upper bound M for the eigenvalues of the Hessians as in
(19), implies that ‖H (sx + (1− s)x̂) (x − x̂)‖ ≤ M‖x − x̂‖.
Substituting this upper bound into (64) leads to

‖∇f(xk+1)−∇f(xk)‖ ≤M‖xk+1 − xk‖. (65)

The error vector norm ‖eDLM
k ‖ in (34) is bounded above as

‖eDLM
k ‖ ≤ ‖∇f(xk+1)−∇f(xk)‖+ ρ‖xk+1 − xk‖. (66)

By substituting the upper bound for ‖∇f(xk+1) − ∇f(xk)‖ in
(65) into (66), the claim in (35) follows.

To prove (22), first we show that ‖eDQM
k ‖ ≤ 2M‖xk+1−xk‖

holds. Observe that the norm of error vector eDQM
k defined (21)

can be upper bounded using the triangle inequality as

‖eDQM
k ‖ ≤ ‖∇f(xk+1)−∇f(xk)‖+ ‖Hk(xk+1 − xk)‖. (67)

Based on the Cauchy-Schwarz inequality and the upper bound M
for the eigenvalues of Hessians as in (19), we obtain ‖Hk(xk+1−
xk)‖ ≤ M‖xk+1 − xk‖. Further, as mentioned in (65) the
difference of gradients ‖∇f(xk+1)−∇f(xk)‖ is upper bounded
by M‖xk+1−xk‖. Substituting these upper bounds for the terms
in the right hand side of (67) yields

‖eDQM
k ‖ ≤ 2M‖xk+1 − xk‖. (68)

The next step is to show that ‖eDQM
k ‖ ≤ (L/2)‖xk+1 − xk‖2.

Adding and subtracting the integral
∫ 1

0
H(xk)(xk+1 − xk) ds to

the right hand side of (63) results in

∇f(xk+1)−∇f(xk) =

∫ 1

0

H(xk)(xk+1 − xk) ds

+

∫ 1

0

[H(sxk+1 + (1− s)xk)−H(xk)] (xk+1 − xk) ds. (69)

First observe that the integral
∫ 1

0
H(xk)(xk+1 − xk) ds can be

simplified as H(xk)(xk+1 − xk). Observing this simplification
and regrouping the terms yield

∇f(xk+1)−∇f(xk)−H(xk)(xk+1 − xk) =∫ 1

0

[H(sxk+1 + (1− s)xk)−H(xk)] (xk+1 − xk) ds. (70)

Computing norms of both sides of (70), considering the fact
that norm of integral is smaller than integral of norm, and using
Cauchy-Schwarz inequality lead to

‖∇f(xk+1)−∇f(xk)−H(xk)(xk+1 − xk)‖ ≤ (71)∫ 1

0

‖H(sxk+1 + (1− s)xk)−H(xk)‖ ‖xk+1 − xk‖ds.

Lipschitz continuity of the Hessian as in (20) implies that
‖H(sxk+1 + (1− s)xk)−H(xk)‖ ≤ sL‖xk+1 − xk‖. By sub-
stituting this upper bound into the integral in (71) and substituting
the left hand side of (71) by ‖eDQM

k ‖ we obtain

‖eDQM
k ‖ ≤

∫ 1

0

sL‖xk+1 − xk‖2ds. (72)

Simplification of the integral in (72) follows

‖eDQM
k ‖ ≤ L

2
‖xk+1 − xk‖2. (73)

The results in (68) and (73) follow the claim in (22).

APPENDIX E
PROOF OF LEMMA 3

In this section we first introduce an equivalent version of
Lemma 3 for the DLM algorithm. Then, we show the validity
of both lemmata in a general proof.

Lemma 4 Consider DLM as defined by (7)-(9). If Assumption 1
holds true, then the optimal arguments x∗, z∗, and α∗ satisfy

∇f(xk+1)−∇f(x∗) + eDLM
k + ET

o (αk+1 −α∗)

−cET
u (zk − zk+1) = 0, (74)

2(αk+1 −αk)− cEo(xk+1 − x∗) = 0, (75)
Eu(xk − x∗)− 2(zk − z∗) = 0. (76)

Notice that the claims in Lemmata 3 and 4 are identical except
in the error term of the first equalities. To provide a general
framework to prove the claim in these lemmata we introduce ek
as the general error vector. By replacing ek with eDQM

k we obtain
the result of DQM in Lemma 3 and by setting ek = eDLM

k the
result in Lemma 4 follows. We start with the following Lemma
that captures the KKT conditions of optimization problem (4).

Lemma 5 Consider the optimization problem (4). The optimal
Lagrange multiplier α∗, primal variable x∗ and auxiliary variable
z∗ satisfy the following system of equations

∇f(x∗) + ET
o α
∗ = 0, Eox

∗ = 0, Eux
∗ = 2z∗. (77)
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Proof: First observe that the KKT conditions of the decentralized
optimization problem in (4) are given by

∇f(x∗) + ATλ∗ = 0, BTλ∗ = 0, Ax∗ + Bz∗ = 0. (78)

Based on the definitions of the matrix B = [−Imp;−Imp] and
the optimal Lagrange multiplier λ∗ := [α∗;β∗], we obtain that
BTλ∗ = 0 in (78) is equivalent to α∗ = −β∗. Considering this
result and the definition A = [As;Ad], we obtain

ATλ∗ = AT
s α
∗ + AT

d β
∗ = (As −Ad)Tα∗. (79)

The definition Eo := As−Ad implies that the right hand side of
(79) can be simplified as ET

o α
∗ which shows ATλ∗ = ET

o α
∗.

Substituting ATλ∗ by ET
o α
∗ into the first equality in (78) follows

the first claim in (77).
Decompose the KKT condition Ax∗ +Bz∗ = 0 in (78) based

on the definitions of A and B as

Asx
∗ − z = 0, Adx

∗ − z = 0. (80)

Subtracting the equalities in (80) implies that (As −Ad)x∗ = 0
which by considering the definition Eo = As −Ad, the second
equation in (77) follows. Summing up the equalities in (80) yields
(As + Ad)x∗ = 2z. This observation in association with the
definition Eu = As −Ad follows the third equation in (77). �

Proofs of Lemmata 3 and 4: First note that the results in
Lemma 1 are also valid for DLM [22]. Now, consider the first
order optimality condition for primal updates of DQM and DLM
in (12) and (10), respectively. Further, recall the definitions of
error vectors eDQM

k and eDLM
k in (21) and (34), respectively.

Combining these observations we obtain that

∇f(xk+1) + ek + ATλk + cAT (Axk+1 + Bzk) = 0. (81)

Notice that by setting ek = eDQM
k we obtain the update for

primal variable of DQM; likewise, setting ek = eDLM
k yields to

the update of DLM.
Observe that the relation λk = λk+1 − c(Axk+1 + Bzk+1)

holds for both DLM and DQM according to to the update formula
for Lagrange multiplier in (8) and (13). Substituting λk by λk+1−
c(Axk+1 + Bzk+1) in (81) follows

∇f(xk+1) + ek + ATλk+1 + cATB (zk − zk+1) = 0 (82)

Based on the result in Lemma 1, the components of the Lagrange
multiplier λ = [α;β] satisfy αk+1 = −βk+1. Hence, the product
ATλk+1 can be simplified as AT

s αk+1 −AT
d αk+1 = ET

o αk+1

considering the definition that Eo = As−Ad. Furthermore, note
that according to the definitions we have that A = [As;Ad] and
B = [−I;−I] which implies that ATB = −(As+Ad)T = −ET

u .
By making these substitutions into (82) we can write

∇f(xk+1) + ek + ET
o αk+1 − cET

u (zk − zk+1) = 0. (83)

The first result in Lemma 5 is equivalent to ∇f(x∗)+ET
o α
∗ = 0.

Subtracting both sides of this equation from the relation in (83)
follows the first claim of Lemmata 3 and 4.

We proceed to prove the second and third claims in Lemmata 3
and 4. The update formula for αk in (45) and the second result in
Lemma 5 that Eox

∗ = 0 imply that the second claim of Lemmata
3 and 4 are valid. Further, the result in Lemma 1 guaranteaes that
Euxk = 2zk. This result in conjunction with the result in Lemma
5 that Eux

∗ = 2z∗ leads to the third claim of Lemmata 3 and 4.

APPENDIX F
PROOFS OF THEOREMS 1 AND 2

To prove Theorems 1 and 2 we show a sufficient condition
for the claims in these theorems. Then, we prove these theorems
by showing validity of the sufficient condition. To do so, we use
the general coefficient βk which is equivalent to ζk in the DQM
algorithm and equivalent to ρ + M in the DLM method. These
definitions and the results in Propositions 2 and 3 imply that

‖ek‖ ≤ βk‖xk+1 − xk‖, (84)

where ek is eDQM
k in DQM and eDLM

k in DLM. The sufficient
condition of Theorems 1 and 2 is studied in the following lemma.

Lemma 6 Consider the DLM and DQM algorithms as defined
in (7)-(9) and (12)-(13), respectively. Further, conducer δk as a
sequence of positive scalars. If Assumptions 1-4 hold true then
the sequence ‖uk − u∗‖2C converges linearly as

‖uk+1 − u∗‖2C ≤
1

1 + δk
‖uk − u∗‖2C, (85)

if the following inequality holds true,

βk‖xk+1−x∗‖‖xk+1−xk‖+δkc‖zk+1−z∗‖2+
δk
c
‖αk+1−α∗‖2

≤ m‖xk+1−x∗‖2 + c‖zk+1−zk‖2 +
1

c
‖αk+1−αk‖2. (86)

Proof: Proving linear convergence of the sequence ‖uk − u∗‖2C
as mentioned in (85) is equivalent to showing that

δk‖uk+1 − u∗‖2C ≤ ‖uk − u∗‖2C − ‖uk+1 − u∗‖2C. (87)

According to the definition ‖a‖2C := aTCa we can show that

2(uk − uk+1)TC(uk+1 − u∗) = ‖uk − u∗‖2C − ‖uk+1 − u∗‖2C
− ‖uk − uk+1‖2C. (88)

The relation in (88) shows that the right hand side of (87) can be
substituted by 2(uk − uk+1)TC(uk+1 − u∗) + ‖uk − uk+1‖2C.
Applying this substitution into (87) leads to

δk‖uk+1−u∗‖2C ≤ 2(uk−uk+1)TC(uk+1−u∗)+‖uk−uk+1‖2C
(89)

This observation implies that to prove the linear convergence as
claimed in (85), the inequality in (89) should be satisfied.

We proceed by finding a lower bound for the term 2(uk −
uk+1)TC(uk+1 − u∗) in (89). By regrouping the terms in (83)
and multiplying both sides of equality by (xk+1 − x∗)T from
the left hand side we obtain that the inner product (xk+1 −
x∗)T (∇f(xk+1)−∇f(x∗)) is equivalent to

(xk+1 − x∗)T (∇f(xk+1)−∇f(x∗)) =

− (xk+1 − x∗)Tek − (xk+1 − x∗)TET
o (αk+1 −α∗)

+ c(xk+1 − x∗)TET
u (zk − zk+1). (90)

Based on (25), we can substitute (xk+1 − x∗)TET
o (αk+1 − α∗)

in (90) by (2/c)(αk+1 − αk)T (αk+1 − α∗). Further, the result
in (26) implies that the term c(xk+1 − x∗)TET

u (zk − zk+1) in
(90) is equivalent to 2c (zk − zk+1)

T
(zk+1−z∗). Applying these

substitutions into (90) leads to

(xk+1−x∗)T (∇f(xk+1)−∇f(x∗)) = −(xk+1−x∗)Tek (91)

+
2

c
(αk −αk+1)T (αk+1 −α∗)+2c (zk − zk+1)

T
(zk+1 − z∗).
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Based on the definitions of matrix C and vector u in (28), the last
two summands in the right hand side of (91) can be simplified as

2

c
(αk −αk+1)T (αk+1 −α∗) + 2c (zk − zk+1)

T
(zk+1 − z∗)

= 2(uk − uk+1)TC(uk+1 − u∗). (92)

Considering the simplification in (92) we can rewrite (91) as

(xk+1 − x∗)T (∇f(xk+1)−∇f(x∗)) (93)

= −(xk+1 − x∗)Tek + 2(uk − uk+1)TC(uk+1 − u∗).

Observe that the objective function f is strongly convex with
constant m which implies the inequality m‖xk+1 − x∗‖2 ≤
(xk+1−x∗)T (∇f(xk+1)−∇f(x∗)) holds true. Considering this
inequality from the strong convexity of objective function f and
the simplification for the inner product (xk+1−x∗)T (∇f(xk+1)−
∇f(x∗)) in (93), the following inequality holds

m‖xk+1−x∗‖2+(xk+1−x∗)Tek ≤ 2(uk−uk+1)TC(uk+1−u∗).
(94)

Substituting the lower bound for the term 2(uk −
uk+1)TC(uk+1 − u∗) in (94) into (89), it follows that the
following condition is sufficient to have (85),

δk‖uk+1 − u∗‖2C ≤ m‖xk+1 − x∗‖2 + (xk+1 − x∗)Tek

+ ‖uk − uk+1‖2C. (95)

We emphasize that inequality (95) implies the linear convergence
result in (85). Therefore, our goal is to show that if (86) holds,
the relation in (95) is also valid and consequently the result in
(85) holds. According to the definitions of matrix C and vector
u in (28), we can substitute ‖uk+1 − u∗‖2C by c‖zk+1 − z∗‖2 +
(1/c)‖αk+1 − α∗‖2 and ‖uk − uk+1‖2C by c‖zk+1 − zk‖2 +
(1/c)‖αk+1 −αk‖2. Making these substitutions into (95) yields

δkc‖zk+1 − z∗‖2 +
δk
c
‖αk+1 −α∗‖2 ≤ m‖xk+1 − x∗‖2 (96)

+ (xk+1 − x∗)Tek + c‖zk+1 − zk‖2 +
1

c
‖αk+1 −αk‖2.

The inequality in (84) implies that −‖ek‖ is lower bounded by
−βk‖xk+1 − xk‖. This lower bound in conjunction with the fact
that inner product of two vectors is not smaller than the negative
of their norms product leads to

(xk+1 − x∗)Tek ≥ −βk‖xk+1 − x∗‖‖xk+1 − xk‖. (97)

Substituting (xk+1 − x∗)Tek in (96) by its lower bound in (97)
leads to a sufficient condition for (96) as in (86), i.e.,

βk‖xk+1−x∗‖‖xk+1−xk‖+δkc‖zk+1−z∗‖2+
δk
c
‖αk+1−α∗‖2

≤ m‖xk+1−x∗‖2 + c‖zk+1−zk‖2 +
1

c
‖αk+1−αk‖2. (98)

Observe that if (98) holds true, then (96) and its equivalence (95)
are valid and as a result the inequality in (85) is also satisfied. �

According to the result in Lemma 6, the sequence ‖uk −u∗‖2
converges linearly as mentioned in (85) if the inequality in (86)
holds true. Therefore, in the following proof we show that for

δk = min

{
(µ− 1)(cγ2u − ηkβk)γ2o

µµ′(cΓ2
uγ

2
u + 4β2

k/c(µ
′ − 1))

,
m− βk/ηk

cΓ2
u/4 + µM2/cγ2o

}
,

(99)
the inequality in (86) holds and consequently (85) is valid.

Proofs of Theorems 1 and 2: we show that if the constant δk is
chosen as in (99), then the inequality in (86) holds true. To do this
first we should find an upper bound for βk‖xk+1 − x∗‖‖xk+1 −
xk‖ regarding the terms in the right hand side of (86). Observing
the result of Lemma 1 that Euxk = 2zk for times k and k + 1,
we can write

Eu(xk+1 − xk) = 2(zk+1 − zk). (100)

The singular values of Eu are bounded below by γu. Hence,
equation (100) implies that ‖xk+1 − xk‖ is upper bounded by

‖xk+1 − xk‖ ≤
2

γu
‖zk+1 − zk‖. (101)

Multiplying both sides of (101) by βk‖xk+1 − x∗‖ yields

βk‖xk+1 − x∗‖‖xk+1 − xk‖ ≤
2βk
γu
‖xk+1 − x∗‖‖zk+1 − zk‖.

(102)
Notice that for any vectors a and b and positive constant ηk > 0
the inequality 2‖a‖‖b‖ ≤ (1/ηk)‖a‖2 + ηk‖b‖2 holds true. By
setting a = xk+1−x∗ and b = (1/γ2u)(zk+1−zk) the inequality
2‖a‖‖b‖ ≤ (1/ηk)‖a‖2 + ηk‖b‖2 is equivalent to

2

γu
‖xk+1−x∗‖‖zk+1−zk‖ ≤

1

ηk
‖xk+1−x∗‖2+

ηk
γ2u
‖zk+1−zk‖2.

(103)
Substituting the upper bound for (2/γu)‖xk+1−x∗‖‖zk+1−zk‖
in (103) into (102) yields

βk‖xk+1−x∗‖‖xk+1−xk‖≤
βk
ηk
‖xk+1−x∗‖2+

ηkβk
γ2u
‖zk+1−zk‖2.

(104)
Notice that inequality (104) provides an upper bound for
βk‖xk+1−x∗‖‖xk+1−xk‖ in (86) regarding the terms in the right
hand side of inequality which are ‖xk+1−x∗‖2 and ‖zk+1−zk‖2.
The next step is to find upper bounds for the other two terms in the
left hand side of (86) regarding the terms in the right hand side of
(86) which are ‖xk+1−x∗‖2, ‖zk+1−zk‖2, and ‖αk+1−αk‖2.
First we start with ‖zk+1 − z∗‖2. The relation in (26) and the
upper bound Γu for the singular values of matrix Eu yield

δkc‖zk+1 − z∗‖2 ≤ δkcΓ
2
u

4
‖xk+1 − x∗‖2. (105)

The next step is to bound (δk/c)‖αk+1 − α∗‖ in terms of the
term in the right hand side of (47). First, note that for any vector
a, b, and c, and constants µ and µ′ which are larger than 1, i.e.
µ, µ′ > 1, we can write

(1− 1

µ′
)(1− 1

µ
)‖c‖2 ≤ ‖a + b + c‖2 + (µ′ − 1)‖a‖2

+ (µ− 1)(1− 1

µ′
)‖b‖2. (106)

Set a = cET
u (zk − zk+1), b = ∇f(x∗) − ∇f(xk+1), and

c = ET
o (α∗ − αk+1). By choosing these values and observing

equality (24) we obtain a+b+ c = ek. Hence, by making these
substitutions for a, b, c, and a + b + c into (106) we can write

(1− 1

µ′
)(1− 1

µ
)‖ET

o (αk+1 −α∗)‖2 ≤ ‖ek‖2 (107)

+ (µ′ − 1)‖cET
u (zk − zk+1)‖2

+ (µ− 1)(1− 1

µ′
)‖∇f(xk+1)−∇f(x∗)‖2.
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Notice that according to the result in Lemma 1, the Lagrange
multiplier αk lies in the column space of Eo for all k ≥ 0. Further,
recall that the optimal multiplier α∗ also lies in the column space
of Eo. These observations show that α∗ − αk is in the column
space of Eo. Hence, there exits a vector r ∈ Rnp such that α∗ −
αk = Eor. This relation implies that ‖ET

o (αk+1 − α∗)‖2 can
be written as ‖ET

o Eor‖2 = rT (ET
o Eo)2r. Observe that since the

eigenvalues of matrix (ET
o Eo)2 are the squared of eigenvalues

of the matrix ET
o Eo, we can write rT (ET

o Eo)2r ≥ γ2orTET
o Eor,

where γo is the smallest non-zero singular value of the oriented
incidence matrix Eo. Observing this inequality and the definition
α∗ −αk = Eor we can write∥∥ET

o (αk+1 −α∗)
∥∥2 ≥ γ2o‖αk+1 −α∗‖2. (108)

Observe that the error norm ‖ek‖ is bounded above by βk‖xk+1−
xk‖ as in (84) and the norm ‖cET

u (zk − zk+1)‖2 is upper
bounded by c2Γ2

u‖zk − zk+1‖2 since all the singular values of
the unoriented matrix Eu are smaller than Γu. Substituting these
upper bounds and the lower bound in (108) into (107) implies

(1− 1

µ′
)(1− 1

µ
)γ2o‖αk+1 −α∗‖2 ≤ β2

k‖xk+1 − xk‖2 (109)

+(µ′ − 1)c2Γ2
u‖zk − zk+1‖2+(µ− 1)(1− 1

µ′
)M2‖xk+1−x∗‖2

Considering the result in (101), ‖xk+1 − xk‖ is upper by
(2/γu)‖zk+1−zk‖. Therefore, we can substitute ‖xk+1−xk‖ in
the right hand side of (109) by its upper bound (2/γu)‖zk+1−zk‖.
Making this substitution, dividing both sides by (1 − 1/µ′)(1 −
1/µ)γ2o , and regrouping the terms lead to

‖αk+1 −α∗‖2 ≤ µM2

γ2o
‖xk+1 − x∗‖2 (110)

+

[
4µµ′β2

k

γ2uγ
2
o(µ− 1)(µ′ − 1)

+
µµ′c2Γ2

u

(µ− 1)γ2o

]
‖zk − zk+1‖2.

Considering the upper bounds for βk‖xk+1 − x∗‖‖xk+1 − xk‖,
‖zk+1 − z∗‖2, and ‖αk+1 − αk‖2, in (104), (105), and (110),
respectively, we obtain that if the inequality[
βk
ηk

+
δkcΓ

2
u

4
+
δkµM

2

cγ2o

]
‖xk+1 − x∗‖2+ (111)[

4δkµµ
′β2

k

cγ2uγ
2
o(µ− 1)(µ′ − 1)

+
δkµµ

′cΓ2
u

(µ− 1)γ2o
+
ηkβk
γ2u

]
‖zk+1 − zk‖2

≤ m‖xk+1 − x∗‖2 + c‖zk+1 − zk‖2 +
1

c
‖αk+1 −αk‖2.

holds true, (86) is satisfied. Hence, the last step is to show that
for the specific choice of δk in (99) the result in (111) is satisfied.
In order to make sure that (111) holds, it is sufficient to show
that the coefficients of ‖xk+1 − x∗‖2 and ‖zk+1 − zk‖2 in the
left hand side of (111) are smaller than the ones in the right hand
side. Hence, we should verify the validity of inequalities

βk
ηk

+
δkcΓ

2
u

4
+
δkµM

2

cγ2o
≤ m, (112)

4δkµµ
′β2

k

cγ2uγ
2
o(µ− 1)(µ′ − 1)

+
δkµµ

′cΓ2
u

(µ− 1)γ2o
+
ηkβk
γ2u
≤ c. (113)

Considering the inequality for δk in (99) we obtain that (112) and
(113) are satisfied. Hence, if δk satisfies condition in (99), (111)
and consequently (86) are satisfied. Now recalling the result of
Lemma 6 that inequality (86) is a sufficient condition for the

linear convergence in (85), we obtain that the linear convergence
holds. By setting βk = ζk we obtain the linear convergence of
DQM in Theorem 1 is valid and the linear coefficient in (99)
can be simplified as (31). Moreover, setting βk = ρ+M follows
the linear convergence of DLM as in Theorem 2 with the linear
constant in (37).
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