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Abstract—Consider a convex set of which we remove an
arbitrarily number of disjoints convex sets – the obstacles. In this
work we design a controller that ensures the goal of navigating in
such a set from almost every initial position to the minimum of
an unknown convex function. An artificial potential is proposed
and we show that – under some restrictions over the size of
the obstacles and its distance to the minimum of the objective
function – is a navigation function. A gradient descent flow
of this function ensures convergence to the minimum of the
objective function for a set of initial position whose measure
is one. The gradient controller uses only local information of the
objective function – its value at a given point and its gradient.
This controller pushes the agent along a linear combination of
the gradient of the objective function and a direction pointing
away from the obstacles. The weights of this linear combination
are such that when we are away of the obstacles the dominant
direction is the one of the gradient of the objective function.
On the contrary, when we are close to an obstacle the repellent
direction dominates, hence ensuring the avoidance of the obsta-
cles. Numerical examples show that this controller achieves the
minimum of the objective function without hitting any obstacle.

I. INTRODUCTION

Consider a robot that must climb a hill while avoiding
the trees on his way. The agent does not know where the
location of the top of the hill is, however if he keeps moving
in an ascending direction it will achieve the maximum. This
observation suggest the use of a gradient controller to solve the
problem. Yet, the ascent direction could be directed precisely
to one of the trees causing that the robot crashes. Therefore,
a modification to the classical gradient controller must be in-
cluded to attain the top of the hill and avoid the obstacles. This
paper shows that under some restrictions on the environment
– the distribution of the trees on the hill – a gradient controller
based on a navigation function, constructed similarly as in [1]
achieves the goal of climbing the hill without encountering
any obstacle.

More generically, we consider an agent that its trying
to attain the minimum (maximum) of a convex (concave)
function – the height profile of the hill– over a set that contains
forbidden convex regions – the trees. We aim to construct
an artificial potential based on the position of the obstacles
and the objective function of interest such that for almost
every initial condition we converge to the desired minimum
(maximum). In order to succeed we need that the minimum
of the artificial potential coincides with the minimum of the
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function that we are minimizing and its maximum must be
in the boundary of the forbidden regions, so that a gradient
descent controller never reaches these points. In addition it is
necessary that the artificial potential does not have any other
local minima than the minimum of the objective function.
Otherwise for some initial positions the trajectory would be
attracted to those other critical points.

Navigation functions and artificial potentials have been
widely used to address the path planning problem to achieve a
desired configuration, see e.g. [1]–[7]. One of the advantages
of this approach is that it provides a minimal energy trajectory
as discussed in [8]. In particular in [1] the problem was solved
when obstacles are spheres and an extension to star shaped
obstacles has been made in [2]. In this constructions, the
complete knowledge of the obstacles is assumed, further works
relaxed this hypothesis [9]–[12]. The navigation function
framework provide as well a manner to handle multi agent path
planning problems [13]–[15]. The interest of using navigation
functions is that the path planning problem is jointly solved
with the problem of following the planned trajectory, hence the
problem can be solved by a low level controller as opposed to
other motion planning techniques as cell decomposition [16]–
[21]. On the other hand the latter algorithms provide a collision
free curve on the free space. Once such a trajectory is com-
puted, the torques needed to follow the curve are computed
by the inverse dynamics technique [22], [23]. However, while
designing the curve, the robot’s dynamics constraints are not
taken into account, hence it is not guaranteed that the trajectory
builded using this approach is feasible. Furthermore, inverse
techniques rely on the cancelation of some of the terms present
in the dynamic of the robot. However, this is not possible to
achieve exactly.

In the navigation function approach a goal position –or
configuration– must be specified. However if the desired goal
is unknown – as in the problem of climbing a hill– this
approach is not suitable. Convergence to the minimum of a
function can be ensured using a gradient descent controller
of the objective function see e.g. [24]. This approach and
variations has been used in extremum seeking controllers in
[25]–[27]. However in this cases the problem of avoiding
obstacles has not been considered or it has been solved using
an addition controller specifically to that task, see e.g. [28].

The novelty of this work is to design a controller that
allows the robot to achieve the minimum of an unknown con-
vex function using only its local information while avoiding
obstacles in the configuration space. We build an artificial
potential following the ideas in [1] and we show that under
some restrictions regarding the eigenvalues of the Hessian of



the objective function and the geometry of the free space this
potential is a navigation function (Theorems 2 and 3 in Section
III). The particular form of the navigation function is such
that its gradient is a linear combination of the gradient of the
objective function and a repelling field from the obstacles.
In addition the weights of this linear combination are such
that when the agent is away of the obstacles the dominant
direction is the one of the gradient of the objective function.
Hence the controller behaves away of the obstacles as if it was
a pure gradient descent on the objective function. As we get
close to the obstacles the repellent field coefficient becomes
dominant and the direction of the gradient of the navigation
function coincides with the repellent direction. Hence ensuring
the avoidance of the obstacles.

II. PROBLEM FORMULATION

We are interested in navigating a punctured space while
reaching a target point defined as the minimum of a convex
potential function. Formally, let X ∈ Rn be a non empty
compact convex set and let f0 : X → R+ be a convex function
whose minimum is the agent’s goal. Further consider a set of
obstacles Oi ⊂ X with i = 1 . . .m which are assumed to be
open convex sets with nonempty interior and smooth boundary
∂Oi. The free space, representing the set of points accessible
to the agent, is then given by the set difference between the
space X and the union of the obstacles Oi,

F = X \
m⋃
i=1

Oi. (1)

The free space in (1) represents a convex set with convex
holes; see, e.g., figures 4 and 6. We assume here that the
optimal point is in the interior int(F) of free space.

Further let t ∈ [0,∞) denote a time index and let
x∗ be the minimum of the objective function, i.e. x∗ :=
argminx∈Rn f0(x). Then, the navigation problem of interest
is to generate a trajectory x(t) that stays in the free space at
all times and reaches x∗ at least asymptotically,

x(t) ∈ F , ∀t ∈ [0,∞), and lim
t→∞

x(t) = x∗. (2)

In the canonical problem of navigating a convex objective
defined over a convex set with a fully controllable agent,
convergence to the optimal point as in (2) can be assured by
defining a trajectory that varies along the negative gradient of
the objective function,

ẋ = −∇f0(x). (3)

In a space with convex holes, however, the trajectories arising
from the dynamical system defined by (3) satisfy the second
goal in (2) but not the first because they are not guaranteed
to avoid the obstacles. We aim here to build an alternative
function ϕ such that the trajectory defined by the negative
gradient of ϕ satisfies both conditions. In order to achieve
this goal, the function ϕ must be a navigation function whose
formal definition we introduce next [1].

Definition 1 (Navigation Function). Let F ⊂ Rn be a
compact connected analytic manifold with boundary. A map
ϕ : F → [0, 1], is a navigation function in F if:

Differentiable. It is twice continuously differentiable in F .

Polar at x∗. It has a unique minimum at x∗ which belongs
to the interior of the free space, i.e., x∗ ∈ int(F).

Morse. It has non degenerate critical points on F .

Admissible. All boundary components have the same maxi-
mal height, namely ∂F = ϕ−1(1).

The properties of navigation functions in Definition 1 are
such that the controller ẋ = −∇ϕ(x) that follows the gradient
of ϕ generates a trajectory that satisfies (2) for almost all initial
conditions. To see this observe that, generically, the trajectories
arising from gradient flows of a function ϕ, converge to one of
its critical points and that the value of the function evaluated
on the trajectory is monotonically decreasing,

ϕ(x(t1)) ≥ ϕ(x(t2)), for any t1 < t2. (4)

Admissibility, combined with the observation in (4), ensures
that every trajectory whose initial condition is in the free space
remains on free space for all future times, thus satisfying the
first condition in (2). For the second condition observe that,
as per (4), the only trajectory that can have as a limit set a
maximum, is a trajectory starting at the maximum itself. This
is a set of zero measure if the function satisfies the Morse
property. Furthermore, if the function is Morse, the set of
initial conditions that have a saddle point as a limit is the
stable manifold of the saddle which can be shown to have
zero measure as well. It follows that the set of initial conditions
for which the trajectories of the system converge to the local
minima of ϕ has measure one. If the function is polar, this
minimum is x∗ and the second condition in (2) is thereby
satisfied. We formally state this result in the next Theorem.

Theorem 1. Let ϕ be a navigation function on F as per
Definition 1. Then, the flow given by the gradient control law

ẋ = −∇ϕ(x), (5)

has the following properties:
(i) F is a positive invariant set of the flow.
(ii) The positive limit set of F consists of the critical

points of ϕ.
(iii) There is a set of measure one, F̃ ⊂ F , whose limit

set consists of x∗.

Proof. See Proposition 2.4 [1]. �

Theorem 1 implies that if ϕ is a navigation function as de-
fined in 1, the trajectories defined by (5) are such that x(t) ∈ F
for all t ∈ [0,∞) and that the limit of x(t) is the minimum
x∗ for almost every initial condition. This means that (2) is
satisfied for almost all initial conditions. We can therefore
recast the original problem (2) as the problem of finding a
navigation function ϕ. Observe that Theorem 1 guarantees that
a navigation function can be used to drive a fully controllable
agent [cf. (5)]. However, navigation functions can also be used
to drive agents with nontrivial dynamics; see Remark 1.

To construct a navigation function ϕ it is convenient to
provide a functional characterization of free space. To that



end, consider the space X and let β0 : Rn → R be a twice
continuously differentiable concave function such that

X =
{
x ∈ Rn

∣∣β0(x) ≥ 0
}
. (6)

Since the function β0 is assumed concave its super level
sets are convex. Since the set X is also convex a function
satisfying (6) can always be found. The border ∂X , which
is given by the set of points for which β0(x) = 0, is called
the external boundary of free space. Further consider the m
obstacles Oi and define m twice continuously differentiable
convex functions βi : Rn → R for i = 1 . . .m. The function
βi is associated with obstacle Oi and satisfies

Oi =
{
x ∈ Rn

∣∣βi(x) < 0
}
. (7)

Functions βi exist because the sets Oi are convex and the
sublevel sets of convex functions are convex.

Given the definitions of the βi functions in (6) and (7), the
free space F can be written as the set of points at which
all of these functions are nonnegative. For a more succinct
characterization, define the function β : Rn → R as the
product of the m+ 1 functions βi,

β(x) =

m∏
i=0

βi(x). (8)

If the obstacles do not intersect, the function β(x) is nonneg-
ative if and only if all of the functions βi(x) are nonnegative.
This means that x ∈ F is equivalent to β(x) ≥ 0 and that we
can then define the free space as the set of points for which
β(x) is nonnegative – when objects are nonintersecting. We
state this assumption and definition formally in the following.

Assumption 1 (Objects do not intersect). Let x ∈ Rn. If
for some i we have that βi(x) ≤ 0, then βj(x) > 0 for all
j = 0 . . .m with j 6= i.

Definition 2 (Free space). The free space is the set of points
x ∈ F ⊂ Rn where the function β in (8) is nonnegative,

F = {x ∈ Rn : β(x) ≥ 0} . (9)

Observe that we have assumed that the optimal point
x∗ is in the interior of free space. We have also assumed
that the objective function f0 is strongly convex and twice
continuously differentiable and that the same is true of the
obstacle functions βi. We state these assumptions formally
for future reference.

Assumption 2. The objective function f0, the obstacle func-
tions βi and the free space F are such that:

Optimal point. The minimum x∗ of the objective function f0
is in the interior of the free space,

x∗ ∈ int(F). (10)

Twice differential strongly convex objective The function
f0 is twice continuously differentiable and strongly convex
in X . The eigenvalues of the Hessian ∇2f0(x) are therefore
contained in the interval [λmin, λmax] with 0 < λmin. In
particular, strong convexity implies that for all x, y ∈ X ,

f0(y) ≥ f0(x) +∇f0(x)T (y − x) +
λmin

2
‖x− y‖2, (11)

and, equivalently,

(∇f0(y)−∇f0(x))
T

(y − x) ≥ λmin‖x− y‖2. (12)

Twice differential strongly convex obstacles The obstacle
function βi is twice continuously differentiable and strongly
convex in X . The eigenvalues of the Hessian ∇2βi(x) are
therefore contained in the interval [µimin, µ

i
max] with 0 <

µimin.

The goal of this paper is to find a navigation function for
the free space F that has the form of Definition 2 when
assumptions 1 and 2 hold. Finding this navigation function is
equivalent to attaining the goal in (2) for almost all possible
initial conditions. We show that this is possible when the
minimum of the objective function takes the value zero. In
other cases convergence to a point that can be placed arbitrarily
close to x∗ is achieved. In the next section we propose a
candidate for a navigation function and we derive conditions
to guarantee that it is an actual navigation function. We do so
after a pertinent remark.

Remark 1 (System with dynamics). If the system is fully
controllable, the dynamics in (5) can be imposed and problem
(2) be solved by a navigation function. If the system has
nontrivial dynamics, a minor modification can be used [29].
Indeed, let M(x) be the inertia matrix of the agent, g(x, ẋ)
and h(x) be fictitious and gravitational forces, and τ(x, ẋ) the
torque control input. The agent’s dynamics can then be written
as

M(x)ẍ+ g(x, ẋ) + h(x) = τ(x, ẋ). (13)

The model in (13) is of control inputs that generate a torque
τ(x, ẋ) that acts through the inertia M(x) in the presence
of the external forces g(x, ẋ) and h(x). Let d(x, ẋ) be a
dissipative field – satisfying ẋT d(x, ẋ) < 0 – then, by selecting
the torque input

τ(x, ẋ) = −∇ϕ(x) + d(x, ẋ), (14)

the behavior of the agent converges asymptotically to the
gradient controller (5). In particualr, the goal in (2) is achieved.

III. NAVIGATION FUNCTION

Following the development in [1] we introduce an order
parameter k > 0 and define the function ϕk as

ϕk(x) =
f0(x)(

fk0 (x) + β(x)
)1/k . (15)

In this section we state conditions such that for large enough
order parameter k, the artificial potential (15) is a naviga-
tion function in the sense of Definition 1. These conditions
relate the bounds on the eigenvalues of the Hessian of the
objective function λmin and λmax as well as the bounds on
the eigenvalues of the Hessian of the obstacle functions µimin

and µimax with the size of the objects and their distance to the
minimum of the objective function x∗. The first result concerns
the general case where obstacles are defined through general
convex functions.



Theorem 2. Let F be the free space defined in (9) verifying
Assumption 1 and let ϕk : F → [0, 1] be the function defined
in (15). Let λmax, λmin and µimin be the bounds in Assumption
1. Further let the following condition hold for all i = 1 . . .m
and for all xs in the boundary of Oi

λmax

λmin

∇βi(xs)T (xs − x∗)
‖xs − x∗‖2

< µimin. (16)

Then, there exists a constant K such that if k > K, the
function ϕk in (15) is a navigation function with minimum
at x∗ if f0(x∗) = 0 and with minimum arbitrarily close to x∗

if f0(x∗) 6= 0.

Theorem 2 establishes a condition [cf. (16)] on the obstacles
and objective function for which ϕk is guaranteed to be a nav-
igation function for sufficiently large order k. The condition
has to be satisfied at all the points that lie in the border of
an obstacle. The condition in (16) is not difficult to check
numerically, but we are more interested in its interpretation
that its use in practice. Observe first that, generically, (16) is
easier to satisfy when the ratio λmax/λmin is small and when
the minimum eigenvalue µimin is large. The first condition
means that we want the objective to be as close to spherical
as possible and the second condition that we don’t want the
obstacle to be too flat. Further note that the left hand side
of (16) is negative if ∇βi(xs) and xs − x∗ point in opposite
directions. This means that the condition can be violated only
by points in the border that are “behind” the obstacle as seen
from the minimum point. For these points the worst possible
situation is when the gradient at the border point xs is aligned
with the line that goes from that point to the minimum x∗.
In that case we want the gradient ∇βi(xs) and the ratio
(xs − x∗)/‖xs − x∗‖2 to be small. The gradient ∇βi(xs)
being small means that we don’t want the obstacle to have
sharp curvature and the ratio (xs−x∗)/‖xs−x∗‖2 being small
means that we don’t want the destination x∗ to be too close
to the border. In summary, the simplest navigation problems
have objectives and obstacles close to spherical and minima
that are not close to the border of the obstacles.

The insights described above notwithstanding, a limitation
of Theorem 2 is that it does not provide a simple way to
determine if it is possible to build a navigation function with
the form in (15) for a given space and objective. In the
following section we consider ellipsoidal obstacles and derive
a condition that is easy to check and not too restrictive.

A. Ellipsoidal obstacles
Considering the particular case where the obstacles are

ellipsoids. Let Ai ∈ Mn×n, with i = 1 . . .m, be symmetric
positive definite matrices. Let xi and ri be the center and the
length of the largest axis of each one of the obstacles Oi.
Then, for each i = 1 . . .m we define βi(x) to be

βi(x) = (x− xi)T Ai (x− xi)− µiminr
2
i , (17)

The obstacle Oi is defined as those points in Rn where βi(x)
is not positive. In particular for βi(x) = 0, the boundary of
the obstacle, we have that

1

µimin

(x− xi)T Ai (x− xi) = r2i , (18)

which defines an ellipsoid whose largest axis has length ri. For
the geometry here considered, Theorem 2 takes the following
form.

Theorem 3. Let F be the free space defined in (9) verifying
Assumption 1, and let ϕk : F → [0, 1] be the function defined
in (15). Let λmax, λmin, µimax and µimin be the bounds from
Assumption 2. Let βi take the form of (17) and let Let the
following inequality hold for all i = 1..m

λmax

λmin

µimax

µimin

< 1 +
di
ri
, (19)

where di = ‖xi − x∗‖ . Then there exists a constant K such
that if k > K, then ϕk is a navigation function with minimum
at x∗ if f0(x∗) = 0 and with minimum arbitrarily close to x∗

if f0(x∗) 6= 0.

Proof. See Appendix C. �

Condition (19) gives a simple form of evaluating if it
is possible to build a navigation function by increasing the
parameter k in (15). The more eccentric the obstacles and the
level sets of the objective function are, the larger becomes
the left hand side of (19). In particular, for a flat obstacle
– understood as an ellipses having its minimum eigenvalue
equal to zero– the considered condition is impossible to satisfy.
Notice that this is consistent with the conclusion obtained from
Theorem 2. On the other hand, the density of obstacles plays
a role. By increasing the distance between the center of the
obstacles and the objective, di – or by decreasing the size of
the obstacles, ri – we decrease the density of obstacles in the
space. This increases the right hand side of (19), therfeore
making it easier to navigate the environment.

Let vmin be the eigenvector associated to the eigenvalue
λmin. For any situation in which vmin is aligned with the
direction xi − x∗, then if condition (19) is violated with
equality the artificial potential in (15) fails to be a navigation
function. In this sense, we can say that condition (19) is tight.
This is no longer the case if these directions are not aligned.
We present the next simulation as an illustration of the above
discussion. Consider the following example in R2 with only
one circular obstacle of radius 2 and objective function given
by

f0(x) = xT
(

1 0
0 λmax

)
x, (20)

For this example, the minimum of the objective function is
attained at the origin and the left hand side of (19) takes value
λmax. For the first two simulations we consider the case in
which the direction xi − x∗ is aligned with the direction of
the eigenvector associated with the smallest eigenvalue of the
objective function. With this purpose we place the center of
the obstacle in the horizontal axis, in particular at (−4, 0).
The right hand side of (19) takes therefore the value 3. In
the simulation depicted in Figure 1, λmax is set to be three,
therefore violating condition (19). As it can be observed a
local minimum other than x∗ appears to the left of the obstacle
to which the trajectory converges. Thus, the potential defined
in (15) fails to be a navigation function. If λmax = 2 as in
the simulation depicted in Figure 2 then the convergence to
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Fig. 1: ϕk fails to be a navigation function when the left and right
hand sides of (19) are equal. Observe the presence of a local minimum
different than the minimum of f0 to which the trajectory is attracted.
The experiment was performed with k = 10.
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Fig. 2: When (19) is satisfied ϕk is a navigation function and the
trajectory arising from the negative gradient flow converges to the
minimum of f0. The local minimum to the left of the obstacle in
Figure 1 vanishes. The experiment was performed with k = 10.

the origin is achieved. In Figure 3 we observe an example
in which the trajectory converges to x∗ and condition (19)
is violated at the same time. Here, the center of the obstacle
is placed at (0,−4), and therefore the direction xi − x∗ is
no longer aligned with the direction of the eigenvalue of the
Hessian of the objective function associated to the minimum
eigenvalue. Hence showing that condition (19) is loose when
those directions are not collinear.

Notice that the problem of navigating a spherical world
to reach a desired destination x∗ [1] can be understood as
particular case where the objective function takes the form
‖x − x∗‖2 and the obstacles are spheres. In this case ϕk
is a navigation function for some large enough k for every
valid world (satisfying Assumption 1), irrespectively of the
size and placement of the obstacles. This result can be derived
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Fig. 3: Condition (19) is violated, however ϕk is a navigation
function. We do not observe a local minimum on the side of the
obstacle that is opposed to the minimum of f0 as we do in Figure
1. The latter is because the direction given by the center of the
obstacle and x∗ is not aligned with the direction corresponding to
the maximum eigenvalue of the Hessian of f0.

as a corollary of Theorem 3 by showing that condition (19) is
always satisfied in the setting of [1].

Corollary 1. Let F be a compact connected analytic manifold
with boundary as defined in (9) and let ϕk : F → [0, 1] be
the function defined in (15). Let F verify Assumption 1 and
let f0(x) = ‖x− x∗‖2. Let the obstacles be hyper spheres of
centers xi and radii ri for all i = 1..m. Then there exists a
constant K such that if k in (15) is larger than K, then ϕk
is a navigation function.

Proof. Since spherical obstacles are a particular case of ellip-
soids the hypothesis of Theorem 3 are satisfied. To show that
ϕk is a navigation function we need to show that condition (19)
is satisfied. For this obstacle geometry we have µimin = µimax

for all i = 1 . . .m. On the other hand, the Hessian of the
function f0(x) = ‖x − x∗‖2 is given by ∇2f0(x) = 2I ,
where I is the n × n identity. Thus, all its eigenvalues are
equal. This implies that the left hand side of (19) takes the
value one. On the other hand, since di and ri are positive
quantities the right hand side of (19) is strictly larger than one.
Hence the condition is always satisfied and therefore ϕk(x) is
a navigation function for some large enough k. �

IV. PROOF OF THEOREM 2

In this section we show that ϕk, defined in (15) is a navi-
gation function if the hypotheses of Theorem 2 are satisfied.
To do so, we show that each one of the properties defining a
navigation function are satisfied.

A. Twice Differentiability and Admissibility

The following lemma shows that the artificial potential (15)
is twice differentiable and admissible.



Lemma 1 (Differentiability and admissibility). Let F be a
compact connected analytic manifold with boundary as defined
in (9) and let ϕk : F → [0, 1] be the function defined in (15).
Then, ϕk is admissible and twice continuously differentiable
on F .

Proof. Let us start by showing that ϕk is twice differentiable.
Recall that both f0 and β are twice differentiable functions
(c.f Assumption 2). Since the optimum of f0 is not on the
boundary of F and f0 is nonnegative (c.f Assumption 2),
for all x ∈ F , we have fk0 (x) + β(x) > 0. Therefore(
fk0 (x) + β(x)

)−1/k
is twice differentiable. Hence ϕk is twice

differentiable since it is the product of twice differentiable
functions. We show next that ϕk is admissible. For every
x ∈ int(F) we have that β(x) > 0, thus ϕk(x) < 1. On
the other hand, if x ∈ ∂F we have that β(x) = 0, hence
ϕk(x) = 1. This means that the pre image of 1 by ϕk is the
boundary of the free space. Which completes the proof. �

B. ϕk is polar on F
In this section we show that the function ϕk defined in (15)

is polar on the free space F defined in (9). Furthermore we
show that if f0(x∗) = 0, then its minimum coincides with
the minimum of f0. If this is not the case, then the minimum
of ϕk(x) can be placed arbitrarily close to x∗ by increasing
the order parameter k. To do so, we first show that x∗ – or
the critical point arbitrarily close to x∗ – is a non degenerate
minimum of the function ϕk on F and then we show that
none of the other critical points of ϕk(x) are minima.

Lemma 2. Let F be the free space defined in (9) verifying
Assumption 1 and let ϕk : F → [0, 1] be the function defined
in (15). If f0(x∗) = 0, then x∗ is a non degenerate minimum
of ϕk. If f0(x∗) 6= 0, then for every ε > 0 there exists K such
that for k > K, ϕk has a non degenerate minimum xc such
that ‖xc − x∗‖ < ε.

Proof. Let us compute the gradient of ϕk and then evaluate
it at x∗. For any x ∈ F the gradient of ϕk is given by

∇ϕk(x) =
(
fk0 (x) + β(x)

)−1− 1
k(

β(x)∇f0(x)− f0(x)∇β(x)

k

)
.

(21)

Let us show that x∗ is a non degenerate minimum of ϕ in the
case where f0(x∗) = 0. We defer the second part of the proof
to Appendix A. Since x∗ is the minimum of f0 it holds that
∇f0(x∗) = 0. Hence, ∇ϕk(x∗) = 0 and x∗ is a critical point
of ϕk. Let us now show that it is a non degenerate minimum,
for this we are going to show that the Hessian of ϕk evaluated
in x∗ is a positive definite matrix. Taking the derivative of
the gradient and simplifying the expression using the fact that
f0(x∗) = ∇f0(x∗) = 0 the Hessian of ϕk evaluated at x∗

yields
∇2ϕk(x∗) = β(x∗)−1/k∇2f0(x∗). (22)

Since by Assumption 2 the point x∗ is in the interior of the
free space we have that β(x∗) > 0. Furthermore since f0 is
a strongly convex function (c.f Assumption 2) we have that

∇2f0 ≥ λminI > 0 and therefore ∇2ϕk(x∗) > 0. Thus x∗ is
a non degenerate minimum of ϕk. �

The minimum of f0 is also a minimum of the function
ϕk as shown by the previous lemma. The next step to prove
that x∗ is the only minimum of ϕk is to show that the other
critical points are not minima. To do so, we first show that
there are no critical points in the boundary of the free space.
It is convenient to express the gradient of the obstacle function
using the following function

β̄i(x) =

m∏
j=0,j 6=i

βj(x). (23)

The above function is the product of all the obstacle functions
except βi. Then, for any i = 0 . . .m, the gradient of the
obstacle function can be written as

∇β(x) = βi(x)∇β̄i(x) + β̄i(x)∇βi(x). (24)

Now we are in condition of stating the next lemma.

Lemma 3. Let F be the compact connected analytic manifold
with boundary defined in (9) verifying Assumption 1 and let
ϕk : F → [0, 1] be the function defined in (15). Then there
are not critical points of ϕk in the boundary of the free space.

Proof. Notice that for any point x in the boundary of the
free space we have that β(x) = 0. Therefore if x ∈ ∂F , the
gradient of ϕk given by (21) reduces to

∇ϕk(x) = −f
−k
0 (x)

k
∇β(x). (25)

Since the minimum of f0 is not in the boundary of the free
space (c.f Assumption 2), it must be the case that f0(x) >
0. It is left to show that ∇β(x) 6= 0 for all x ∈ ∂F . In
virtue of Assumption 1 the obstacles do not intersect. Hence
if x ∈ ∂F , it must be the case that for exactly one of the
indices i = 0 . . .m we have that βi(x) = 0. Let i∗ = {i =

0 . . .m
∣∣∣βi(x) = 0}. Then (24) reduces to

∇β(x) = β̄i∗(x)∇βi∗(x). (26)

Furthermore we have that for all j 6= i∗, βj(x) > 0 hence
β̄(x)i∗ > 0. Since the obstacles are non empty and open
sets and in its boundary βi∗(x) = 0 it must be the case that
∇βi∗(x) 6= 0 for any x ∈ ∂Oi∗ . Which shows that ∇β(x) 6= 0
and therefore, there are no critical points in the boundary of
the free space. �

While there are no critical points in the boundary of the
obstacles, we show in Lemma 4 that all the critical points of
ϕk – except for the one near to x∗ – can be placed arbitrarily
close to the obstacles by selecting an appropriate value for
the parameter k of the function ϕk. This result combined with
lemmas 2 and 3 is used to show that the ϕk is polar in Lemma
5.

Lemma 4. Let F be the free space defined in (9) verifying 1
and let ϕk : F → [0, 1] be the function defined in (15). If xs is
a critical point of ϕk away from x∗, then for any ε > 0 there
exists a K such that, if k > K then β(xs) < ε. Furthermore



the critical points cannot be close to the external boundary of
the free space.

Proof. Notice that for any point in the interior of F it holds
that fk0 (xs) + β(xs) > 0. For xs to be a critical point it must
satisfy ∇ϕk(xs) = 0. Thus, from (21) we conclude xs is a
critical point if and only if

kβ(xs)∇f0(xs) = f0(xs)∇β(xs). (27)

Notice that since f0∇β(xs) is a continuous function and
the free space is a bounded set the norm of the right hand
side of (27) is bounded. Further notice that ‖∇f0(xs)‖ is
lower bounded by a positive quantity since we are considering
critical points of ϕk away from x∗. This implies that we can
upper bound β(xs) by

β(xs) ≤
L

k
, (28)

where L is an upper bound for f0(xs)‖∇β(xs)‖/‖∇f0(xs)‖.
For every ε > 0 we can select k large enough such that Lk < ε.
Therefore critical points away from the optimum of f0 can be
placed arbitrarily close to the obstacles.

Let us show next that the critical points cannot be close to
the external boundary of the free space. Since xs is a critical
point it satisfies (27), hence the gradient of f0 is collinear with
the gradient of β. Write the gradient of β as

∇β(xs) = β̄0(xs)∇β0(xs) + β0(xs)∇β̄0(xs) (29)

Suppose that xs could be placed arbitrarily close to the
external boundary. Then, for large enough k, β0(xs) can be
made arbitrarily smalll and therefore ∇f0(ss) and ∇β0(xs)
are collinear. Since β0 is concave in X , its gradient – and
the gradient of f0 – points inwards the X . However, this
contradicts the fact that the objective function is convex,
because the angle between (xs − x∗) and ∇f0(xs) must be
larger than π/2. Hence xs cannot be placed arbitrarily close
to the external boundary. �

Notice that since the obstacles do not intersect we can
ensure that for large k the critical point will be close to only
one of the obstacles. Which translates in the fact that for
large enough k, βi(xs) < ε for exactly one of the indices
i = 1 . . .m. Let us use i∗ to denote that particular index.
Then write the gradient of β as

∇β(x) = βi∗(x)∇β̄i∗(x) + β̄i∗(x)∇βi∗(x). (30)

The first term of the above equation can be made arbitrarily
small, resulting in the gradient of β being nearly collinear with
the gradient of∇βi∗ . In order to show that the critical points of
ϕk cannot be minima we will select a test direction to evaluate
its Hessian. Since the function ϕk attains its maximum value
in the boundary of the obstacles we can guess that the Hessian
evaluated in a direction that points towards the obstacle Oi∗
will be positive at xs. In fact in Lemma 6 we show that
the previous statement is true. The test direction on which
we evaluate the Hessian of ϕk to show that it cannot be a
minimum are then those perpendicular to ∇β(xs). Lemma
5 shows that under some conditions, the Hessian on these
directions is negative.

Lemma 5. et F be the free space defined in (9) verifying
Assumption 1 and let ϕk : F → [0, 1] be the function defined
in (15). Let λmax, λmin and µimin the bounds in Assumption
1. Further let (16) hold for all i = 1 . . .m and for all xs in
the boundary of Oi. Then, there exists K such that if k > K,
ϕk is polar.

Proof. See Appendix B. �

The previous lemma, completes the first part of the proof
of Theorem 2. It only remains to show that the critical points
of ϕ are non degenerate. We do this in the next section.

C. Non degeneracy of the critical points

In the previous section, in particular in Lemmas 5 we show
that the Hessian of ϕk at a critical point is negative in the
direction ∇β(xs)

⊥ under conditions related to the geometry
of the problem and the condition number of the objective
function. Notice that the subspace perpendicular to ∇β(xs) is
of dimension n− 1. Therefore to show that the critical points
are non degenerate we just need to verify that the Hessian is
not zero in the direction ∇β(xs). We formalize this in the
following lemma.

Lemma 6. Let F be the compact connected analytic manifold
with boundary defined in (9) verifying Assumption 1 and let
ϕk : F → [0, 1] be the function defined in (15). Then, there
exists K such that if k > K the critical points of the function
ϕk are non degenerated.

Proof. In Lemma 2 we showed that the minimum of f0 was
a non degenerated minimum of ϕk. Hence we need to restrict
our attention to the critical points that are different from x∗.
Furthermore , in Lemma 5 we showed that the Hessian of
ϕk evaluated at these points in the direction ∇β(xs)

⊥ was
negative. Since for each critical point the direction ∇β(xs)

⊥

form a subspace of dimension n− 1 it only remains to check
that the Hessian evaluated in the direction ∇β(xs) is nonzero.
Let v be a unit vector collinear with ∇β(xs). Using (41) –
the expression for the Hessian at a critical point xs – we have
that the sign of ∇β(xs)

T∇2ϕk∇β(xs) is given by the sign
of

vT
(
kβ(xs)∇2f0(xs) + (k − 1)∇β(xs)∇fT0 (xs)

− f0(xs)∇2β(xs)

)
v.

(31)

Notice that the term kβ(xs)v
T∇2f0(xs)v is always positive

since f0 is convex. The last term of the above sum can
be negative, but it is lower bounded since both f0(xs) and∥∥∇2β(xs)

∥∥ are bounded. We prove next that the second term
is always positive and can be made arbitrarily large, which
implies that the sign of the Hessian can always be made
positive. Recall that because xs is a critical point of ϕk it
must be the case that ∇β(xs) and ∇f0(xs) are collinear (c.f.
(27)). Hence we have that

(k− 1)vT∇β(xs)∇fT0 (xs)v = (k− 1) ‖∇β(xs)‖ ‖∇f0(xs)‖
(32)



Since the critical points considered here are away from x∗

we have that that ‖∇f0(xs)‖ is lower bounded. In addition,
the norm of the gradient of β(xs) is lower bounded as we
show next. Consider (24) to write the gradient of the obstacle
function as

∇β(x) = βi(x)∇β̄i(x) + β̄i(x)∇βi(x). (33)

While the first term can be made arbitrarily small, the norm
of the second one is lower bounded. The latter was ar-
gued in proof of Lemma 3. This implies that the product
‖∇β(xs)‖ ‖∇f0(xs)‖ is lower bounded. Therefore by select-
ing k large enough we make sure that the Hessian evaluated
at the direction ∇β(xs) is positive. Hence we showed that the
critical points are not degenerate. �

The non degeneracy of the critical points of the potential
defined in (15) completes the proof of Theorem 2.

V. NUMERICAL EXPERIMENTS

We evaluate the performance of the navigation function
(15) in different scenarios. To do so, we consider a discrete
approximation of the gradient flow (5)

xt+1 = xt − εt∇ϕk(xt). (34)

Where x0 – the initial position – is selected at random on the
free space and εt is a diminishing step size so oscillations of
the iterates near the optimal point are reduced. In Section V-A
we consider a free space where the obstacles considered are
ellipsoids –the obstacle functions βi(x) for i = 1 . . .m take
the form (17). In particular we study the effect of diminishing
the distance between the obstacles while keeping the length of
its mayor axis constant. In this section we build the free space
such that condition (19) is satisfied. As already shown through
a numerical experiment in Section III the previous condition is
tight for particular configurations, yet the experiment depicted
in Figure 3 shows that navigation is still possible if (19) is
violated. Because of that observation we study this situation
in Section V-B. In V-C we consider egg shaped obstacles as
an example of convex obstacles different than the ellipsoids.
The numerical section concludes in Section V-D where we
consider a system with the dynamics of (13).

A. Elliptical obstacles in R2 and R3

In this section we consider m elliptical obstacles in Rn,
where βi(x) is of the form (18), with n = 2 and n = 3. We set
the number of obstacle to be m = 2n. We define the external
boundary to be a spherical shell of center x0 and radius r0. The
center of each ellipsoid is placed in a different orthant. To do
so, we set each center to be in the position d (±1,±1, . . . ,±1)
and then we add a random variation drawn uniformly from
[−∆,∆]n, where 0 < ∆ < d. The maximum axis of the
ellipse –ri – is drawn uniformly from [r0/10, r0/5]. We build
orthogonal matrices Ai for i = 1 . . .m where its eigenvalues
are randomly picked through a uniform distribution over [1, 2].
We check that the obstacles selected through the previous
process do not intersect. If they do, we re draw all previous

d k max final dist min initial dist collisions
10 2 4.45× 10−2 10.06 0
9 2 17.25 10.01 0
9 5 4.45× 10−2 10.01 0
6 5 21.61 10.01 0
6 7 4.74× 10−2 10.02 0
5 7 22.29 10.027 0
5 10 4.73× 10−2 10.05 0
3 10 14.28 10.12 0
3 15 4.65× 10−2 10.80 0

TABLE I: Results for the experimental setting described in Section
V-A. Observe that the smaller the value of d – the closer the obstacles
are between them – the environment becomes harder to navigate, i.e.
k must be increased to converge to the minimum of f0.

parameters. For the objective function we consider a quadratic
cost given by

f0(x) = (x− x∗)T Q (x− x∗) , (35)

where x∗ = argmin f0(x) and Q ∈ Mn×n is a positive
symmetric matrix. x∗ is drawn uniformly over [−r0/2, r0/2]n

and we verify that it is in the free space. Then, we compute
the condition number for Q such that (16) is satisfied. Let
Ncond be the strictest of these conditions. The eigenvalues of
Q are selected randomly from [1, Ncond − 1], hence ensuring
that (16) is satisfied. Finally the initial position is also selected
randomly over [−r0, r0]n and it is checked that it is on the
freespace. For this experiments we set r0 = 20 and ∆ = 1. We
run 100 simulations varying the parameter d – controlling the
distance between the obstacles– and k. With this information
we build Table I, where we report the number of collisions,
the maximal distance of the last iterate to the minimum of
f0 and the minimal initial distance to the minimum of f0.
As we can conclude from Table I, the artificial potential
(15) provides collision free paths. Notice that the smaller the
distance between the obstacles the hardest it is to navigate
the environment and k needs to be increased to achieve the
goal. For instance we observe that setting k = 5 it sufficient
to navigate an environment where d is set to be 9, yet it is not
enough to navigate an environment where d = 6. In Figure 4
we can observe the level curves of the function ϕk and the
trajectory arising from (5) when d is set to be 6 and k = 7.
Observe that the length of the path of the agent is larger than
the distance between the initial position and the minimum.
We perform a statistical study reporting in Table II the mean
and the variance of the ratio between these two quantities.
We only consider those values of d and k that always achieve
convergence (c.f Table I). Observe that when the distance d
is reduced while keeping k constant the ratio increases. On
the contrary if d is maintained constant and k is increased the
ratio becomes smaller, meaning that the trajectory approaches
the optimal trajectory. In Figure 5 we simulate one instance
of an elliptical world in R3, with d = 10 and k = 25. For
four initial conditions we observe that the trajectories succeed
to achieve the minimum of f0.

B. Violation of condition (19)
In this section we generate objective functions such that

condition (19) is violated. To do so, we generate the obstacles



Fig. 4: Trajectory arising from the system (5) in the case of d = 6 and
k = 7. As per Theorem 3 the trajectory converges to the minimum
of the objective function while avoiding the obstacles.

d k µr σ2
r

10 2 1.07 6.53× 10−3

10 15 1.01 6.95× 10−5

9 5 1.03 2.10× 10−3

9 15 1.01 7.74× 10−4

6 7 1.19 1.01× 10−2

6 15 1.03 1.59× 10−3

5 10 1.06 6.14× 10−3

5 15 1.05 2.57× 10−3

3 15 1.06 3.60× 10−3

TABLE II: Mean and variance of the ratio between the path length
and the initial distance to the minimum. For each scenario 100
simulations where made. Observe that the smallest the value of d
the larger the ratio becomes. On the other hand when we increase k
for a given value of d the ratio diminishes.

Fig. 5: Trajectories for different initial conditions in an elliptical
world in R3. As per Theorem 3 the trajectory converges to the
minimum of the objective function while avoiding the obstacles. In
this example we have d = 10 and k = 25.

d k Succes
10 2 99%
9 5 95%
6 7 81%
5 10 82%
3 15 82%

TABLE III: Percentage of successful simulations when the condition
guaranteeing that ϕk is a navigation function is violated. We observe
that as the distance between obstacles becomes smaller the failure
percentage increases.

as in Section V-A and the objective function is such that all
the eigenvalues of the Hessian are set to be one, except for
the maximum which is set to be maxi=1...mNcond + 1, hence
assuring that condition (19) is violated for all the obstacles.
In this simulation Theorem 3 does not ensures that ϕk is a
navigation function so it is expected that the trajectory fails
to converge in some simulations. We run 100 simulations for
different values of d and k. In particular for each value of d
we select k such that the simulation in Section V-A succeeds
to achieve the minimum of the objective function. In Table
III we report the percentage of successful simulations. Notice
that when the distance between the obstacles is decreased the
probability of converging to a local minimum different than
x∗ increases.

C. Egg shaped obstacles
In this section we consider a new class of obstacles: egg

shaped obstacles. We draw the center of the each obstacle,xi,
from a uniform distribution over [−d/2, d/2] × [−d/2, d/2].
The distance between the ”tip” and the ”bottom” of the egg,
ri, is drawn uniformly over [r0/10; r0/5] and with probability
0.5 the egg is horizontal,

βi(x) = ‖x− xi‖4 − 2ri

(
x(1) − x(1)i

)3
, (36)

where the superscript (1) refers to first component of a vector.
With probability 0.5 the egg is placed verticaly

βi(x) = ‖x− xi‖4 − 2ri

(
x(2) − x(2)i

)3
. (37)

Notice that the functions βi as defined above are not convex
on R2, however their Hessians are positive definite outside
the obstacles. To be formal it is needed to define an extension
of the function inside the obstacles in order to say that the
function describing the obstacle is convex. This extension is
not needed in practice because our interest resides on how
βi(x) behaves outside the obstacle. In Figure 6 we observe the
level sets of the navigation function and a trajectory arising
from (34) when we set k = 25, r0 = 20 and d = 10. In this
example the hypotheses of Theorem 2 are satisfied, hence the
function ϕk is a navigation function and trajectories arising
from the gradient flow (5) converge to the optimum of f0
without running into the free space boundary.

D. A system with dynamics
In this section we consider a system with the following

simplified version of the dynamics (13)

ẍ = τ, (38)
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Fig. 6: Navigation function in an Egg shaped world. As predicted by
Theorem 2 the trajectory arising from (34) converges to the minimum
of the objective function f0 while avoiding the obstacles.

Fig. 7: In orange we observe the trajectory arising from the system
without dynamics (c.f. (5)). In green we observe trajectories arising
from the system (38) when we the control law (39) is applied. The
trajectory in dark green has a larger damping constant than the
trajectory in light green and therefore it is closer to the trajectory
of the system without dynamics.

and the following control law

τ = −∇ϕk(x)−Kẋ. (39)

In Figure 7 we observe the behavior of the system (38) when
the control law (39) is used (green trajectories) against the
behavior of the gradient flow system (5) (orange trajectory).
Thee light green line correspond to a system where the
damping constant K = 4×103 and the dark green correspond
to a damping constant of 5×103. As we can observe the larger
the damping constant the closest the trajectory is to the one
of the system without dynamics.

VI. CONCLUSIONS

We considered a set with convex holes in which an agent
must navigate to the minimum of a convex function. This
function is unknown and only local information about it was
used, in particular its gradient and its value at the current
location. We defined an artificial potential function and we
showed that under some conditions of the free space geometry
and the condition number of the objective function, this
function was a navigation function. Then a controller that
moves along the direction of the negative gradient of this
function ensures convergence to the minimum of the objective
function while avoiding the obstacles. Numerical experiments
support the theoretical results.

APPENDIX

A. Proof of Lemma 2
The same argument used in Lemma 4 can be used, to

ensure that every critical point must satisfy (27). Consider a
critical point away from the boundary, i.e for some C we have
β(xc) > C. Since the right hand side of (27) is a continuous
function and the free space is a bounded set, the right hand
side of (27) is bounded by some constant M . Then the norm
of ∇f0(xc) can be upper bounded by

‖∇f0(xc)‖ ≤
M

kC
. (40)

Therefore by selecting k large enough the norm of the gradient
of f0 can be made arbitrarily small, which shows that for any
ε there exists a K such that if k > K then there is a critical
point arbitrarily close to x∗. Let us show next that this critical
point is a non degenerate minimum. To do so let us compute
Hessian of ϕk on xc. Differentiate (21) and taking into account
that for every critical point (27) must be satisfied, the Hessian
yields

∇2ϕk(xc) =
1

k

(
fk0 (xc) + β(xc)

)−1− 1
k ×

(
kβ(xc)∇2f0(xc)

+ (k − 1)∇β(xc)∇fT0 (xc)− f0(xc)∇2β(xc)
)
.

(41)

Since we are considering a critical point away from the
boundary of the free space we have that fk0 (xs) + β(xs) > 0.
Then the Hessian is positive definite if and only if

kβ(xc)∇2f0(xc) + (k − 1)∇β(xc)∇fT0 (xc)

− f0(xc)∇2β(xc) > 0.
(42)

Rewrite (27) as ∇f0(xc) = f0(xc)∇β(xc) (kβ(xc))
−1 and

substitute this expression in (42). Thus, the sign of the Hessian
of ϕk is given by the sign of

kβ(xc)∇2f0(xc) +
(k − 1)

k

f0(xc)

β(xc)
∇β(xc)∇βT (xc)

− f0(xc)∇2β(xc).

(43)

Notice that the second term in the above equation is a positive
semi definite matrix. Finally by selecting k large enough we
can make the first term dominate over the third one. Since f0
is strongly convex, its Hessian is positive definite and therefore
for large enough k we have that xc is a non degenerate
minimum.



B. Proof of Lemma 5

It was proved that x∗ –or a point that can be placed
arbitrarily close to x∗– is a minimum of ϕk (Lemma 2). It
remains to show that the rest of the critical points cannot be
local minima of ϕk. Recall that these are in the interior of the
free space (Lemma 3) and that these can be placed arbitrarily
close to the obstacles (Lemma 4). Let xs be the critical point
placed close to Oi and define the following test direction

v =
{
u ∈ Rn

∣∣∣uT∇β(xs) = 0, ‖u‖ = 1
}
. (44)

If we prove that vT∇2ϕk(xs)v < 0 then xs is not a local
minimum. As already established in the proof of Lemma 2,
the Hessian of a critical point of the function ϕk takes the form
(41). Evaluating the Hessian in the direction v we conclude
that vT∇2ϕk(xs)v is negative if and only if

kβ(xs)v
T∇2f0(xs)v − f0(xs)v

T∇2β(xs)v < 0. (45)

We next show that (45) holds to complete the proof. Since
x∗ is the minimum of the objective function, (12) takes the
following form when it is evaluated for xs and x∗

λmin‖xs − x∗‖2 ≤ ∇fT0 (xs)(xs − x∗). (46)

Then, multiply both sides of (27) by (xs − x∗) to write

kβ(xs)∇fT0 (xs)(xs−x∗) = f0(xs)∇β(xs)
T (xs−x∗), (47)

and use the bound from (46) to further upper bound the product
kβ(xs)

kβ(xs) ≤ f0(xs)
∇β(xs)

T (xs − x∗)
λmin‖xs − x∗‖2

. (48)

Substitute ∇β(xs) in the above equation by (24)

kβ(xs) ≤
f0(xs)

λmin‖xs − x∗‖2
β̄i(xs)∇βi(xs)T (xs − x∗)

+
f0(xs)

λmin‖xs − x∗‖2
βi(xs)∇β̄i(xs)T (xs − x∗).

(49)

We argue next that the second term of (49) is bounded by a
constant. Since xs is close to the objects and therefore away
of the optimum x∗, the distance ‖xs − x∗‖ is lower bounded.
In addition we are considering a bounded set, therefore the
other terms are bounded because all the functions involved
are continuous. Let B be the constant bounding the terms
multiplying βi(xs), we have then

f0(xs)

λmin‖xs − x∗‖2
∇β̄i(xs)T (xs − x∗) ≤ B. (50)

Now, let us focus on the second term of (45), in particular the
Hessian of β(xs) can be computed by differentiating (24)

∇2β(xs) = βi(xs)∇2β̄i(xs) + β̄i(xs)∇2βi(xs)

+ 2∇βi(xs)∇T β̄i(xs). (51)

Combine (24) and (27) to express the gradient of ∇βi(xs) as

∇βi(xs) = kβi(xs)
∇f0(xs)

f0(xs)
− βi(xs)

∇β̄i(xs)
β̄i(xs)

. (52)

Notice that the above equation is well defined since f0(xs) > 0
and because xs is close to the object Oi and therefore

β̄i(xs) > C, for some positive C. Recall from (27) that at
the critical point ∇β(xs) and ∇f0(xs) are collinear, thus
vT∇f0(xs) = 0. Using this observation and the expression
for ∇βi(xs) in (52), write the product vT∇βi(xs) as

vT∇βi(xs) = −βi(xs)vT
∇β̄i(xs)
β̄i(xs)

. (53)

Combine (51) and (53) to evaluate the Hessian of β(xs) along
the direction v

vT∇2β(xs)v = vT∇2βi(xs)vβ̄i(xs)

+ βi(xs)

(
vT∇2β̄i(xs)v − 2

‖vT∇β̄i(xs)‖2

β̄i(xs)

)
.

(54)

In the above equation the function multiplying βi(xs) is upper
bounded. Then, there exists a constant B′ that allows us to
upper bound the second of (45) term by

−f0(xs)v
T∇2β(xs)v ≤ −vTβi(xs)vβ̄i(xs)f0(xs) + βi(xs)B

′.
(55)

Use the bounds (49), (50) and (55) to further upper bound the
left hand side of (45) by

kβ(xs)v
T∇2f0(xs)v − f0(xs)v

T∇2β(xs)v

≤vT∇2f0(xs)v
f0(xs)β̄(xs)

λmin‖xs − x∗‖2
∇βi(xs)T (xs − x∗)

−vT∇2βi(xs)vf0(xs)β̄i(xs) + βi(xs) (B +B′) .
(56)

Notice that in virtue of Lemma 4, for every ε we can select
k such that

βi(xs) (B +B′) < ε. (57)

With this observation now we can upper bound the right hand
side of (56) by

kβ(xs)v
T∇2f0(xs)v − f0(xs)v

T∇2β(xs)v

≤vT∇2f0(xs)v
f0(xs)β̄(xs)

λmin‖xs − x∗‖2
∇βi(xs)T (xs − x∗)

−vT∇2βi(xs)vf0(xs)β̄i(xs) + ε.
(58)

Notice that since βj(xs) > 0 for all j 6= i we can divide
the right hand side of the expression by β̄i(xs) to study its
sign. In addition we can divide the expression by f0(xs) since
xs 6= x∗. Define ε′ = ε

(
2β̄i(xs)f0(xs)

)−1
then we have that

vT∇2ϕk(xs)v < 0 if and only if

vT∇2f0(xs)v
∇βi(xs)T (xs − x∗)
λmin‖xs − x∗‖2

− vT∇2βi(xs)v + ε′ < 0,

(59)

Notice that vT∇2f0(xs)v ≤ λmax and vT∇2βi(xs)v ≥ µimin,
hence if

λmax

λmin

∇βi(xs)T (xs − x∗)
‖xs − x∗‖2

− µimin + ε′ < 0, (60)

then vT∇2ϕ(xs)v < 0. To complete the proof observe that ε′

can be made arbitrarily small by increasing k.



C. Proof of Theorem 3

In the particular case where the functions βi take the form
(17), the condition (16) of the general Theorem 2 translates
into

λmax

λmin

(xs − xi)TAi(xs − x∗)
‖xs − x∗‖2

− µimin < 0. (61)

Since Ai is positive definite, there exists A1/2
i such that

Ai =
(
A

1/2
i

)T
A

1/2
i . (62)

Consider the change of variables z = A
1/2
i x, and write

(xs − xi)TAi(xs − x∗)
‖xs − x∗‖2

=
(zs − zi)T (zs − z∗)
‖A−1/2i (zs − z∗) ‖2

. (63)

Denote by µimax the maximum eigenvalue of the matrix Ai.
Then we have that

1

µimax

‖ (zs − z∗) ‖2 ≤ ‖A−1/2i (zs − z∗) ‖2. (64)

Use the above inequality to upper bound the left hand side of
(61) as follows

λmax

λmin

(xs − xi)TAi(xs − x∗)
‖xs − x∗‖2

− µimin

≤ λmax

λmin

(zs − zi)T (zs − z∗)
‖zs − z∗‖2

µimax − µimin.

(65)

The change of coordinates transforms the elliptical obstacle in
a sphere of radius ri(µimin)1/2 since the function βi takes the
following form for the variable z

βi(z) = ‖z − zi‖2 − r2i µimin. (66)

Since the obstacle is after considering the change of coordinate
a circle we define for convenience the radial direction êr, whit
‖êr‖ = 1. Let θ be the angle between êr and the direction
zi−z∗. Further define r̃ to be the distance between the critical
point zs and zi.. Further notice that if the |θ| ≤ π/2 then

(xs − xi)T (xs − x∗)
‖xs − x∗‖2

≤ 0, (67)

and in that case the right hand side of (65) is negative which
completes the proof of the lemma. However if |θ| > π/2
then the term under consideration is positive. In particular the
larger the norm of r̃ the larger the value. Hence define r̃max =
ri(µ

i
min)1/2 + ε, and the following bound holds

(zs − zi)T (zs − z∗)
‖zs − z∗‖2

≤ r̃max(r̃max − di cos θ)

d̃i
2

+ r̃2max − 2d̃ir̃max cos θ
, (68)

where d̃i is the distance between zs and z∗. Differentiating
the right hand side of the above equation with respect to θ
we conclude that its critical points are multiples of π. Notice
that for multiples of π of the form 2kπ, with k ∈ Z will
correspond to negative values and and for multiples of π of
the form (2k + 1)π with k ∈ Z, we have that

RHS(2kπ + 1) =
r̃max(r̃max + d̃i)(
d̃i + r̃max

)2 =
r̃max

d̃i + r̃max

(69)

Combine the previous bound with (65) to bound the expression
in (61) by

λmax

λmin

(xs − xi)TAi(xs − x∗)
‖xs − x∗‖2

µimax − µimin

≤ λmax

λmin

r̃max

d̃i + r̃max

µimax − µimin.

(70)

Notice than a lower bound for that distance is given by
d̃i ≥ µimindi. Notice that since zs can be placed arbitrarily
close to the boundary of the obstacle Oi we have that
r̃ ≤ ri(µimin)1/2 + ε To finish the proof notice that

r̃max

d̃i + r̃max

=
ri + ε

µi
min

di + ri + ε
µi
min

, (71)

hence since ε can be made arbitrarily small by increasing k
we have that if

λmax

λmin

µimax

µimin

< 1 +
di
ri
. (72)

Thus proving that condition (16) takes the form stated in the
theorem.
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