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We study a dynamic game in which short-run players repeatedly play a symmetric, strictly supermodular

game whose payoff depends on a fixed unknown state of nature. Each short-run player inherits the beliefs of

his immediate predecessor in addition to observing the actions of the players in his social neighborhood in

the previous stage. Due to the strategic complementary between their actions, players have the incentive to

coordinate with, and learn from others. We show that in any Markov Perfect Bayesian Equilibrium of the

game, players eventually reach consensus in their actions. They also asymptotically receive similar payoffs in

spite of initial differences in their access to information. We further show that, if the players’ payoffs can be

represented by a quadratic function, then the private observations are optimally aggregated in the limit for

generic specifications of the game. Therefore, players asymptotically coordinate on choosing the best action

given the aggregate information available throughout the network. We provide extensions of our results to

the case of changing networks and endogenous private signals.
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1. Introduction

Rational agents with aligned interests best served by coordinating their actions may nevertheless

fail to do so if they disagree on the best course. A player who is sufficiently convinced of an action

being the one resulting in the highest payoff will be willing to take that action in isolation, even at

the expense of forgoing the payoff from acting in harmony with other players. This nonconforming

action will serve as a strong signal for the players who play the same game in the future that

the payoff-maximizing action could be different than what was chosen by the majority of players.

But can future generations of players use this information to improve their payoffs? Is the unique

insight of the nonconforming player lost if only a handful of other players observe its action, or
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will it eventually reach the entire population? How will the conclusions be different if each player

of each generation has a unique insight about the game being played? This paper introduces a

dynamic model of coordination games with asymmetric information in order to provide answers to

these questions.

The scenario described above could represent a society wherein an informed leader’s actions have

the potential to change the prevailing social norm, or the market for a new technology in which

adoption by an informed user can serve as signal of his belief in the future of the technology. Similar

models have been used to study a wide-ranging set of phenomena including conventions (Shin

and Williamson (1996)), social norms and the rule of law (Acemoglu and Jackson (2011, 2014)),

currency runs (Obstfeld (1996)), regime change (Angeletos, Hellwig, and Pavan (2007)), markets

with externalities (Morris and Shin (2002), Angeletos and Pavan (2007, 2009)), and Keynsian

coordination failures (Cooper and John (1988)), among others. Cooper (1999) contains additional

examples of the applications of coordination games with asymmetric information in modeling

macroeconomic phenomena.

To answer the question posed above, we study a supermodular game of incomplete information

played by generations of short-run players.1 In every period, a new generation of players are born

who live for one period. The players of each generation play a supermodular game with payoffs that

depend on a fixed unknown state of the world. Each player inherits the belief of a player from the

previous generation—the player previously occupying his role—and observes the actions of some of

the players of the last generation—his neighbors. The players then simultaneously choose actions

in order to maximize their payoffs given the information available to them.

Myopic behavior by short-run players is a good approximation to individuals’ rational behavior

in the examples mentioned above where we have a large number of small players each of whom

have a negligible impact on the entire society. We have in mind a small customer deciding whether

to purchase a product, a citizen deciding whether to follow a norm, or a protester deciding whether

to join a protest. In all of these examples, each individual can ignore the effect of his current action

on the actions of the individuals he encounters in the future. Alternatively, one can think of each

role as a dynasty with each short-run player representing a member of the dynasty that has access

to the entire history of the dynasty but who only makes a single decision.

We restrict attention to Markovian strategies in which the players’ actions are not functions

of the history of the game but only of their information. We use pure strategy Markov Perfect

Bayesian Equilibrium (MPBE) as the solution concept.2 Players choose actions that maximize

their instantaneous payoffs given others’ strategies and their beliefs, and the beliefs are consistent

with the equilibrium stategies and the application of Bayes’ rule.
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We show that, if the social network is connected, players eventually reach consensus both in

their actions and their payoffs in spite of occupying roles with asymmetric initial information about

the fundamental state of the world. In other words, although players in initial generations might

disagree on the best course of action, future generations cannot disagree in the long run. This

result is similar in spirit to the argument presented by Aumann (1976) that Bayesian agents who

share a prior cannot “agree to disagree.” The key intuition for why this result holds is that the

Imitation Principle applies to our setting.3 According to the Imitation Principle, the mere fact that,

in equilibrium, no player (he) wishes to deviate by imitating the action of a player (she) whose

play he observes infinitely often is evidence that he believes that his equilibrium action results in a

higher payoff. The Imitation Principle imposes restrictions on the equilibrium beliefs that can be

leveraged to rule out strategies according to which two players in two roles that frequently observe

each others’ actions continue to miscoordinate.

In Section 4, we restrict our attention to quadratic symmetric supermodular games and develop

sharper results. Due to their tractability, quadratic games are studied extensively in the recent

literature.4 We show that, if the information structure of each player can be represented by a finite

partition of the state space, the asymptotic consensus action is generically the action players would

have chosen if they had been able to directly pool their information at the beginning of the game.

This result shows that in a quadratic supermodular game of incomplete information, failure of

information aggregation is nongeneric. We also prove that consensus in actions and payoffs continue

to hold even if the network is random, directed, and time-varying, or if the players observe a stream

of signals over time whose distribution depends on the previous actions of players.

Our assortment of results suggests that consensus is a ubiquitous phenomenon in games of

strategic complementarity with a common prior. They can be interpreted as reinforcing the idea

presented by Aumann (1976) that Bayesian agents cannot disagree forever. Aumann’s argument

was presented in a setting with no interaction among players other than the sharing of beliefs. Our

results suggest that the conclusion that Bayesian players cannot agree to disagree is robust to the

introduction of strategic interactions, as long as players’ actions are strategic complements.

Our result on information aggregation shows that, when the utilities are quadratic, consensus

generically implies optimal information aggregation. Similar results, with more stringent require-

ments have already appeared in the literature, however a general result has been lacking. In par-

ticular, Mossel, Sly, and Tamuz (2011) propose conditional independence of private signals as a

sufficient condition for consensus to imply information aggregation. Ostrovsky (2012) presents a

form of conditional independence called “separability” as a sufficient condition for information

aggregation in a Kyle (1985)-style market. Our generic information aggregation result, on the other

hand, does not rely on any conditional independence assumptions. Independently, in a recent paper,



Molavi et al.: Learning to Coordinate in Social Networks
4 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Arieli and Mueller-Frank (2015) prove generic information aggregation results in a more abstract

setting.

In summary, we make three distinct set of contributions: First, we contribute to the theory

of symmetric supermodular games, by showing that short-run players reach consensus on their

payoffs and actions, even when the equilibrium is not unique. Our second contribution is to the

social learning literature, where we show that presence of payoff externalities of the complementary

nature will not hamper learning in societies that are sufficiently connected over time. Thirdly, we

show that in such a coordination setup information is generically aggregated. We present a set of

examples from a variety of application domains, ranging from economics to engineering, in addition

to a set of distinctive examples that are meant to illustrate the tightness of our results.

Related Literature. In addition to the papers already mentioned, our paper is related to three

lines of research in game theory. The first is the literature on Bayesian learning over networks. The

focus of this literature is on modeling the way agents use their observations to update their beliefs

and characterizing the outcomes of the learning process. Examples include Borkar and Varaiya

(1982), Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), Bala and Goyal (1998),

Smith and Sørensen (2000), Gale and Kariv (2003), Çelen and Kariv (2004), Rosenberg, Solan, and

Vieille (2009), Mossel and Tamuz (2010), Mossel, Sly, and Tamuz (2011), Acemoglu, Dahleh, Lobel,

and Ozdaglar (2011), Mueller-Frank (2013), Lobel and Sadler (2013, forthcoming), and Acemoglu,

Bimpikis, and Ozdaglar (2014). In this paper, we extend the Bayesian social learning framework

to an environment with payoff externalities where each short-run player’s stage payoff is a function

of other players’ actions.

The current work is also related to the literature on learning in games, such as the works

by Jordan (1991, 1995), Kalai and Lehrer (1993), Jackson and Kalai (1997), Nachbar (1997), and

Foster and Young (2003). The central question in this literature is whether agents learn to play

a Nash or Bayesian Nash equilibrium. In the current paper in contrast, the focus is on whether

agents in a network asymptotically reach consensus and whether they aggregate the dispersed

information.

Finally, our paper is related to the literature on information aggregation in markets. The focus

of this literature is on characterizing the conditions under which prices correctly aggregate the

information dispersed throughout the market. Examples include Wolinsky (1990), Foster and

Viswanathan (1996), Vives (2010), Lauermann and Wolinsky (2011), Amador and Weill (2012),

Rostek and Weretka (2012), and Ostrovsky (2012). In our paper, the players do not observe public

signals, such as prices, but rather make local observations about the actions of the players in their

social neighborhood.
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Organization of the Paper. The rest of the paper is organized as follows. Section 2 presents

the baseline model. Section 3 presents our main result on consensus in supermodular games. In

Section 4 we specialize to a quadratic supermodular game and present our result on the genericity

of information aggregation. We also present our results on consensus with endogenous signals

and time-varying networks. Section 5 discusses the logic and implications of our results in more

detail. In Section 6 we provide some applications of symmetric supermodular games in engineering

and economics. All the proofs that are omitted from previous sections are provided in Section 7.

Section 8 contains our concluding remarks.

2. Model

Throughout, we use the usual order and the standard topology on R. Products of topological

spaces are equipped with the product topology. All topological spaces are endowed with the Borel

sigma-algebra. Two measurable mappings are said to be equal if they have the same domain and

codomain and agree almost everywhere. Given a probability distribution P over a measurable space

X ×Y , margX P denotes the marginal distribution of P over X. Given sets X1, . . . ,Xn, we use X

to denote×n

i=1
Xi with generic element x and use X−i to denote×j 6=iXi with generic element

x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

2.1. The Game

Consider n roles indexed by i ∈N = {1, . . . , n}. Role i represents a sequence of short-run players,

each of whom plays only once. We refer to the short-run player at role i playing in stage t as player

it. We refer to the collection of all short-run players in role i as “big” player i or simply player i.

At the beginning of the game nature chooses the payoff-relevant state of the world θ from a

compact metric space Θ. The players in a given role all observe the same noisy signal of θ. We

denote by si the signal observed by the players in role i. We assume that si belongs to a countable

set Si that is endowed with the discrete topology. The realized state otherwise remains unknown

to the players.

The game is played over a countable set of stages indexed by the set of positive integers N. In the

beginning of stage t∈N, player it observes the actions chosen in the previous stages by a subset of

big players, called i’s neighbors and denoted by Ni. We use the convention that each i is his own

neighbor. We further assume that the neighborhood relationship is symmetric: i is a neighbor of j

if and only if j is a neighbor of i.

At the end of period t, player it chooses an action ait ∈ Ai simultaneously with other short-

run players and receives payoff ui(at, θ). We assume that Ai is a compact subset of R and ui is

continuous in all its arguments. We further assume that the game is symmetric: for all i, j ∈N ,
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Ai =Aj and ui(at, θ) = uj(a
′
t, θ) if ait = a′jt and a−it is a permutation of a′−jt. Finally, we assume

that ui(at, θ) is strictly supermodular in at for all θ ∈ Θ. A function f : Rn → R is supermodu-

lar if f(min{x, y}) + f(max{x, y}) ≥ f(x) + f(y) for all x, y ∈ Rn, where min({x, y}) denotes the

componentwise minimum and max({x, y}) denotes the componentwise maximum of x and y. The

function is strictly supermodular if the inequality is strict for any incomparable pair of vectors x

and y.5

We summarize the players’ uncertainty about the exogenous variables by some ω belonging to the

measurable space (Ω,B), where Ω = Θ×S and B is the Borel sigma-algebra. Note that the canonical

projection si : Ω→ Si is continuous and therefore measurable. We assume that the payoff-relevant

state θ and the private signals are jointly distributed according to some probability distribution P

over (Ω,B) and that this is common knowledge. The expectation operator corresponding to P is

denoted by E.

We restrict our attention to Markovian strategies according to which the players’ actions depend

on the history of the game only to the extent that it is informative of the payoff-relevant state

of the world. In particular, we define the players’ strategies and information as follows. Let Hi1
be the smallest sub sigma-algebra of B that makes si measurable. Hi1 captures the information

available to player i1. A Markovian strategy for player i1 is a mapping σi1 : Ω→ Ai which is

measurable with respect to Hi1. For t≥ 2 define Hσt−1

it and σit recursively as follows: Denote by

σt−1 = (σ1, σ2, . . . , σt−1), where στ = (σ1τ , . . . , σnτ ), the Markovian strategy profile followed by the

short-run players that are active before stage t. Given σt−1, the information available to player it

is captured by Hσt−1

it , the smallest sub sigma-algebra of B that makes si and {σj1, . . . , σj,t−1}j∈Ni
measurable. A Markovian strategy for player it is a mapping σit : Ω→Ai that is measurable with

respect to Hσt−1

it . We let σ = (σ1, σ2, . . . ) denote a Markovian strategy profile generated as above

and let Hσ
i∞ = ∨∞t=1Hσt−1

it to be the information available to the players in role i “at the end of

the game” given that players follow strategy σ. Note that, for any strategy profile σ and all i,

Hσt−1

it ⊆Hσt
′−1

it′ if t≤ t′. Whenever there is no risk of confusion we use Hσ
it to mean Hσt−1

it .

2.2. Equilibrium

Definition 1. A Markovian strategy profile σ is a Markov Perfect Bayesian Equilibrium (MPBE)

if for all i, t, and Hσt−1
it -measurable mappings σ′it : Ω→Ai,

E
[
ui(σit, σ−it, θ)|H

σt−1
it

]
≥E

[
ui(σ

′
it, σ−it, θ)|H

σt−1
it

]
.

According to our equilibrium notion, the short-run players who are active in stage t choose an

interim pure-strategy Bayesian Nash Equilibrium of a Bayesian game in which their information

is induced by the equilibrium strategies of the short-run players that played before them.
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Proposition 1. A MPBE σ exists.

Proof. The proof involves repeated use of Theorem 23 of Van Zandt (2010). The game played by

the short-run players in the first stage is a Bayesian supermodular game that satisfies the conditions

of Theorem 23 of Van Zandt. Therefore, it has an interim pure-strategy Bayesian Nash equilibrium

denoted by σ1 = (σ11, . . . , σn1). Let Hσ1

i2 denote the smallest sub sigma-algebra of B that makes si

and {σj1}j∈Ni measurable. The sigma-algebras Hσ1

12 , . . . ,Hσ1

n2 define a Bayesian supermodular game

in the second stage, which has an interim pure-strategy Bayesian Nash equilibrium σ2. Repeating

this argument inductively, we can construct a MPBE σ= (σ1, σ2, . . . ). �

2.3. Remarks on the Model

The model considers repeated interactions among rational short-run players in given roles. A role

can represent a myopic individual with each short-run player representing the individual’s one time

decision. Alternatively, a role can represent a dynasty with each short-run player representing a

member of the dynasty that has access to the entire history of the dynasty but only makes a single

decision.

Players’ behavior is determined by a MPBE strategy profile. The short-run players in the first

generation are endowed with private information about the realized state of nature. The equilibrium

strategy determines how players use their information to choose the actions that maximize their

expected payoffs. The players that follow inherit the information of their predecessors. But each

member of successive generations also acquires information, through the observation of recent

events in his social neighborhood, that was not available to his predecessors. The MPBE imposes the

usual requirements that the players’ actions maximize their expected payoffs and the information

contained in new observations is incorporated in a fashion consistent with the equilibrium and the

application of Bayes’ rule.

MPBE in addition restricts the players’ strategies to be measurable with respect to the exogenous

variables—hence the term Markovian. Players following Markovian strategies do not condition

their actions on observations which are uninformative about the exogenous variables. Thus, the

inference of player it about the actions of other players in his generation given his knowledge of

the equilibrium strategies reduces to inference about the exogenous variables. Since the players

are myopic and we are only considering pure strategies, restriction to Markovian strategies is

without loss of generality. In contrast, long-run players that follow non-Markovian strategies may

experiment, try to build reputations, or punish other players based on past events.

We note that the players in our model only observe the actions of their neighbors and do not

share their past experiences, signals, or beliefs with players in other roles. Furthermore, the players
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do not observe the realized payoffs of their predecessors. In Sections 4.2 and 5.3 we discuss an

extension of the model to the case of observed payoffs.

Finally, strict supermodularity of the utility function captures the idea that it is in the players’

interest to coordinate their actions: The sum of the utilities for players i and j when playing ai and

aj 6= ai, respectively, is less than the sum of the utility of i when player j moves to ai (matching

player i) and the utility of j when player i moves to aj. This property of the utility function is key

in proving our main result on consensus in the next section.

3. Main Result

Our main result states that short-run players asymptotically reach consensus when they act accord-

ing to a MPBE strategy profile. We discuss the implications of the results presented here in Section

5.1.

Theorem 1. Let σ be a MPBE. For all i, j ∈N , σit−σjt→ 0, P-almost surely, as t goes to infinity.

Proof. We let S denote the smallest sub sigma-algebra of B that makes the mapping ω 7→

s(ω) = (s1(ω), . . . , sn(ω)) measurable, and let Hσ
∞ =

∨n

i=1Hσ
i∞. Since the information available to

the players in any stage of the game is no more than the information jointly contained in their

private signals, Hσ
∞ ⊆S. Therefore, σit is measurable with respect to S for all i and t, so σit(ω) =

σit(ω
′) whenever s(ω) = s(ω′). We can thus define the mapping σit : S→ Ai, with some abuse of

notation, by letting σit(s) = σit(ω(s)), where ω(s) is a selection of Ω(s) = {ω ∈Ω : s(ω) = s}. The

statement of the theorem is therefore equivalent to the following: σit(s)− σjt(s)→ 0 for all s ∈ S

with P(s) = P(Θ×{s})> 0.

Suppose to the contrary that there exists some neighboring i, j ∈N , some s0 ∈ S with P(s0)>

0, and a divergent sequence {k0t}t∈N such that |σik0t(s0)− σjk0t(s0)| is uniformly bounded away

from zero. Since S is countable, there exists an enumeration s1, s2, . . . of S. Since A is a com-

pact metric space, there exists a further subsequence {k1t}t∈N of {k0t}t∈N such that the sequence

{σk1t(s1)}t∈N is convergent. Likewise, there exists a further subsequence {k2t}t∈N of {k1t}t∈N such

that the sequence {σk2t(s2)}t∈N is convergent, and by induction, for m ∈N, there exists a further

subsequence {km+1,t}t∈N of {kmt}t∈N such that the sequence {σkm+1,t
(sm+1)}t∈N is convergent. Con-

struct the sequence {lt}t∈N by letting lt = ktt. For all s∈ S, as t goes to infinity σlt(s) converges to

some σ∞(s)∈A with σi∞(s0) 6= σj∞(s0). With slight abuse of notation, define the measurable map-

ping σ∞ : Ω→A by letting σ∞(ω) = σ∞(s(ω)). Since ui is continuous and A and Θ are compact,

by the dominated convergence theorem,

E
[
ui(σlt , θ)

]
→E

[
ui(σ∞, θ)

]
.



Molavi et al.: Learning to Coordinate in Social Networks
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Define the Hσ
it-measurable mapping σ′it : Ω→Ai as follows: σ′i1 = σi1, σ′i,lt+1 = σjlt , and σ′iτ = σ′i,τ−1

for all τ /∈ {1} ∪
⋃
t∈N{lt}. This mapping constitutes a feasible strategy for player i according to

which he imitates the actions chosen by player j in periods {lt}. By construction, (σ′ilt , σ−ilt)→

(σj∞, σ−i∞) for all ω ∈Ω. Thus,

E
[
ui(σ

′
ilt
, σ−ilt , θ)

]
→E

[
ui(σj∞, σ−i∞, θ)

]
.

Since σ is an equilibrium, E
[
ui(σlt , θ)

]
≥E

[
ui(σ

′
ilt
, σ−ilt , θ)

]
for all t∈N, so

E[ui(σi∞, σ−i∞, θ)]≥E[ui(σj∞, σ−i∞, θ)]. (1)

By a similar argument,

E[uj(σj∞, σ−j∞, θ)]≥E[uj(σi∞, σ−j∞, θ)]. (2)

Let u(ai;aj, a−ij, θ) denote the utility of a player in role i when he chooses ai, player j chooses aj,

and other players choose a−ij. By the symmetry assumption, the payoff of a player in role j when

player j chooses ai, player i chooses aj, and others choose a−ij is also equal to u(ai;aj, a−ij, θ).

Equations (1) and (2) thus can be written as

E[u(σi∞;σj∞, σ−ij∞, θ)]≥E[u(σj∞;σj∞, σ−ij∞, θ)],

E[u(σj∞;σi∞, σ−ij∞, θ)]≥E[u(σi∞;σi∞, σ−ij∞, θ)].

Summing the above equations,

E[u(σi∞;σj∞, σ−ij∞, θ) +u(σj∞;σi∞, σ−ij∞, θ)]≥E[u(σi∞;σi∞, σ−ij∞, θ) +u(σj∞;σj∞, σ−ij∞, θ)].

(3)

On the other hand, since u is strictly supermodular, for all ai ∈Ai and aj ∈Aj,

u(ai;aj, a−ij, θ) +u(aj;ai, a−ij, θ)≤ u(ai;ai, a−ij, θ) +u(aj;aj, a−ij, θ), (4)

with equality if and only if ai = aj. Equations (3) and (4) imply that σi∞ = σj∞ for P-almost all

ω, contradicting the assumption that σi∞(s0) 6= σj∞(s0) and P(s0)> 0. �

An immediate corollary of consensus in strategies is asymptotic consensus in payoffs.

Corollary 1. Let σ be a MPBE. For all i, j ∈N , ui(σt, θ)− uj(σt, θ)→ 0, P-almost surely, as t

goes to infinity.

Proof. Define σit : S→Ai as in the proof of Theorem 1. It is sufficient to show that ui(σt(s), θ)−

uj(σt(s), θ)→ 0 for all θ ∈Θ and s∈ S with P(s)> 0. Suppose to the contrary that there exists some

neighboring i, j ∈N , some θ0 ∈Θ and s0 ∈ S with P(s0)> 0, and a divergent sequence {k0t}t∈N such
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that
∣∣ui(σk0t(s0), θ0)−uj(σk0t(s0), θ0)

∣∣ is uniformly bounded away from zero. As in the proof of The-

orem 1, we can construct a further subsequence {lt}t∈N of {k0t}t∈N such that for all s∈ S, as t goes

to infinity, σlt(s) converges to some σ∞(s)∈A. Furthermore, by Theorem 1, σi∞(s) = σj∞(s) for all

i, j ∈N and s∈ S. Therefore, since ui is continuous and symmetric, ui(σlt(s0), θ0)−uj(σlt(s0), θ0)→
0 for all i, j ∈N , contradicting the assumption that

∣∣ui(σk0t(s0), θ0)−uj(σk0t(s0), θ0)
∣∣ is uniformly

bounded away from zero for some i, j. �

The above result also implies ex ante consensus in the expectation of big players’ asymptotic

payoffs. Prior to the start of the game, players in all roles expect their successorss to asymptotically

achieve similar payoffs. In Section 5.1, we show by means of an example that players might disagree

in their conditional expected payoffs even when they are receiving the same payoffs.

4. Quadratic Games

In this section we study an important special case of the baseline model introduced in Section 2 in

which θ is a real number and each player’s utility function is quadratic in both θ and the average

action of other players. Namely, we assume that

ui(a, θ) =−(1−λ)(ai− θ)2−λ(ai− ā−i)2, (5)

where λ∈ (0,1) is a constant and ā−i =
∑

j 6=i aj/(n−1) denotes the average action of other players.6

The game with players’ payoffs given by (5) is a supermodular game since the payoff’s cross partial

derivative is equal to λ> 0. The first term is a quadratic loss in the distance between the realized

state and player i’s action, capturing the player’s preference for actions which are close to the

unknown state. The second term is the “beauty contest” term representing the player’s preference

for acting in conformity with the rest of the population. This utility function was introduced by

Morris and Shin (2002) to represent the preferences of the players who engage in second-guessing

others’ actions as postulated by Keynes. Restricting the utility function allows us to show optimal

information aggregation and extend our results on consensus to endogenous signals and time-

varying networks. The following proposition states an important property of the quadratic game.

Proposition 2. The quadratic game has a unique MPBE σ.

The result is based on expressing the MPBE as a sequence of stage game Bayesian Nash Equi-

libria. In each stage t, the corresponding short-run player it’s equilibrium strategy must be a best

response to other players’ strategies. Given the payoff in (5) and since λ belongs to (0,1), the

players’ best-response function is a contraction mapping. This together with the compactness of

the action space implies that the stage game has a unique Bayesian Nash Equilibium.7 Since a

MPBE is a sequence of stage game Bayesian Nash Equilibria and all stages have unique equilibria,

the MPBE must be unique.
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4.1. Information Aggregation

Consider the model with quadratic payoffs. Suppose that the signal space Si is finite. Define

information, strategies, and Markov Perfect Bayesian Equilibrium as in the baseline model. Let

Hσ
∞ =

∨n

i=1Hσ
i∞ denote the information collectively available to the players at the end of the game

when they follow the strategy profile σ.

Instead of considering a single probability measure over (Ω,B), in this subsection we prove a

result about the set of all probability measures over (Ω,B). Let P denote the space of all probability

measures over (Ω,B) with elements denoted by P , and let d denote the total variation distance

between measures. (P, d) is a metric space and therefore a topological space. We say that a property

holds generically if it is true for all P belonging to a residual subset of (P, d).8 We have the following

result on information aggregation.

Theorem 2. Let σP denote the unique MPBE of the quadratic game given prior P ∈ P. For

generic P ∈P and all i, σPit −EP
[
θ
∣∣∣HσP

∞

]
→ 0, P -almost surely.

The theorem states that for priors P belonging to a generic set of probability distributions, the

players asymptotically play as if they all had the information captured by the sigma-algebra HσP

∞ ,

which is the aggregate information collectively available to the players at the end of the game.

4.2. Endogenous Signals and Time-Varying Directed Networks

Suppose that each short-run player it privately observes a signal sit belonging to a complete

separable metric space Si. The distribution of sit depends on the history of the game up to stage

t.

Additionally, suppose that each short-run player it has a different and random set of neighbors.

Denote the set of neighbors of player it by Nit. We maintain the assumption that i ∈Nit for all

i and t. However, the neighborhood relationship is no longer assumed to be symmetric. Let Ni
denote the space of all possible neighborhoods for a player in role i, and let N =

∏n

i=1Ni.

We summarize the players’ uncertainty by some ω belonging to the measurable space (Ω,B),

where Ω = Θ×SN×N N and B is the Borel sigma-algebra. The payoff-relevant state, the signals, and

the neighborhoods are jointly distributed according to some endogenous probability distribution.

In what follows, we recursively define the players’ strategies and information taking for the model

with endogenous signals and time-varying networks. Let Hi1 be the smallest sub sigma-algebra of

B that makes si1 and Ni1 measurable. A Markovian strategy for player i1 is a mapping σi1 : Ω→Ai

which is measurable with respect to Hi1. For t ≥ 2, define Hσt−1

it and σit recursively as follows.

Denote by σt−1 = (σ1, σ2, . . . , σt−1) the Markovian strategy profile followed by the short-run players

that are active before stage t. Given σt−1, the information available to player it is Hσt−1

it , the
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smallest sub sigma-algebra of B that refines Hσt−2

i,t−1 and makes sit, Nit, and {σj,t−1}j∈Nit measurable.

A Markovian strategy for player it is a mapping σit : Ω→ Ai that is measurable with respect to

Hσt−1

it . We let σ = (σ1, σ2, . . . ) denote a Markovian strategy profile generated as above and let

Hσ
i∞ =∨∞t=1Hσt−1

it . Note that, for any strategy profile σ and all i, Hσt−1

it ⊆Hσt
′−1

it′ if t≤ t′. Whenever

there is no risk of confusion we use Hσ
it to mean Hσt−1

it .

We next construct the endogenous probability distribution induced by a Markovian strategy

profile σ over (Ω,B). The payoff-relevant state θ is distributed according to some probability

distribution P0. The history of the game at the end of stage t is defined recursively: h0 = θ and

ht = (ht−1;st, at,Nt) for all t≥ 1, where st, at, and Nt = (N1t, . . . ,Nnt) are the signal, action, and

neighborhood profiles realized in stage t. Given history ht−1, the private signals and neighborhoods

in stage t are distributed according to πt(ht−1) ∈ ∆(S ×N ). The mapping ht−1 7→ πt(ht−1) is a

transition probability from the set of all histories to S × N .9 We assume that the probability

distribution P0 and transition probabilities {πt}t∈N are common knowledge. P0 and π1 uniquely

define a probability distribution P1 over Θ×S×N . Likewise, for t≥ 2, the strategy profile σt−1 =

(σ1, σ2, . . . , σt−1), probability distribution P0, and transition probabilities π1, π2, . . . , πt uniquely

define a probability distribution P σt−1

t over Θ×St×N t. The probability measures P0, P1, P
σ1

2 , . . .

can be uniquely extended to Ω = Θ× SN ×N N by Tulcea’s extension theorem.10 We denote this

extension by P σ and the corresponding expectation operator by Eσ.

Definition 2. A Markovian strategy profile σ for the game with endogenous signals is a MPBE

if for all i, t, and Hσt−1
it -measurable mappings σ′it : Ω→Ai,

Eσ
[
ui(σit, σ−it, θ)|H

σt−1
it

]
≥Eσ

[
ui(σ

′
it, σ−it, θ)|H

σt−1
it

]
.

Our next result generalizes Proposition 2 on the uniqueness of equilibrium in the quadratic game

to the setting with endogenous signals and time-varying networks.

Proposition 3. The quadratic game with endogenous signals and time-varying networks has a

unique MPBE σ.

We next present a series of results for the quadratic payoff in (5) with endogenous signals and

time-varying networks that are counterparts of the results stated for symmetric strictly super-

modular games in Section 3. We first state an intermediate result that shows that the actions of

short-run players in a given role converge to some limit action.

Proposition 4. Let σ be the MPBE of the quadratic game with endogenous signals. For all i there

exists some Hσ
i∞-measurable random variable σi∞ : Ω→Ai such that σit→ σi∞, P σ-almost surely.
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The convergence follows by using the fact that equilibrium action of each player can be repre-

sented as a weighted sum of expectations with respect to beliefs of all orders of the payoff-relevant

state, and that each term in this sum converges as t→∞.

Our next result shows consensus in actions of players when the network is sufficiently connected

over time. A network process is a probability distribution over N N.

Definition 3. A network process is called infinitely often almost surely strongly connected if for

any two nodes i and j there exists a sequence of nodes k1, k2, . . . , km such that k1 = i, km = j, and

for all 1≤ l <m, kl ∈Nkl+1,t almost surely infinitely often.

Theorem 3. Let σ be the MPBE of the quadratic game with endogenous signals. If the network

process margNN P σ is infinitely often almost surely connected, then for all i, j ∈N , σit − σjt→ 0,

P σ-almost surely, as t goes to infinity.

The following result is the counterpart of the result on consensus in payoffs presented in Theorem

1, presented here for the game with quadratic payoffs.

Corollary 2. Let σ be the MPBE of the quadratic game with endogenous signals. If the network

process margNN P σ is infinitely often almost surely connected, then for all i, j ∈ N , ui(σt, θ) −

uj(σt, θ)→ 0, P σ-almost surely, as t goes to infinity.

The above two results extend the results in Section 3 to endogenous signals and time-varying

networks when the payoff function is quadratic. We discuss their implications further in Section 5.3.

5. Discussion

In the games considered in Section 3, players acquire exogenous private signals si at the beginning

of the game that reveal information about the state of the world θ. They use this information to play

the MPBE action. The action played by each player becomes known to the players in neighboring

roles. From the perspective of player i, the actions of neighbors j ∈Ni reveal information about

their private signals which can be used to improve the actions that they play in the subsequent

stage. As time progresses, actions of neighbors reveal more information about their private signals

as well as information about the private signals of their neighbors, and the signals of their neighbors’

neighbors. If the network is connected, all players eventually observe actions that carry information

about the private signals of all other players. The results in sections 3 and 4 characterize the

asymptotic behavior of the agents involved in this game. This section discusses the insights that

these results provide.
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5.1. Consensus

When players play this game with incomplete information over a network, how much do they learn

of each other’s private information? Perhaps not all, but Theorem 1 asserts that they achieve a

steady state in which they have no reason to suspect they haven’t. Indeed, the claim in Theorem

1 is that given any pair of players i and j their strategies σit and σjt approach each other as the

number of plays grow, with probability one. Since the players use a common strategy in the limit,

we say that they achieve consensus. In this consensus state players select identical actions, which

they therefore must believe to be optimal given all their available information and the strategies of

other players. Otherwise, deviations to strategies with better expected payoffs would be possible.

To emphasize that players achieve this possibly misguided consensus we show in Corollary 1 that

the payoffs of all players eventually coincide.

That players achieve consensus is not unexpected given that the game being played is a symmetric

supermodular game. If the state of the nature θ were known to the players, they would all play

a common action in any equilibrium of the game. When the state of the world is not known but

rather inferred from private signals and the observed actions of neighboring players, the incentive

to coordinate is still present but there is uncertainty on what exactly a coordinated action should

be. Theorem 1 shows that such uncertainty is eventually resolved.

Expected as it may be, the result in Theorem 1 is not obvious because it is not clear that the

uncertainty on what it means to have a coordinated action is resolved. The fundamental problem in

resolving this uncertainty is that players have to guess the actions other players are about to take,

yet they only know their strategies and observe only their realized actions. If other players’ histories

were observed, the incentive to coordinate, that is implicit in the supermodular assumption, would

drive players to consensus. However, histories are not observed. The strategies of players other than

i are, indeed, not necessarily measurable with respect to the information available to i. Lacking

measurability, it is not possible for i to gauge the quality of his actions given the strategies of his

neighbors.

The key step in the proof of Theorem 1 is to show that the strategies of neighbors become

measurable in the limit. When strategies become measurable, it is possible for i to imitate j, if it

so happens that the strategy of j is better. Since the player i acts with respect to MPBE strategy,

imitating j’s strategy cannot be optimal. It follows that the strategy of j is not better than the

strategy of i according to i. Yet, strategic complementarity implies that i cannot think that his

strategy in the limit is better than j’s limit strategy and vice verse, and at the same time their

strategies be different.

According to Corollary 1, the differences between the players’ payoffs asymptotically vanish.

Thus, in spite of the differences in their location in the network and the quality of their private
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signals, players asymptotically receive similar payoffs. From the point of view of the players, how-

ever, the asymptotic payoffs are not necessarily the same. That is, conditional expectations of

the players’ limit payoffs given their information at the end of the game could be dissimilar. The

following example illustrates this possibility.

Example 1. Consider two roles i ∈ {1,2} with payoffs given by (5) that observe each others’

actions in all stages. The common prior is the uniform distribution over the set {−2,−1,1,2}.

Player 2 receives no signal (S2 = ∅), whereas Player 1’s private signals belong to the set S1 = {1,2},

with s1 = |θ|. Thus, Player 1 is informed of the absolute value of θ. Observe that in any equilibrium

of the game σit = 0 at all times and for both players, Player 1 learns the absolute value of θ, whereas

Player 2 never makes any informative observations. At the end of the game, Player 1’s expected

payoff conditional on his information is equal to −(1− λ)|θ|2 while the corresponding payoff for

Player 2 is given by −(1−λ) 5
2
.

In the above example, although the conditional expected payoffs are unequal for any realization

of the state, the unconditional expected payoffs and the realized payoffs are the same for both

players because Theorem 1 and Corollary 1 apply.

We remark that strategic complementarity is the main driver of the consensus results. In partic-

ular, in games with strategic substitutes, it is beneficial for the players to play different strategies.

The games wherein players’ actions are strategic substitutes might not even have any symmetric

pure-strategy Nash equilibrium (e.g., the hawk-dove game). Hence, the consensus results cannot

be generalized to games with strategic substitutability.

5.2. Information Aggregation

As we noted in Section 5.1, achieving consensus means that players have no reason to suspect there

is more information to be learnt, but this does not necessarily mean that they have aggregated all

the available information. To understand the difference it is instructive to consider the following

example.

Example 2. Consider two roles i ∈ {1,2} with players having the utility of the form in (5). The

players in the two roles observe each others’ actions in all stages. The state of the world θ belongs

to the set Θ = {−1,1}. Initially, players have uniform common prior. They receive private signals

belonging to the set S1 = S2 = {H,T}. As in the baseline model of Section 2, only the initial

short-run players receive a signal, and the distribution of s= (s1, s2) conditional on θ is given by

s(θ)∼


1

2
δ(H,H) +

1

2
δ(T,T) if θ= 1,

1

2
δ(H,T) +

1

2
δ(T,H) if θ=−1,
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where δs is the degenerate probability distribution with unit mass on the signal profile s ∈ S.

We first show that, in the unique equilibrium of the game, players in both roles choose σit = 0

for all t. Given the distribution of s1 and s2, each player in the first stage receives the signal

H(T) with probability one half, regardless of the realization of θ. Players’ private signals are thus

completely uninformative about the realized state and hence their expectation of θ is equal to zero:

E[θ|Hi1] = 0. Since the distribution of s is common knowledge, each player knows that the other

player’s expectation of θ is also zero. As a result the equilibrium action of initial players is σi1 = 0

for i ∈N . These actions reveal no information to the players in the subsequent stages. Therefore,

the short-run players in subsequent stages all continue to choose the zero action.

Next, consider the alternative setting in which both players observe the complete signal profile

s= (s1, s2). In this modified game, both of the short-run players playing in the first stage learn the

realized state. Therefore, in equilibrium of the modified game players in both roles choose σit = θ

for all t≥ 1 and given any realization of θ.

In the above example players achieve consensus on their strategy, as it should be because Theorem

1 applies, but the consensus strategy is not the one they would use if they had access to each

others’ private signals. The question then arises as to which conditions can prevent this failure to

aggregate information through repeated network interactions. To answer this question, we restrict

attention to utilities that have the quadratic form shown in (5).

The game in Example 2 has a quadratic utility, yet this restriction is not sufficient to guarantee

information aggregation. Observe however that the parameters in Example 2 have been fine-tuned

to make sure that private signals are uninformative about the state of the world when taken

separately but informative when taken together. This causes players to take equilibrium actions that

reveal no information about their private signals, although the signals contain useful information

about the realized state. However, the delicate balance of parameters that creates this behavior

is broken if we have infinitesimal variations in any parameter. In that sense, Example 2 is not

generic in that it represents an isolated example that cannot be drawn if we consider games that

are selected from a residual set.

Theorem 2 states that in network games with quadratic utilities we can have examples where

players fail to aggregate information, but these examples are nongeneric in the space of probability

measures over (Ω,B) endowed with the total variation metric. Conversely, network games with

quadratic utilities aggregate information in a set that is dense in (Ω,B). This means that failure

to aggregate information is not a practical concern when utilities are quadratic. In practically all

possible games of incomplete information, players not only achieve consensus on their strategies but

also converge to the strategy defined by the expectation EP
[
θ
∣∣∣HσP

∞

]
. This means that players end
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up playing the same action that would be selected by an omniscient planner that has access to all

the private signals of all players. The question of whether this is also true for general supermodular

utilities remains open.

An important special case of Theorem 2 is obtained by letting λ= 0. In this case, the players only

attempt to form the best possible estimate of the state given the information available to them.

Their equilibrium actions are in turn simply their estimate of θ conditional on their information.

The players’ problem then becomes an instance of social learning. Theorem 2 states that the players

asymptotically learn to estimate the state as if they had access to all the available information.

In this sense, Theorem 2 parallels and complements some of the earlier optimality results in the

Bayesian social learning literature. In particular, it extends Theorem 4 of Mueller-Frank (2013) to

the case where the players face payoff externalities in addition to information externalities. It also

extends Proposition 4 of Jadbabaie et al. (2012) to the case where the players communicate their

conditional estimates of the state, rather than their entire beliefs. Finally, it also relates to the

information aggregation result presented in Ostrovsky (2012) for dynamic markets with “separable”

securities. The notion of separability rules out fine-tuned payoff and prior beliefs such as the one in

Example 2. Our results complement the work in Ostrovsky (2012) in that we show that—even when

the players’ partition of the state space does not satisfy the separability condition—information

aggregation is generically obtained.

The following numerical example illustrates the evolution of the players’ actions over time and

their convergence to the optimal action given a setting where the state and the private signals are

normally distributed.

1

2

3 4

5

61

(a) The ring social network

2

3

4

5

6

1

(b) The star social network

Figure 1 The ring and star social networks of Example 3
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(a) Agents’ actions given the ring network
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(b) Agents’ actions given the star network

Figure 2 Evolution of the agents’ actions over time in Example 3

Example 3. There are n= 6 players over a fixed strongly connected social network playing the

game with payoffs given by (5) with λ= 2/3. We consider two network topologies: a directed ring

network depicted in Figure 1(a) and a star network depicted in Figure 1(b). The common prior over

θ is given by the standard normal distribution N (0,1). The signal spaces are given by S1 = S2 =R.

We assume that, conditional on θ, s1 and s2 are independent and distributed according to N (θ,1).

Note that, only the initial players receive informative signals. The evolution of the players’ actions

over time is depicted in Figure 2 for two realizations of the path of play with θ= 0. The dashed line

represents the payoff-maximizing action given the players’ private signals—which in the context

of this example is equal to the average of the private signals. At t = 1, players each receive a

private signal and choose the actions that are equal to their private signals. Yet, as time passes, the

players’ actions converge to the payoff-maximizing action. Moreover, over both of the networks,

convergence is complete after a number of time periods equal to the diameter of the graph.11

In this example, although the players’ signal spaces are not finite, convergence to the optimal

action is achieved.12

5.3. Extensions

Some extensions have been also provided in Section 4 for the special case of quadratic payoffs.

Theorem 3 states that consensus happens for quadratic utilities even if we allow for time-varying

networks and endogenous signals. The allowance for time-varying networks extends our results to

cases where interactions between players are not synchronized to a common clock as is assumed in

Section 3. Whenever a pair of players interact we can define a network with a single edge that joins

the pair of players. This definition pigeonholes asynchronous interactions into the time-varying
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network model of Section 4. The allowance for endogenous signals includes, as a particular case,

situations in which players observe their own payoffs.

In contrast to the consensus results, the information aggregation result in Theorem 2 cannot be

extended to the case with endogenous signals. The following example illustrates that the correct

notion of information aggregation is unclear when signals are endogenous.

Example 4. Consider a single player who repeatedly plays a game with payoffs as in (5) with

λ = 0. The player’s prior for θ is given by the standard normal N (0,1). His stage one signal is

distributed according to N (θ,1). The signal st observed at t≥ 2 is distributed as follows

st(θ)∼

{N (θ,1) if |θ− a1|> 1,

N (0,1) if |θ− a1| ≤ 1.

The player observes an informative signal and chooses an action in the first stage. If his stage one

action is not within unit distance of the realized state, he continues to observe informative private

signals and asymptotically learns the state with arbitrary precision. However, if the player’s stage

one action is sufficiently close to the realized state, he does not observe any informative signals

after the first stage and thus never learns the state.

In this example, there is an externality associated with the effect of the action of the player in

stage one on the distribution of the private signals observed by his successors. If the player is myopic

(or sufficiently impatient), this informational externality is not internalized in the equilibrium.

This example illustrates the path-dependence that learning with endogenously generated signals

can exhibit: The total amount of information available to the players is not fixed; it rather is a

function of the realized path of play. Consequently, no well-defined notion of optimal aggregation

of information is readily available when learning is endogenous.

Throughout, we assumed that the network is strongly connected over time. When the network

is not strongly connected, our results do not continue to hold. Consider a single role i that is

disconnected from the rest of the network, and assume that the initial player in each role only

observes a single noisy signal of the state. Unless all players happen to be perfectly informed of the

state, the players in the disconnected role i will not be in agreement with the rest of the population.

Note that this is also true when the other players can observe the actions of the players in role i

but the players in role i cannot observe any other player in the network.

Some other extensions are beyond the scope of this paper. For instance, our results are stated

for myopic players but players that optimize for longer time horizons have even stronger incentives

to signal their information. It is therefore reasonable to expect that all of our theorems hold in this

case as well. In fact, it is likely that stronger results can be derived because non-myopic Markovian

players may be able to aggregate information even if the short-run players cannot.
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6. Symmetric Supermodular Games

We present four examples of symmetric strictly supermodular games of incomplete information to

illustrate the range of models to which our consensus results in Section 3 are applicable.

6.1. Currency Attacks

Consider investors who attack a currency by short-selling the currency by ai ∈ [0,1] amounts. There

is a fixed transaction cost of short-selling, −c < 0, when investor i attacks ai > 0, otherwise his

cost is zero. The strength of the attack is proportional to the average short-selling actions of the

investors: ā=
∑

i ai/n. The government follows a thresholded policy to defend against the investors’

attacks based on the fundamentals of the economy θ. That is, if the attack strength is larger

than h(θ) ∈ (0,1] where h(·) is an increasing function of θ, then the government does not defend,

otherwise, it defends. When the government defends, the attack fails and the investors incur the

transaction cost. When the government does not defend, the attack succeeds and each investor

receives a benefit proportional on his short-selling amount, Bi(ai)> 0, which is a continuous strictly

increasing function. However, the investors do not exactly know fundamentals of the economy and

only have private information regarding θ. We smooth the government’s threshold response by

assuming that the likelihood that ā is larger than h(θ) is given by L(h(θ); ā), which is a continuous

and strictly increasing function of ā given θ. Then the payoff of an investor is summarized as

follows.

ui(ai, a−i, θ) =

{
Bi(ai)L(h(θ); ā)− c if ai > 0,

0 if ai = 0.

Under certain assumptions, the utility function above is strictly supermodular. For instance,

it is easy to show that the likelihood function L(h(θ); ā) = ā2/(λ + h(θ)2) results in a strictly

supermodular utility function for all λ ≥ 1. Furthermore, the utility function is symmetric since

each investor’s attack contributes equally to the strength of the attack. See Vives (2005) for a

variant of this game.

6.2. Bertrand Competition

Consider an oligopoly price competition model where the demand for firm i is determined by the

price set by firm i, ai ∈ [0,1], as well as prices of its competitors a−i. That is, firm i’s demand

function is Di(ai, a−i). The demand of firm i is decreasing in its own price ai and increasing

with respect to prices of others a−i. The revenue of firm i is its price multiplied by the demand,

aiDi(ai, a−i). Each firm operates with an identical uncertain cost per production θ. Then the cost

of matching demand Di(ai, a−i) by firm i is θai. The payoff of firm i is its net revenue which is the

difference between revenue and cost,

ui(ai, a−i, θ) = aiDi(ai, a−i)− θai.
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We consider a logistic demand function Di(a) = 1/(1 +
∑

j 6=i κ exp(λ(ai−aj))) for κ> 0 and λ> 0.

This demand function yields a symmetric strictly supermodular utility function. See Milgrom and

Roberts (1990) for other forms of demand functions that result in supermodular utilities.

6.3. Power Control in Wireless Networks

Consider the problem of power control in wireless network communication—see Altman and

Altman (2003), see Vives (2005) for a similar formulation motivated by patent races. Each user

wants to transmit to a base station using the channel designated to himself. User j determines a

transmitting power level ai ∈ [0, â] for some â > 0. The channel gain of user i transmitting to base

station is equal to h> 0 which is identical for all the users. Hence, the received signal of user i at

the base station is aih. On the other hand, the transmission of other users interferes with the gain

of user i’s channel. Given the channel gains h, the signal-to-interference-ratio (SINR) is given by

SINR(a−i) =
h

h
∑

j 6=i aj + ρ
,

where ρ > 0 is the additive Gaussian noise representing the noise at the base station. Thus the

received SINR by user i when it exerts ai amounts of power is simply aiSINRi(a−i). User i incurs

a constant uncertain cost θ per unit of power exerted yielding a total cost of θai when ai units of

power is exerted. The payoff of user i is the difference between a function of the received SINR

Bi(aiSINRi(a−i)) and the cost of power consumption,

ui(ai, a−i, θ) =Bi(aiSINRi(a−i))− θai.

Under certain conditions on the function Bi(·), the payoff is strictly supermodular. For instance,

given Bi(x) = x1−α/(1−α) where α> 1, we have ∂2ui/∂ai∂aj > 0. Symmetry of the utility function

follows by the definition of the SINR and the unanimity of the channel gain h.

6.4. Arms Race

N countries engage in an arms race—see Milgrom and Roberts (1990). Country i chooses its arms

level ai ∈ [0, â] and incurs a cost of armament that is captured by the cost function Ci(ai, θ) that

depends on the state of the world θ and own action ai. The benefit of the armament depends on the

distance between self arms, ai, and the average armament of other countries, ā−i =
∑

j 6=i aj/(n−1),

captured by a strictly concave smooth function Bi(ai− ā−i). The payoff of country i is given by

ui(ai, a−i, θ) =−Ci(ai, θ) +Bi (ai− ā−i) .

Since ∂2ui/∂ai∂aj = −B′′i (ai − aj) > 0, the game is strictly supermodular. Furthermore, by con-

struction, the utility function is symmetric.
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7. Proofs

7.1. Proof of Proposition 2

This proposition is a special case of Proposition 3 proved below.

7.2. Proof of Proposition 3

The proof is constructive. We start at t= 1 and inductively construct the unique equilibrium. Let

[ǎ, â] be such that Ai ⊆ [ǎ, â].

Consider stage t = 1. We show that the game played in the first stage is dominance solvable

in the sense that each player has a unique rationalizable strategy.13 We use the following proce-

dure to iteratively eliminate strictly dominated strategies. The strategy that survives is the unique

rationalizable strategy profile and thus also the unique equilibrium. First consider all the possible

beliefs that each player can entertain about other players’ actions, the payoff-relevant state, and

the private signals such that the belief is consistent with the player’s prior belief and his observed

private signal. Any strategy for player i1 that is not a best response to some such belief is elim-

inated in the first round. Next consider the set of all beliefs that in addition to consistency are

restricted to only put positive probability on the strategies that were not eliminated in the previous

round and eliminate the strategies that are not best responses to any such belief. We repeat the

procedure ad infinitum. The strategy profile surviving this iterated elimination procedure is the

unique equilibrium.

Let Pi1 be the belief player i1 entertains about the state, signals, networks and what other players

do in stage 1. Pi1 is a transition probability from Ω to Ω×A−i. Player it’s best response to this

belief is then given by the following first-order condition:

σi1 = (1−λ)Ei1[θ] +
λ

n− 1

∑
j 6=i

Ei1[aj1],

where Ei1 is the expectation operator with respect to Pi1. Each player’s actions are restricted to

belong to the interval [ǎ, â]. Thus,

(1−λ)Ei1[θ] +λǎ≤ σi1 ≤ (1−λ)Ei1[θ] +λâ.

Pi1 needs to be consistent with the P1, defined in Subsection 4.2, and player i1’s observation of

signal si1. Therefore, Ei1[θ] =E1[θ|Hi1] and so

(1−λ)E1[θ|Hi1] +λǎ≤ σi1 ≤ (1−λ)E1[θ|Hi1] +λâ,

where E1 is the expectation operator with respect to P1. Thus the strategies not belonging to the

interval [(1−λ)E1[θ|Hi1]+λǎ, (1−λ)E1[θ|Hi1]+λâ] are eliminated in the first round of elimination.
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Given that each j1’s actions belong to the interval [(1−λ)E1[θ|Hj1] +λǎ, (1−λ)E1[θ|Hj1] +λâ],

the support of player i1’s belief Pi1 need to be contained in [(1−λ)E1[θ|Hj1]+λǎ, (1−λ)E1[θ|Hj1]+

λâ]. Thus, any rationalizable strategy for player i1 needs to satisfy the following restrictions:

σi1 ≥ (1−λ)E1[θ|Hi1] +
λ(1−λ)

n− 1

∑
j 6=i

E1[E1[θ|Hj1]|Hi1] +λ2ǎ,

σi1 ≤ (1−λ)E1[θ|Hi1] +
λ(1−λ)

n− 1

∑
j 6=i

E1[E1[θ|Hj1]|Hi1] +λ2â.

This procedure can be repeated ad infinitum. Define θ̄ki1 recursively as follows: θ̄1
i1 = E1[θ|Hi1]

and θ̄k+1
i1 =

∑
j 6=iE1[θ̄kj1|Hi1]/(n− 1). Then for any k≥ 1,

(1−λ)
k∑
l=1

λl−1θ̄li1 +λkǎ≤ σi1 ≤ (1−λ)
k∑
l=1

λl−1θ̄li1 +λkâ.

The difference between the upper and lower bounds on σi1 in the kth stage of elimination is given

by λk[ǎ− â]. Since λ < 1 and θ̄ki belongs to Θ which is a compact set, as k goes to infinity, the

upper and lower bounds converge to the same value and a strategy σi1 survives that is unique up

to sets of P1-measure zero:

σi1 = (1−λ)
∞∑
k=1

λk−1θ̄ki1.

The game played in stage 2 is similar to the game played in the first stage with the exception

that the information of player i2 is now given by Hσ1

i2 . An argument similar to the one above shows

that there exists an equilibrium strategy for the stage 2 short-run players which is unique up to

sets of P σ1

2 -probability zero. More generally, by induction, there exists a unique equilibrium which

in stage t is given by the following expression:

σit = (1−λ)
∞∑
k=1

λk−1θ̄kit, (6)

where θ̄1
it =Eσt−1

t−1

[
θ|Hσt−1

it

]
and θ̄k+1

it =
∑

j 6=iE
σt−1

t−1

[
θ̄kjt|Hσt−1

it

]
/(n− 1).

7.3. Proof of Proposition 4

Since θ belongs to a compact set Θ andHσ
it ↑Hσ

i , by the martingale convergence theorem, θ̄1
it→ θ̄1

i∞,

P σ-almost surely, where θ̄1
i∞ =Eσ [θ|Hσ

i∞]. Suppose that θ̄kit→ θ̄ki∞, P σ-almost surely, for some k,

where θ̄k+1
i∞ =

∑
j 6=iE

σ
[
θ̄kj∞|Hσ

i∞
]
/(n−1) for all k≥ 1. Then by the dominated convergence theorem

for conditional expectation, θ̄k+1
it → θ̄k+1

i∞ , P σ-almost surely. Therefore, θ̄kit→ θ̄ki∞, P σ-almost surely,

for all k≥ 1.

Define

σi∞ = (1−λ)
∞∑
k=1

λk−1θ̄ki∞. (7)
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We show that σit→ σi∞ almost surely. Fix some arbitrary ε > 0. Since λ< 1 and |θ̄kit| ≤maxΘ |θ|<

∞, there exists some K1 ≥ 1 such that∣∣∣∣∣(1−λ)
∞∑

k=K1+1

λk−1θ̄kit

∣∣∣∣∣≤ ε

3
,

for all t. Likewise, there exists some K2 ≥ 1 such that∣∣∣∣∣(1−λ)
∞∑

k=K2+1

λk−1θ̄ki∞

∣∣∣∣∣≤ ε

3
.

Let K = max{K1,K2}. Since θ̄kit→ θ̄ki∞ almost surely for all k ≥ 1, for P σ-almost all ω ∈ Ω there

exists some T such that (1−λ)λk−1
∣∣θ̄kit− θ̄ki∞∣∣< ε/3K for all k≤K. If t≥ T , then

|σit−σi∞| ≤ (1−λ)
K∑
k=1

λk
∣∣θ̄kit− θ̄ki∞∣∣+

∣∣∣∣∣(1−λ)
∞∑

k=K+1

λk−1θ̄kit

∣∣∣∣∣+
∣∣∣∣∣(1−λ)

∞∑
k=K+1

λk−1θ̄ki∞

∣∣∣∣∣≤ ε.
Thus, since ε > 0 was arbitrary and convergence is for a set of full measure, σit→ σi∞, P σ-almost

surely.

7.4. Proof of Theorem 3

Let i, j be a pair of roles such that i observes the actions of j infinitely often almost surely. Define

the mappings σ′it : Ω→ Ai as follows: σ′i1 = Eσ[θ|Hi1], and for t ≥ 2, σ′it = σj,t−1 if j ∈ Nit, and

σ′it = σ′i,t−1 otherwise. Since σ is an equilibrium,

Eσ
[
ui(σit, σ−it, θ)|H

σt−1
it

]
≥Eσ

[
ui(σ

′
it, σ−it, θ)|H

σt−1
it

]
P σ − a.s.

Take expectations of the above inequality with respect to Eσ. For any ω for which σjt→ σj∞ and

j ∈Ni infinitely often, σ′it→ σj∞. Therefore, by the dominated convergence theorem,

Eσ [ui(σi∞, σ−i∞, θ)]≥Eσ [ui(σj∞, σ−i∞, θ)] .

A similar argument can be used to show that Eσ [uj(σj∞, σ−j∞, θ)]≥Eσ [uj(σi∞, σ−j∞, θ)].

By the connectivity assumption, there exists a sequence of roles i0, i1, i2, . . . , in starting and

ending with the same role that includes each role other than i0 exactly once, and such that, for all

k, players in role ik observe the ones in role ik+1 infinitely often almost surely. For any k, by the

above argument

Eσ
[
ui(σik∞, σ−ik∞, θ)

]
≥Eσ

[
ui
(
σik+1∞, σ−ik∞, θ

)]
. (8)

Summing over k and reindexing the right-hand side sum imply

n−1∑
k=0

Eσ
[
ui(σik∞, σ−ik∞, θ)

]
≥

n∑
k=1

Eσ
[
ui
(
σik∞, σ−ik−1∞, θ

)]
.
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Expanding both sides of the inequality, all terms except for one cancel resulting in

n−1∑
k=0

Eσ

[
σik∞

∑
j 6=k

σij∞

]
≥

n∑
k=1

Eσ

[
σik∞

∑
j 6=k−1

σij∞

]
.

Further simplification results in

n∑
k=1

Eσ
[
σik∞σik−1∞

]
≥

n∑
k=1

Eσ
[
σ2
ik∞
]
. (9)

On the other hand,
∑n

k=1E
σ[(σik∞ − σik−1∞)2]≥ 0 with equality if and only if σik∞ = σik−1∞ for

all k with P σ-probability one. Thus, using the fact that
∑n

k=1E
σ[σ2

ik∞] =
∑n

k=1E
σ[σ2

ik−1∞], we can

conclude that
n∑
k=1

Eσ
[
σ2
ik∞
]
≥

n∑
k=1

Eσ
[
σik∞σik−1∞

]
, (10)

with equality if and only if σik∞ = σik−1∞ for all k, P σ-almost surely; equation (9) implies that (10)

indeed holds with equality. Thus, for all i and j and with P σ-probability one, σi∞ = σj∞. Together

with Proposition 4, this completes the proof of the theorem.

7.5. Proof of Corollary 2

The corollary immediately follows Proposition 4, Theorem 3, and the assumption that the utility

functions are continuous.

7.6. Proof of Theorem 2

Before proving the theorem, we first prove a technical lemma.

Lemma 1. Let (X,B) be a measurable space, and let (P, d) be the metric space where P is the

collection of all probability measures on (X,B) and d is the total variation distance. Let F1 and F2

be two arbitrary sub σ-algebras of B, let F be the σ-algebra generated by the union of F1 and F2,

and let f be an arbitrary bounded random variable. The set

Q =
{
P ∈P :EP [f |F1] =EP [f |F2] 6=EP [f |F ]

}
,

is nowhere dense in the metric space (P, d).

Proof. To prove the lemma, we use Dynkin’s π-λ theorem. Let us first construct the appropriate

λ and π-systems. For any P ∈P, define

ΛP =

{
B ∈B :

∫
B

fdP =

∫
B

EP [f |F1]dP =

∫
B

EP [f |F2]dP

}
.
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We first verify that for any P ∈P, the set ΛP is a λ-system of subsets of X. (i) By the law of total

expectation X ∈ΛP . (ii) Let Bc denote the complement of B in X. If B ∈ΛP , then∫
Bc
fdP =

∫
X

fdP −
∫
B

fdP =

∫
X

EP [f |F1]dP −
∫
B

EP [f |F1]dP =

∫
Bc
EP [f |F1]dP.

We also have a similar equality for F2. Therefore, Bc ∈ ΛP . (iii) If B1,B2, . . . is a sequence of

subsets of X in ΛP such that Bi ∩Bj = ∅ for all i 6= j, then by the countable additivity of the

integral, ∫
∪∞i=1B

fdP =
∞∑
i=1

∫
Bi

fdP =
∞∑
i=1

∫
Bi

EP [f |F1]dP =

∫
∪∞i=1B

EP [f |F1]dP.

We also have a similar equality for F2. Therefore, ∪∞i=1Bi ∈ΛP . This proves that ΛP is a λ-system.

Consider next the set Π defined as

Π = {A1 ∩A2 :A1 ∈F1,A2 ∈F2} .

F1 and F2 are σ-algebras; thus, Π is nonemepty and closed under intersections. This proves that

Π is indeed a π-system of subsets of X. It is also easy to verify that σ(Π) = σ(F1 ∪F2) =F .

Define the set R⊇Q as

R =
{
P ∈P :EP [f |F1] =EP [f |F2]

}
.

We consider the following two cases: If R is nowhere dense in P, then Q is nowhere dense in P,

and we have the desired result. If, on the other hand, R is not nowhere dense in P, then it must be

somewhere dense in it. Let U be the collection of all open subsets u of P, such that there exists no

nonempty open set v contained in u such that v and R are disjoint. We prove that Q is nowhere

dense in R by showing that any such u contains an open subset that is disjoint from Q. Let u be

an arbitrary set in U , and let bε be an open ball of radius ε in the interior of u. In what follows, we

first show that for every Q ∈ bε, we have Π⊆ΛQ. Let A1 ∈F1 and A2 ∈F2 be arbitrary sets with

C =A1 ∩A2. Since A1 ∈F1, by the definition of conditional expectation, for all Q∈ bε,∫
A1

fdQ=

∫
A1

EQ[f |F1]dQ.

Therefore, ∫
A1\C

fdQ+

∫
C

fdQ=

∫
A1\C

EQ[f |F1]dQ+

∫
C

EQ[f |F1]dQ. (11)

On the other hand, since R is dense in bε, for any Q∈ bε, there exists a sequence {Qk}k∈N such that

Qk ∈ bε ∩R for all k, and Qk converges in the total variation distance to Q. Therefore, EQk [f |F1]

converges in Q-probability to EQ[f |F1].14 Therefore, since f is bounded and Qk converges in total

variation distance to Q, ∫
A2

EQk [f |F1]dQk −→
∫
A2

EQ[f |F1]dQ, (12)
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and ∫
A2

fdQk −→
∫
A2

fdQ. (13)

Moreover, for all k, ∫
A2

fdQk =

∫
A2

EQk [f |F2]dQk =

∫
A2

EQk [f |F1]dQk, (14)

where the first equality is by the definition of conditional expectation and the assumption that

A2 ∈ F2, and the second equality is a consequence of the fact that Qk ∈R. Equations (12)–(14)

imply that ∫
A2

fdQ=

∫
A2

EQ[f |F1]dQ.

And hence, ∫
A2\C

fdQ+

∫
C

fdQ=

∫
A2\C

EQ[f |F1]dQ+

∫
C

EQ[f |F1]dQ. (15)

We use (11) and (15) to conclude that
∫
C
fdQ=

∫
C
EQ[f |F1]dQ for all Q∈ bε. Pick some arbitrary

Q ∈ bε. If Q(A1) = 0 or Q(A1) = 1, by boundedness of f we are done. If 0 < Q(A1) < 1, for any

δ ∈ (0,1) construct the measure Q̂δ over (X,B) as follows: for any B ∈B,

Q̂δ(B) = (1 + δQ(Ac1))Q(B ∩A1) + (1− δQ(A1))Q(B ∩Ac1).

It is easy to verify that Q̂δ is indeed a probability measure. We next show that EQ̂δ [f |F1] =

EQ[f |F1]. Let B ∈F1 be arbitrary.∫
B

fdQ̂δ =

∫
B∩A1

fdQ̂δ +

∫
B∩Ac1

fdQ̂δ

= (1 + δQ(Ac1))

∫
B∩A1

fdQ+ (1− δQ(A1))

∫
B∩Ac1

fdQ

= (1 + δQ(Ac1))

∫
B∩A1

EQ[f |F1]dQ+ (1− δQ(A1))

∫
B∩Ac1

EQ[f |F1]dQ

=

∫
B∩A1

EQ[f |F1]dQ̂δ +

∫
B∩Ac1

EQ[f |F1]dQ̂δ

=

∫
B

EQ[f |F1]dQ̂δ, (16)

where the third equality follows from the assumption that EQ[f |F1] is a conditional expectation

of f given F1 and the fact that B ∩A1 ∈ F1 and B ∩Ac1 ∈ F1. Since EQ[f |F1] is F1-measurable,

equation (16) proves that EQ[f |F1] is a version of EQ̂δ [f |F1]. Let B1 = A1 \C and B2 = A2 \C.

Equations (11) and (15) imply that∫
B1

[f −EQ[f |F1]]dQ=

∫
B2

[f −EQ[f |F1]]dQ. (17)
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Since B1 ∩A1 =B1,∫
B1

[
f −EQ̂δ [f |F1]

]
dQ̂δ = (1 + δQ(Ac1))

∫
B1

[f −EQ[f |F1]]dQ. (18)

Likewise, since B2 ∩Ac1 =B2,∫
B2

[
f −EQ̂δ [f |F1]

]
dQ̂δ = (1− δQ(A1))

∫
B2

[f −EQ[f |F1]]dQ. (19)

On the other hand, if δ is sufficiently small, Q̂δ ∈ bε. Therefore, by (11) and (15),∫
B1

[
f −EQ̂δ [f |F1]

]
dQ̂δ =

∫
B2

[
f −EQ̂δ [f |F1]

]
dQ̂δ. (20)

Equations (17)–(20) imply that∫
B1

[f −EQ[f |F1]]dQ=

∫
B2

[f −EQ[f |F1]]dQ= 0. (21)

Thus, by (11), ∫
C

fdQ=

∫
C

EQ[f |F1]dQ.

A similar argument shows that for all Q∈ bε,∫
C

fdQ=

∫
C

EQ[f |F2]dQ,

Therefore, A1 ∩A2 ∈ΛQ for every Q∈ bε. Since A1 and A2 were arbitrary, this shows that Π∈ΛQ

for all Q ∈ bε. Therefore, by the Dynkin’s π-λ theorem, σ(Π) =F ⊆ΛQ for Q ∈ bε; that is, for any

A∈F , ∫
A

fdQ=

∫
A

EP [f |F1]dQ=

∫
A

EP [f |F2]dQ.

Together with the fact that EQ[f |F1] and EQ[f |F2] are both measurable with respect to F , this

shows that EQ[f |F ] =EQ[f |F1] =EQ[f |F2] for all Q∈ bε. Thus, bε and Q are disjoint. Recall that

the set u∈ U was arbitrary. Therefore, for any set u in U , there exists some v contained in u such

that v and Q are disjoint. This shows that Q is nowhere dense in P. �

7.6.1. Proof of Theorem 2. By the definition of θ̄ki∞ and equation (7),

σi∞ = (1−λ)
∞∑
k=1

λk−1θ̄ki∞

= (1−λ)E [θ|Hσi∞] + (1−λ)λ
∞∑
k=1

λk−1
∑
j 6=i

E
[
θ̄kj∞
∣∣Hσ

i∞
]
/(n− 1)

= (1−λ)E [θ|Hσi∞] +λ
∑
j 6=i

E

[
(1−λ)

∞∑
k=1

λk−1θ̄kj∞

∣∣∣∣Hσ
i∞

]
/(n− 1)

= (1−λ)E [θ|Hσ
i∞] +λ

∑
j 6=i

E [σj∞|Hσi∞]/(n− 1),
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where in the second line the order of integrals are changed using Fubini’s theorem and the fact

that by compactness of Θ the sums are finite. By Theorem 3, σi∞ = σj∞, P-a.s., for all i, j ∈N .

Therefore, the above equation implies that

σi∞ =E [θ|Hσi∞] ,

and so

E [θ|Hσi∞] =E
[
θ|Hσj∞

]
, ∀i, j ∈N.

Let S be the smallest sub sigma-algebra of B that makes s= (s1, . . . , sn) measurable. By Lemma 1,

for any sub sigma-algebras S1, S2 of S, the set

M(S1,S2) =
{
P ∈P :EP [θ|S1] =EP [θ|S2] 6=EP [θ|S1 ∨S2]

}
is nowhere dense in (P, d). Since S is finite, it has only a finite number of sub sigma-algebras.

Therefore, the set

M =
{
P ∈P :EP [θ|S1] =EP [θ|S2] 6=EP [θ|S1 ∨S2] for some S1,S2 ⊆S

}
is also nowhere dense in (P, d). Let Hσ

ij∞ = Hσ
i∞ ∨ Hσ

j∞. Since the information available to the

players in any stage of the game is no more than the information contained in their private signals,

Hσ
i∞ ⊆S for all i and σ. Thus, the set

Nij =
{
P ∈P :EP [θ|Hσi∞] =EP [θ|Hσ

j∞] 6=EP [θ|Hσij∞] for some σ
}

is also nowhere dense in (P, d). On the other hand, we showed above that EP

[
θ|HσP

i∞

]
=EP

[
θ|HσPj∞

]
for all P ∈P. Therefore, for P in a residual subset of P, EP

[
θ|HσP

i∞

]
=EP

[
θ|HσPij∞

]
. By a similar

argument, for P in a residual subset of P, EP

[
θ|HσPi∞

]
= EP

[
θ|HσP

ijk∞

]
, where Hσ

ijk∞ =Hσ
ij ∨Hσk .

More generally, for P in a residual subset of P, EP

[
θ|HσPi∞

]
=EP

[
θ|HσP

∞

]
for all i. This conclusion,

together with Theorem 3 and the argument in the first paragraph of this proof, completes the proof

of the theorem.

8. Conclusion

This paper studies a dynamic game in which a number of short-run players repeatedly play a

symmetric strictly supermodular game of incomplete information. Each short-run player inherits

the beliefs of a player playing in the previous stage while also observing the last stage actions

of the players in his social neighborhood. Each player’s actions reveal information used by other

players to revise their beliefs, and hence, their actions. We prove formal results regarding the

asymptotic outcomes obtained when agents play the actions prescribed by the Markov Perfect
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Bayesian Equilibrium. In particular, we show that players reach consensus in their actions and

payoffs if the observation network is connected. We also show that, when the utility functions are

quadratic, the consensus action is generically optimal. We also provide extensions of our consensus

result to a setting with time-varying and random networks and endogenously generated signals and

illustrate the logic of our results through examples. Finally, we provide examples of games used in

engineering and economics to which our results apply.

The players in this paper are assumed to be short-run and hence myopic. However, we expect our

results to generalize to the case of forward-looking agents if attention is restricted to Markovian

strategies. In symmetric supermodular games, the players’ interests are fully aligned and so they

benefit from sharing the information available to them with the rest of the population. But short-

run players cannot capture any of the benefits of sharing their information. Nonetheless, as our

results demonstrate, consensus and information aggregation are eventually obtained. With forward-

looking agents, the players’ incentive to inform their peers provide an additional force that makes

consensus and information aggregation, if anything, more likely. We intend to investigate this

direction in future research.

Endnotes

1. Strategic interactions in which players want to coordinate their actions are best modeled by

supermodular games in which the players’ actions are strategic complements. Supermodular games

have a deep and interesting theory that has been developed, among others, by Milgrom and Roberts

(1990), Topkis (1998), Van Zandt and Vives (2007), and Van Zandt (2010). For an excellent survey

of some of the theory and applications of supermodular games see Vives (2005).

2. Since the players are short-lived, the set of equilibrium outcomes generated by pure MPBEs

coincides with the set of outcomes generated by pure Perfect Bayesian Equilibria (PBE). However,

even with myopic players, the set of mixed-strategy MPBEs could be strictly smaller than the set

of mixed-strategy PBEs since conditioning on history provides the players with more oppurtunities

to coordinate their actions.

3. The Imitation Principle was first introduced by Gale and Kariv (2003) in a social learning

model without strategic interactions.

4. See for instance, Morris and Shin (2002) and Angeletos and Pavan (2007, 2009), in which the

authors study the role of the provision of public information on social welfare, and Calvó-Armengol

and Beltran (2009) and Bramoullé, Kranton, and D’Amours (2014), in which equilibria of general

quadratic network games are analyzed.

5. If f is twice differentiable, strict supermodularity is equivalent to requiring that ∂2f/∂xi∂xj > 0

for all 1≤ i < j ≤ n. For more on the theory of supermodular games and their applications in game

theory and economics, see Topkis (1998).
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6. If λ≥ 1, the game can have multiple equilibria. Yet, it still belongs to the class of symmetric

strictly supermodular games, and so by Theorem 1 and Corollary 1, players asymptotically reach

consensus in their actions and payoffs.

7. We show that indeed the game can be solved by the iterated elimination of dominated strategies.

The iterative elimination is a process which models the thinking process of rational player it where

it recursively refines his belief on the actions that other players could take given the assumption

that they are also rational. For the current model, this iterative elimination eventually leads to a

single strategy profile being selected.

8. Given a topological space X, a subset A of X is a first category or meager set if it can be

expressed as the union of countably many nowhere dense subsets of X. The complement of a first

category set is called a residual set.

9. Given measurable spaces (X,X ) and (Y,Y), a function f :X ×Y → [0,1] is called a transition

probability from X to Y if (i) for any given x∈X, f(x)[·] is a probability distribution over (Y,Y);

and (ii) given any measurable set B ∈Y, the function x 7→ f(x)[B] is measurable.

10. See for instance Theorem 49 in Chapter 4 of Pollard (2002).

11. The diameter of a directed network is defined as maxi,j `(i, j), where `(i, j) is the length of the

shortest directed path starting from i and ending at j.

12. For a recursive characterization of the players’ equilibrium actions in the Bayesian quadratic

network games similar to the one studied in Example 3, see the complementary paper by the

authors (Eksin et al. (2014)).

13. The notion of rationalizability we use is that of Interim Correlated Rationalizability (ICR)

introduced by Dekel et al. (2007).

14. This follows a result of Landers and Rogge (1976) (cf. Theorem 3.3. of Crimaldi and Pratelli

(2005)).
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