Online Learning of Feasible Strategies in
Unknown Environments

Santiago Paternain and Alejandro Ribeiro

Abstract—Define an environment as a set of convex constraint
functions that vary arbitrarily over time and consider a cost
function that is also convex and arbitrarily varying. Agents that
operate in this environment intend to select actions that are
feasible for all times while minimizing the cost’s time average.
Such action is said optimal and can be computed offfine if the
cost and the environment are known a priori. An online policy
is one that depends causally on the cost and the environment.
To compare online policies to the optimal offline action define
the fit of a trajectory as a vector that integrates the constraint
violations over time and its regret as the cost difference with the
optimal action accumulated over time. Fit measures the extent
to which an online policy succeeds in learning feasible actions
while regret measures its success in learning optimal actions.
This paper proposes the use of online policies computed from
a saddle point controller. This controller pushes actions along a
linear combination of the negative gradients of the constraints
and objective, while dynamically adapting the coefficients of this
linear combination to find appropriate weightings. It is shown
that this controller produces policies with fit and regret that
are either bounded or grow at a sublinear rate. These properties
provide an indication that the controller finds trajectories that are
feasible and optimal in a relaxed sense. Concepts are illustrated
throughout with the problem of a shepherd that wants to stay
close to all sheep in a herd. Numerical experiments show that
the saddle point controller allows the shepherd to do so.

I. INTRODUCTION

A shepherd wants to stay close to a herd of sheep while
also staying as close as possible to a preferred sheep. The
movements of the sheep, including the preferred, are unknown
a priori and arbitrary, perhaps strategic. However, their time
varying positions are such that it is possible for the shepherd to
stay within a prescribed distance of all of them. The shepherd
observes the sheep movements and responds to this online
information through a causal dynamical system. This paper
shows that an online version of the saddle point algorithm of
Arrow and Hurwicz [1]] succeeds in keeping the shepherd close
to all sheep while maintaining a distance to the preferred sheep
that is not much worse that the distance he would maintain
had he known the sheep’s paths a priori.

More generically, we consider an agent that operates in an
environment that we define as a set of time varying functions
of the agent’s actions — the distance between the sheep and
the shepherd — as well as a cost function that is also time
varying and dependent on the agent’s actions — the distance
to the preferred sheep. Since these functions are unknown

Work in this paper is supported by NSF CCF-0952867 and ONR N00014-
12-1-0997. The authors are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, 200 South 33rd Street, Philadelphia,
PA 19104. Email: {spater, aribeiro} @seas.upenn.edu.

a priori the agent operates online by responding causally to
observations of the cost and environment. The goodness of
an online policy is determined by comparing to the optimal
action chosen offline by a clairvoyant agent that has prescient
access to cost and environment. We therefore define a viable
environment as one in which the constraints, if known, are
satisfiable over time — whatever the sheep do, the shepherd
can position himself close to all of them — and the fit as the
time accumulation of the constraint violations incurred by an
online policy — the integrals of the distance of the shepherd
to each sheep when making causal decisions. Likewise, we
define the optimal action as the one that minimizes the cost
aggregated over time — the smallest possible average distance
between the shepherd and the preferred sheep when given the
benefit of hindsight — and the regret as the time integral of the
difference between the cost attained online and this optimal
cost — how much worse the shepherd does when not having
the benefit of hindsight.

The problem of operating in unknown convex environments
with unknown costs generalizes operation in known envi-
ronments with known costs, which in turn generalizes plain
cost minimization. The latter is a canonical problem that can
be solved locally with extremum seeking gradient descent
controllers that push the agent along the negative gradient of
the cost function; see e.g., [2]-[|6]. These algorithms converge
to local minima in general and to the global minimum when
the cost is convex. These costs can represent natural constraints
or artificial potentials and are common methodologies to solve,
e.g., navigation problems [7]-[12]. If uncertainties are present
in the environment, stochastic gradient descent algorithms can
be used instead with similar convergence guarantees [|13[]-[/16].
When adding known constraints to cost minimization we can
add barrier potentials, or, more germane to the methodology
advocated in this paper, pose the problem as the determination
of a saddle point of a Lagrangian function. This saddle point
can be found with the saddle point algorithm of Arrow and
Hurwicz which interprets each constraint as a separate po-
tential and descends on a linear combination of their negative
gradients [1]]. The coefficients of these linear combinations are
multipliers that adapt dynamically so as to push the agent to
the optimal solution in the region where all constraints are
satisfied. Saddle point algorithms and variations have been
widely studied [17]-[19] and used in various domains such
as decentralized control [20], [21] and image processing, see
e.g. [22]. As in the case of extremum seeking algorithms,
saddle point methods require prior knowledge of costs and
constraints.

The novelty of this work is to consider constraints and costs

that are unknown a priori and can change arbitrarily over
time. In this case, cost minimization can be formulated in the
language of regret [23], [24] whereby agents operate online
by selecting plays that incur a cost selected by nature. The
cost functions are revealed to the agent ex post and used to
adapt subsequent plays. It is a quite remarkable fact that an
online version of gradient descent is able to find plays whose
regret grows at a sublinear rate when the cost is a convex
function [25]], [26] — therefore suggesting vanishing per-play
penalties of online plays with respect to the clairvoyant play.
Our main contribution is to show that an online saddle point
algorithm that observes costs and constraints ex post succeeds
in finding policies with regret and fit that, at worst, grow
at a sublinear rate — and may even stay bounded with more
stringent hypotheses.

The online learning of strategies that are feasible with
respect to an unknown and arbitrarily varying environment
is formulated here in the language of fit, which we define
as a vector that accumulates the violation of each constraint
over time (Section [[I). To clarify the connection with existing
regret literature, we begin the technical part of the paper with
the derivation of a projected gradient controller to minimize an
unknown cost in an environment without constraints (Section
[). We then move on the main part of the paper in which
we propose to control fit and regret growth with the use of
an online saddle point controller that moves along a linear
combination of the negative gradients of the instantaneous
constraints and the objective function. The coefficients of
these linear combinations are adapted dynamically as per
the instantaneous constraint functions as well (Section [[V).
This online saddle point controller is a generalization of
(offline) saddle point in the same sense that an online gradient
controller generalizes (offline) gradient descent. We show that
if there exists a viable action that can satisfy the environmental
constraints at all times, the online saddle point controller
achieves bounded fit if optimality is not of interest (Theorem
[2). When optimality is considered, the controller achieves
bounded regret and the fit grows sublinearly with the time
horizon (Theorem [3). Throughout the paper we illustrate
concepts with the problem of a shepherd that has to stay close
to a herd of sheep (Section [[I-B). A numerical analysis of this
problem closes the paper (Section [V]) except for concluding
remarks (Section [VI).

Notation. A multivalued function f : R™ — R™ is defined by
stacking the components functions, i.e., f = [fi,..., fm]t.
The notation [f(z)dz := [[fi(z)dz, ..., [fm(2)dz]" rep-
resents a vector stacking each individual integral. An inequal-
ity < y between vectors of equal dimension x,y € R" is
interpreted componentwise. An inequality z < c between a
vector = [71,...,7,]T € R™ and a scalar ¢ € R means that
z; < c for all components of x.

II. VIABILITY, FEASIBILITY AND OPTIMALITY

We consider a continuous time environment in which an
agent selects an action that results in a time varying set of
penalties. Use ¢ to denote time and let X C R"™ be a closed
convex set from which the agent selects action x € X. The

penalties incurred at time ¢ for selected action x are given by
the value f(t,z) of the vector function f : R x R" — R™.
We interpret the vector penalty function f as a definition of
the environment. Our interest in this paper is in situations
where the agent is faced with an environment f and must
choose an action x € X — or perhaps a trajectory x(t) — that
guarantees nonpositive penalties f(¢,2(t)) < 0 for all times
t not exceeding a time horizon 7. Since the existence of this
trajectory depends on the specific environment we start by
defining a viable environment as one in which it is possible
for the agent to select an action with nonpositive penalty for
times 0 <t < T as we formally specify next.

Definition 1 (Viable environment). We say that a given
environment f : RxR™ — R™ is viable over the time horizon
T for an agent that selects actions v € X if there exists an
action zt € X such that

ft,z") <0, forallte|0,T). (1)
An action ¥ satisfying is said feasible and the set X1 :=
{zt € X : f(t,2T) <0, forallt € [0,T)} is termed the
feasible set of actions.

Since for a viable environment it is possible to have multiple
feasible actions it is desirable to select one that is optimal
with respect to some criterion of interest. Introduce then the
objective function fy : R x R™ — R, where for a given time
t € [0,T] and action = € X the agent suffers a loss fo(¢, x).
The optimal action is defined as the one that minimizes the
accumulated loss fOT fo(t, z) dt among all viable actions, i.e.,

T
¥ = argmin/ folt,z)dt)
0

zeX
s.t. f(t,z) <0, forall t € [0,T].

For the definition in (Z)) to be valid the function fo(¢, z) has to
be integrable with respect to ¢. In subsequent definitions and
analyses we also require integrability of the environment f as
well as convexity with respect to x as we formally state next.

Assumption 1. The functions f(¢,z) and fo(t,z) are inte-
grable with respect to ¢ in the interval [0, 7.

Assumption 2. The functions f(¢,z) and fo(¢, x) are convex
with respect to x for all times ¢ € [0, T].

If the environment f and functions fy are known before-
hand, the question of finding the action in a viable environ-
ment that minimizes the total aggregate cost is equivalent to
solving the constrained convex optimization problem in (2).
A number of algorithms are known to solve this problem.
Here, we consider the problem of adapting a strategy x(t)
when the functions f(t,z) and fy(¢,x) are arbitrary and
revealed causally. 1.e., we want to choose the action x(¢) using
observations of viability f(¢,x) and cost fo(¢,) in the open
interval [0,¢). This implies that f(¢,z(t)) and fo(t, z(t)) are
not observed before choosing x(t). The action x(t) is chosen
ex ante and the corresponding viability f(¢,x(t)) and cost
fo(t,z(t)) are incurred ex post.

A. Regret and fit

We evaluate the performance of trajectories x(t) through
the concepts of regret and fit. To define regret we compare
the accumulated cost fOT fo(t,z(t)) dt incurred by z(t) with
the cost that would had been incurred by the optimal action
x* defined in (2),

T T
Ry ::/0 fo(t,x(t))dt—/o folt %) dt.

Analogously, we define the fit of the trajectory z(t) as the
accumulated value of the penalties f(t,x(¢)) incurred for
times ¢ € [0, T,

3)

T
Fp e /O £t 2(8)) dt. @

The regret Ry and fit Fr can be interpreted as performance
losses associated with online causal operation as opposed to
offline clairvoyant operation. If the fit Fr is positive in a
viable environment we are in a situation in which, had the
environment f be known a priori, we could have selected an
action 7 with f(t,2") < 0. The fit measures how far the
trajectory x(t) comes from achieving that goal. Likewise, if
the regret R is large we are in a situation in which prior
knowledge of environment and cost would had resulted in the
selection of the much better action z* — and in that sense R
indicates how much we regret not having had that information
available.

A good learning strategy is one in which x(¢) approaches
z*. In that case, the regret and fit grow for small 7" but
eventually stabilize or, at worst, grow at a sublinear rate.
Considering regret R and fit Fr separately, this observation
motivates the definitions of feasible trajectories, strong feasible
trajectories, and strong optimal trajectories that we formally
state next.

Definition 2. Given an environment f : R x R" — R™, a
cost function fo: R x R™ — R, and a trajectory x(t) we say
that:

Feasibility. The trajectory x(t) is feasible in the environment
if the fit Fr grows sublinearly with T. Le., if there exist a
Sunction h(T) with limsupy_, . h(T)/T = 0 and a constant
vector C' such that for all times T it holds,
T
Fro= / £(t,2(t)) dt < Ch(T).)
0

Strong Feasibility. The trajectory x(t) is strongly feasible in

the environment if the fit Fr is bounded for all T. l.e., if there
exists a constant vector C' such that for all times T it holds,

T
Fr = ft,z(t))dt < C.
0

(6)
Strong optimality. The trajectory x(t) is strongly optimal in

the environment if the regret Ry is bounded for all T. Le., if
there exists a constant C' such that for all times T it holds,

T T
Rr = [itaa- [faaya<c

Remark 1 (Not every trajectory is strongly feasible). Notice
that in definition (6) we are considering the integral of a
measurable function in a finite interval, hence the integral
will always be bounded by a constant, yet the constant could
be dependent on the time horizon 7. If this is the case, the
trajectory is not strongly feasible, because the integral has to
be uniformly bounded by a constant for all time horizons T’
in order to meet the definition. The same remark is valid for
the definitions of strongly optimal and feasible.

Having the regret satisfy Ry < C irrespectively of T is
an indication that fo(t,x(t)) is close to fo(t,2*) so that the
integral stops growing. This is not necessarily so because we
can also achieve small regret by having fo(t,z(t)) oscillate
above and below fo (¢, z*) so that positive and negative values
of fo(t,z(t)) — fo(t,z*) cancel out. In general, the possibility
of having small regret by a trajectory that does not approach
z* is a limitation of the concept of regret. Alternatively, we
can think of the optimal offline policy x=* as fixing a budget
for cost accumulated across time. An optimal online policy
meets that budget within a constant factor C' — perhaps by
overspending at some times and underspending at some other
times.

Likewise, when the fit satisfies Fpr < C' irrespectively
of T, it suggests that =(¢) approaches the feasible set. This
need not be true as it is possible to achieve bounded fit by
having f(¢,x(t)) oscillate around 0. Thus, as in the case
of regret, we can interpret stronglqy feasible trajectories as
meeting the accumulated budget [, f(t,z(t))dt < 0 within
a constant factor C'. This is in contrast with feasible actions
o' that meet the budget f(¢,2%) < 0 for all times. Feasible
trajectories differ from strongly feasible trajectories in that
the fit is allowed to grow at a sublinear rate. This means
that feasible trajectories do not meet the accumulated budget
fOT f(t,xz(t))dt < 0 within a constant C' but do meet the
time averaged budget (1/T) fOT f(t,z(t)) dt < 0 within that
constant. The notion of optimality — as opposed to strong
optimality — could have been defined as a case in which regret
is bounded by a sublinear function of 7. This is not necessary
here because all of our results state strong optimality.

In this work we solve three different problems: (i) Finding
strongly optimal trajectories in unconstrained environments.
(i1) Finding strongly feasible trajectories. (iii) Finding feasible,
strongly optimal trajectories. We develop these solutions in

sections and [[V-B| respectively. Before that, we

clarify concepts with the introduction of an example.

B. The shepherd problem

Consider a target tracking problem in which an agent —
the shepherd — follows a group of m targets — the sheep.
Specifically, let z(t) = [z1(t),2z2(t)]T € R? denote the
position of the shepherd at time ¢. To model smooth paths
for the shepherd introduce a polynomial parameterization so
that each of the position components z(¢) can be written as

n—1
2(t) =Y wrp; (1), ®)
=0

where p,(t) are polynomials that parameterize the space of
possible trajectories. The action space of the shepherd is then
given by the vector x = [z1g, . . . y T1m—1,T205 - - - ,:cgm_l]T €
R?" that stacks the coefficients of the parameterization in ().

Further define y;(t) = [y;1(t), yi2(t)] as the position of the
ith sheep at time ¢ for ¢ = 1, ..., m and introduce a maximum
allowable distance r; between the shepherd and each of the
sheep . The goal of the shepherd is to find a path z(¢) that
is within distance r; of sheep ¢ for all sheep. This can be
captured by defining an m-dimensional environment f with
each component function f; defined as

filt,x) = [|2(t) — i ())|* — 77 ©)

That the environment defined by (@) is viable means that it
is possible to select a vector of coefficients = so that the
shepherd’s trajectory generated by stays close to all sheep
for all times. To the extent that (8]) is a loose parameterization —
we can approximate arbitrary functions with sufficiently large
index n —, this simply means that the sheep are sufficiently
close to each other at all times. E.g., if r;, = r for all
times, viability is equivalent to having a maximum separation
between sheep smaller than 2r.

As an example of a problem with an optimality criterion
say that the first target — the black sheep — is preferred in that
the shepherd wants to stay as close as possible to it. We can
accomplish that by introducing the objective function

folt,x) = [l2(8) = s ()]

Alternatively, we can require the (lazy) shepherd to minimize
the work required to follow the sheep. This behavior can
be induced by minimizing the integral of the acceleration
which in turn can be accomplished by defining the optimality
criterion [cf. ()],

forall :=1..m.

(10)

folt,) =[|2()]| = ‘

n—1 n—1
[lejﬁj(t% > 332;']53’(25)} || an
7=0 =0

Trajectories x(t) differ from actions in that they are allowed
to change over time, i.e., the constant values x; in (@) are
replaced by the time varying values x;(t). A feasible or
strongly feasible trajectory x(¢) means that the shepherd is
repositioning to stay close to all sheep. An optimal trajectory
with respect to is one in which he does so while staying
as close as possible to the black sheep. An optimal trajectory
with respect to (TT)) is one in which the work required to follow
the sheep is minimized. In all three cases we apply the usual
caveat that small fit and regret may be achieved with stretches
of underachievement following stretches of overachievement.

III. UNCONSTRAINED REGRET IN CONTINUOUS TIME.

Before considering the feasibility problem we consider the
following unconstrained minimization problem. Given an un-
constrained environment (f(¢,z) = 0) our goal is to generate
strong optimal trajectories x(¢) in the sense of Definition
selecting actions from a closed convex set X i.e. z(¢) € X for
all ¢t € [0,T]. Given the convexity of the objective function
with respect to the action, as per Assumption [2] it is natural
to consider a gradient descent controller. To avoid restricting

attention to functions that are differentiable with respect to x,
we introduce the notion of subgradient that we formally define
next.

Definition 3 (Subgradient). Let g : X — R, be a convex
function where X C R". Then g, is a subgradient of g at a
point x € X if
9(y) = 9(a) + gu(2) (y —x) forall yeX (12)
In general, subgradients are defined at all points for all
convex functions. At the points where the function f is
differentiable the subgradient and the gradient coincide. In
the case of vector functions f : R" — R™ we group the

subgradients of each component into a subgradient matrix
fo(z) € R™™™ that we define as

fﬂv(x) = [fl,:c(l') fQ,w(x) fm,;c(z)]

where f; () is a subgradient of f;(x) as per Definition
In addition, since the action must always be selected from the
set X we define the controller in a way that the actions are
the solution of a projected dynamical system over the set X.
The solution has been studied in [27]], [28]] and we define the
notion as follow.

(13)

Definition 4 (Projected dynamical system). Let X be a closed
convex set.

Projection of a point. For any z € R", there exits a unique
element in X, denoted Px(z) such that

P = inf ||y — z]|. 14

x(2) = arg inf [ly — 2| (14)

Projection of a vector at a point. Let x € X and v a vec-

tor, we define the projection of v over the set X at the point
x, Ux(z,v) as

IIx(z,v) = lim (Px(z+ dv) —x) /4.

6—0t

15)

As it is demonstrated in Lemma |3 the projection of a vector
at a point over a set is equivalent to project the vector over
the smallest cone containing the set X with vertex at the point
x.

Projected dynamical system. Given a closed convex set X
and a vector field F (t,x) which takes elements from R x X
into R™ the projected differential equation associated with X
and F' is defined to be

() = lx (z, F(t,z)) . (16)

In the above projection if the point x is in the interior of
X then the projection is not different from the original vector
field i.e. IIx (z, F(t,x)) = F(t,z). On the other hand if the
point z is in the border of X, then the projection is just the
component of the vector field that is tangential to the set X
at the point z. Let’s consider for instance the case where the
set X is a box in R". Let X = [a1,b1] X ... X [an, by] where
ai..ap and by ...b, are real numbers. Then for each component

of the vector field we have that

and F(t,z); <0,
and F(t,x); >0,
otherwise.

0 if T; = Q;

HX ($7F(t7$))i 0 if xi:bi

F (t, T)z

a7)

Therefore, when the projection is included, the proposed

controller takes the form of the following projected dynamical
system:

i =Ty (2, —cfo(t,z)). (18)

Before stating the first theorem we need a Lemma concerning
the relation between the original vector field and the projected
vector field. This lemma is used in the proofs of theorems [I]

2l and 3

Lemma 1. Let X be a convex set and xq € X and x € X.
Then

(xo — 2) T x (z0,v) < (z9 — x)T 0. (19)

Proof. See Apendix [|
Let’s define an Energy function Vz : R™ — R as

Vi(z) = %(m _ 5 (e — 7). 20)

Where z € X C R” is an arbitrary fixed action. We are now
in conditions to present the first theorem, which states that
the gradient controller defined in (I8) gives origin to strong
optimal trajectories i.e. with bounded regret for all T'.

Theorem 1. Let fy : R x X — R be cost function satisfying
assumptions 1 and 2, with X C R™ convex. The trajectory x(t)
generated by the online projected gradient controller in (18)
is strongly optimal in the sense of Definition 2] In particular,
the regret R can be bounded by

Ry < Ve (2(0)) Je, forall T 21

where Vz is the Energy function in (20).

Proof. Consider an action trajectory z(t), an arbitrary given
action T € X, and the corresponding energy function Vz (x(¢))
as per (20). The derivative V;(z(t)) of the energy function
with respect to time is then given by

Va(e(t) = (2(t) — 2) T (1)

If the trajectory x(t) follows from the online projected gradient
dynamical system in (I8) we can substitute the trajectory
derivative & by the vector field value and reduce 22) to

Va(a(t)) = (2(t) — &) T (2(t), ~efo(t, 2(1))) -

Use now the result in Lemma |l| with v = —efo » (¢, z(¢)) to
remove the projection operator from (23) and write

Va(2(t) < —e(a(t) = 2)" fou(t, z(1)).

Using the definition of subgradient (c.f. Definition [3), we can
upper bound the inner product —(x(t) — #)T fo . (t, 2(t)) by
the difference fo(¢,Z) — fo(¢,2(t)) and transform 24) into

Va(z(t) < e (folt. @) — folt, z(t))).

(22)

(23)

(24)

(25)

Rearranging terms in the preceding inequality and integrating
over time yields

T T 1 /7.
| ftta@nae= [narde< -2 [Vi)
0 0 0 26)
Since the primitive of Vi (z(t)) is Vi(x(t)) we can evaluate
the integral on the right hand side of (26) and further use the
fact that Vz(z) > 0 for all © € R™ to conclude that

T

- / Ve(z(t))dt = Vz(x(0)) = Va(z(T)) < Vz(2(0)).

' @7)
Combining the bounds in and we have that

T T
/ Folt, (1)) dt — / ot F)dt < Vi(z(0))/e. (28)
0 0

Since the above inequality holds for an arbitrary point z € R"
it holds for Z = z* in particular. When making Z = z* in (28)
the left had side reduces to the regret Ry associated with the
trajectory x(t) [cf. (B)] and in the right hand side we have
Vz(2(0))/e = V= (2(0))/e. Eq. 2I) follows because @28) is
true for all times 7". This implies that the trajectory is strongly
optimal according to (7) in Definition [2] [|

The strong optimality of the online projected gradient
controller in (I8) that we claim in Theorem [I] is not a
straightforward generalization of the optimality of gradient
controllers in constant convex potentials. The functions fj are
allowed to change arbitrarily over time and are not observed
until after the cost fo(¢,(t)) has been incurred.

Since the initial value of the Energy function V«(z(0))
is the square of the distance between x(0) and z*, the
regret bound in (21)) shows that the closer we start to the
optimal point the smaller the accumulated cost is. Likewise,
the larger the controller gain e, the smaller the regret bound
is. Theoretically, increasing € we can make the regret bound
arbitrarily small. This is not possible in practice because
larger ¢ entails trajectories with larger derivatives which cannot
be implemented in systems with physical constraints. In the
example in Sectionmthe derivatives of the state () control
the speed and acceleration of the shepherd. The physical limits
of these quantities along with an upper bound on the cost
gradient fy (¢,) can be used to estimate the largest allowable
gain €.

Remark 2. In discrete time systems where ¢ is a natural
variable and the integrals in (B) are replaced by analogous
sums, online gradient descent algorithms are used to reduce
regret; see e.g. [25]], [26]]. The online gradient controller in
(T8) is a direct generalization of online gradient descent to
continuous time. This similarity notwithstanding, the result in
Theorem [I] is stronger than the corresponding regret bound
in discrete time which states a sublinear growth at a rate not
faster than /T if the stepsize of the algorithm is constant [25]],
and logT" with a variable stepsize [26].

IV. SADDLE POINT ALGORITHM

Given an environment f(¢,z) and an objective function
fo(t, =) verifying assumptions [1] and [2| we set our attention

towards two different problems: design a controller that gives
origin to strongly feasible trajectories and a controller that
gives origin to feasible and strongly optimal trajectories. As
already noted, when the environment is known beforehand the
problem of finding such trajectories is a constrained convex
optimization problem, which we can solve using the saddle
point algorithm of Arrow and Hurwicz [[1]. Following this idea,
let A € A =R, be a multiplier and define the time-varying
Lagrangian associated with the online problem as

L(t,z,\) = folt,x) + AT f(t,x). (29)

Saddle point methods rely on the fact that for a constrained
convex optimization problem, a pair is a primal-dual optimal
solution if and only if the pair is a saddle point of the
Lagrangian associated with the problem; see e.g. [29]. The
main idea of the algorithm is then to generate trajectories
that descend in the opposite direction of the gradient of the
Lagrangian with respect to « and that ascend in the direction
of the gradient with respect to .

Since the Lagrangian is differentiable with respect to A,
we denote by Ly(t,z,\) = f(t,x) the derivative of the
Lagrangian with respect to A. On the other hand, since the
functions fo(-,2) and f(-,z) are convex, the Lagrangian is
also convex with respect to x. Thus, its subgradient with
respect to z always exist, let us denote it by £, (¢, z, A). Let
€ be the gain of the controller, then following the ideas in [/1]]
we define a controller that descends in the direction of the
subgradient with respect to the action x

IIx (x,—eLy(t,z,)
= IIx (=, *5(f0,r(t; r) + fu(t,2)N)),

and that ascends in the direction of the subgradient with
respect to the multiplier A

A=TIp (N, eLa(t,, N) =TIx (N, ef(t,2)).

jj:

(30)

€29

The projection over the set X in (30) is done to assure
that the trajectory is always in the set of possible actions.
The projection concerning the dual variable A in (BI) is
done to assure that A(t) € R7 for all times ¢ € [0,7].
An important observation regarding and is that the
environment is observed locally in space and causally in time.
The values of the environment constraints and its subgradients
are observed at the current trajectory position z(t) and the
values of f(t,x(t)) and f,(t,x(t)) affect the derivatives of
2(t) and A(t) only. Notice that if the environment function
satisfies f(¢,z) = 0 we recover the algorithm defined in
as a particular case of the saddle point controller.

A block diagram for the controller in - is shown
in Figure The controller operates in an environment to
which it inputs at time ¢ an action x(¢) that results in a
penalty f(¢,x(t)) and cost fo(t,x(t)). The value of these
functions and their subgradients f, (¢, z(t)) and fo . (¢, z(t))
are observed and fed to the multiplier and action feedback
loops. The action feedback loop behaves like a weighted
gradient descent controller. We move in the direction given by
a linear combination of the the gradient of the objective func-
tion fo (¢, z(t)) and the constraint subgradients f;(¢,x(t))

Gradient descent on actions

T (2(t), —¢ [fou(t,2(6) + folt, 2NV /

F(t,2(2)), fa(t, 2(1)), fou(t 2(t))

Environment

s ()\(t),sf(t‘x(t))) J W

Gradient ascent on multipliers

Fig. 1: Block diagram of the saddle point controller. Once that action
x(t) is selected at time ¢, we measure the corresponding values of
ft,x), fo(t,x) and fo,.(t,z). This information is fed to the two
feedback loops. The action loop defines the descent direction by com-
puting weighted averages of the subgradients f, (¢,) and fo (¢, x).
The multiplier loop uses f (¢, x) to update the corresponding weights.

weighted by their corresponding multipliers A;(¢). Intuitively,
this pushes x(¢) towards satisfying the constraints and to the
minimum of the objective function in the set where constraints
are satisfied. However, the question remains of how much
weight to give to each constraint. This is the task of the
multiplier feedback loop. When constraint ¢ is violated we
have f;(t,x(t)) > 0. This pushes the multiplier A;(¢) up,
thereby increasing the force A;(t)f;(¢,2(t)) pushing z(t) to-
wards satisfying the constraint. If the constraint is satisfied, we
have f;(t,z(t)) < 0, the multiplier \;(t) being decreased, and
the corresponding force decreasing. The more that constraint
1 is violated, the faster we increase the multiplier, and the
more we increase the force that pushes x(¢) towards satisfying
fi(t,xz(t)) < 0. If the constraint is satisfied, the force is
decreased and may eventually vanish altogether if we reach
the point of making A;(t) = 0.

A. Strongly feasible trajectories

We begin by studying the saddle point controller defined by
(30) and (@I) in a problem in which optimality is not taken
into account. In this case the action descent equation of the
controller (30) takes the form:

& =1Mx (z,—eLy(t,x,\) =x (z,—cf.(t,2)\), (32)

while the multiplier ascent equation remains unchanged.
The bounds to be derived for the fit ensure that the trajectories
x(t) are strongly feasible in the sense of Deﬁnition To state
the result consider an arbitrary fixed action € X and an
arbitrary multiplier A € A and define the energy function

1 - _
Vea(@A) =5 (le=2lP+ A= AlP) . 33)
We can then bound fit in terms of the initial value
Vz2(2(0),A(0)) of the energy function for properly chosen
Z and A as we formally state next.

Theorem 2. Let f : R x X — R™, satisfying assumptions
and [2| where X C R™ is a convex set. If the environment
is viable, then the controller defined by (32) and (BI)) gives
origin to strongly feasible trajectories x(t) for all T > 0.
Specifically, the fit is bounded by

Fra < iv (2(0), \(0)), (34)

where 1 is any point that belongs to the feasible set X', and
e; with 1 = 1..m are the vectors of the canonical base of R™.

Proof. Consider action trajectories x(¢t) and multiplier
trajectories A(¢) and the corresponding energy function
Vzx(x(t), A(t)) in (33) for arbitrary given action Z € X and
multiplier A € A. The derivative Vi s(x(t), A(t)) of the energy

with respect to time is then given by
Vas(@(6), A1) = (2(t) = 2)Ta(t) + (A1) = MTA®). (39)

If the trajectories x(t) and A(t) follow from the saddle point
dynamical system given by and we can substitute the
action and multiplier derivatives by their corresponding values
and reduce(33) to

Vex(@(t), M) =(z(t) — 2)"Tx (z, —fo(t, 2(1))) A(t)
+ (A(t) = NIy (2,ef(t, (1)) . (36)

Then, using the result of Lemma [I] for both X and A, the
following inequality holds:

Ve s(a(t), A1) < e(@ — a(t)" folt, z()A()
+e(At) = T f(t,z(t)).

Notice that f(¢,2)A(t) is a convex function with respect to
the action, therefore we can upper bound the inner product

(z — ()T f.(t,2(t))A\(t) by the quantity f(t,7)TA(t) —
f(t,z(#))TA(t) and transform into

Vo (@(t), A1) < & (f(t,2) — f(t,2(6))" A(®)
+e(\t) = VT f(t,x(t)).

Further note that in the above equation the second and the
third term are opposite. Thus, it reduces to

Vas(@(8), A1) < e [AT(8) f(t.2) = AT f(t,2(t))] -

Rewriting the above expression and then integrating both sides
with respect to time from ¢ = 0 to ¢ =T we obtain

T
\NT T —
/ N F(t,x(t)) — AT (£) £ (1, 2)dt

/ A))d.

Integrating the right side of the above equation we obtain

T .
- / V, 5 (@ (6)A(0)dt

= Ve x(@(0), A(0)) = Vi x(2(T), MT)),
(x(t)), A(t)) > 0 for all t we

(37)

(38)

(39)

(40)

(41)

and then using the fact that V; 5
have that

/ Vs

A(t)dt <V, 5

5 (2(0),A(0)) . (42)

Then, combining and (@2)), we have that

T
| AT s a(0) = X @1t 2)dt < (Vi 2(20),70) e

’ (43)
Since the environment is viable, there exist a fixed action T
such that f(¢,27) < 0 for all ¢ > 0. Then choosing # = =T,
since A(t) > 0 for all ¢, we have that

M () f(t,zt)dt <0Vt € [0,T]. (44)
Therefore the left hand side of {@3) can be lower bounded by

M0)) /e

Choosing)\ = e; where ¢; is the ith element of the canonical
base of R™, we have that for all ¢ = 1..m:

/fmc (O)dt < (Vyr o, (£(0), A(0)) e

The left hand side of the above inequality is the ¢th component
of the fit. Thus, since the m components of the fit of the
trajectory generated by the saddle point algorithm are bounded
for all T, the trajectory is strongly feasible with the specific
upper bound stated in ([34). |

)\T/ fltz@t)dt < (Vi 5(2(0), (45)

(40)

Theorem [assures that if an environment is viable for
an agent that selects actions over a set X, the controller
defined by (32) and (BI) gives origin to a trajectory x(t)
that is strongly feasible in the sense of Definition This
result is not trivial, since the function f that defines the
environment is observed causally and can change arbitrarily
over time. In particular, the agent could be faced with an
adversarial environment that changes the function f in a way
that makes the value of f(¢, x(t)) larger. The caveat is that the
choice of the function f must respect the viability condition
that there exists a feasible action zf such that f(¢,zf) < 0
for all ¢ € [0,7]. This restriction still leaves significant
leeway for strategic behavior. E.g., in the shepherd problem of
Section we can allow for strategic sheep that observe the
shepherd’s movement and respond by separating as much as
possible. The strategic action of the sheep are restricted by the
condition that the environment remains viable, which in this
case reduces to the not so stringent condition that the sheep
stay in a ball of radius 2r if all r; = r.

Since the initial value of the energy function
Vit e, (€(0),A(0)) is the square of the distance between
2(0) and 2 added to a term that depends on the distance
between the initial multiplier and e;, the fit bound in @I)
shows that the closer we start to the feasible set the smaller
the accumulated constraint violation becomes. Likewise, the
larger the gain ¢, the smaller the fit bound is. As in section
we observe that increasing ¢ can make the fit bound
arbitrarily small, yet for the same reasons discussed in that
section this can’t be done.

Further notice that for the saddle point controller defined
by and the action derivatives are proportional not
only to the gain ¢ but to the value of the multiplier A.
Thus, to select gains that are compatible with the system’s
physical constraints we need to determine upper bounds in

the multiplier values A(¢). An upper bound follows as a simple
consequence of Theorem [2]if the action set is bounded as we
state in the following corollary.

Corollary 1. Given the controller defined by and
and assuming the same hypothesis of Theorem 2] if the set of
actions X is bounded in norm by R, then the multipliers \
are bounded for all time by

0<N(@t) < (4R?+1), foralli=1,...,m. (47)

Proof. First of all notice that according to a projection
over the positive orthant is performed for the multiplier
update. Therefore, for each component of the multiplier we
have that A\;(¢) > 0 for all ¢ € [0,7]. On the other
hand, since the trajectory of the multipliers is defined by
A(t) = TIA(N(t),ef(t, z(t)), while A\(t) > O we have that
A(t) = ef (t,z(t)). Let to be the first time instant for which
Ai(t) > 0 for a given i € {1,2,..,m}, ie.

to = inf {A(t) >0}. 48
0 argtelﬁﬂ{ (t) >0} (48)
In addition, let 7™ be the first time instant greater than ¢
where \;(t) = 0, if this time is larger than T" we set T* =T,
ie.

T* = max {argmin {\i(t) =0} ,T} . (49)
te(to,T]
Therefore, we have that, for any 7 € (to, T*]:
JRICE R OO
to to
- / e fi(t, 2(8)dt. (50)
to

Notice that the rightmost side of the above equation is,
by definition, proportional to the ith component of the fit
restricted to the time interval [tg,7]. In Theorem [2| it was
proved that the ¢th component of the fit was bounded for all
time horizons by V.1 ., (z(t0),0)/c. In this particular case we
have that

Vot el (a(t0). 0) = 3 (2 = 1) + (0=).

and since for any « € X we have that ||z|| < R, we conclude

(S

1
Vat e (@(t0),0) < 5 ((2R)* + 17) (52)
Therefore, for all 7 € (to, T*]
1
() < 3 (4R* +17). (53)

Two cases are possible now, either 7* = T in which case
the bound for A;(¢) holds for any ¢ € [0,T] or T* < T. If
the second case holds, then we can repeat the same argument
defining a time ¢; such that:

inf

(54)
te[T*,T)

t; = arg {A\i(t) > 0}.
And using that for times larger than ¢; the multipliers A(t);

are once again bounded by the equation in (53). [|

The bound in Corollary [I] ensures that action derivatives
Z(t) remain bounded if the subgradients are. This means that

action derivatives increase, at most, linearly with € and is
not compounded by an arbitrary increase in the values of the
multipliers.

B. Strongly optimal feasible trajectories

This section presents bounds on the growth of the fit and
the regret of the trajectories x(¢) generated by the saddle point
controller defined by (30) and (3I)). These bounds ensure that
the trajectory is feasible and strongly optimal in the sense
of Definition 2l To derive these bounds we need to assume
that the objective functions fo(t,) are lower bounded as we
formally explain next.

Assumption 3. The objective functions fo(t,z) are lower
bounded on the action space X. In particular, there is a finite
constant K independent of the time horizon 7" such that for
all ¢ in the interval [0, T.

K > fo(t,z) — min fo(t, z). (55)
reX

The existence of the bound in (33) is a mild requirement.
Since the functions fy(t,x) are convex, a lower bound exists
for each function fo(¢, x) if the action space X is bounded, as
is the case in most applications of practical interest. The only
restriction imposed in this case is that min,cx fo(¢,2) does
not become progressively smaller with time so that a uniform
bound K holds for all times ¢. The bound can still hold if X
is not compact as long as the span of the functions fy(¢, z) is
not unbounded below.

A consequence of Assumption [3] is that the regret cannot
decrease faster than a linear rate as we formally state in the
following lemma.

Lemma 2. Let X C R" be a convex set of actions. If
Assumption [3| hold, then the regret defined in is lower
bounded by —K'T where K is the constant defined in (33) i.e

Rr > —KT. (56)

Proof. See Appendix [B] [|

Observe that regret is a quantity that we want to make small
and, therefore, having negative regret is a desirable outcome.
The result in Lemma |2| puts a floor on how much we can
succeed in making regret negative.

Using the bound in (56) and the definition of the energy
function in (33) we can write down regret and fit bounds
for an action trajectory x(t) that follows the saddle point
dynamics defined by (B0) and (BI). We state these bounds
in the following theorem.

Theorem 3. Let f : R X X — R™ and fo : Rx X — R,
where [and fo and |3 where X C R™ is a convex set. If the
environment is viable, then the controller defined by (30) and
@BI) produces trajectories x(t) that are feasible and strongly
optimal for all time horizons T > 0. In particular, the fit is
bounded by

1 1/2
Fri < (5V£*»[foT Fb) dt]+($(0)a A0)) + KT> » (87)

and the regret is bounded by

1

where V 5(x,\) is the energy function defined in (33), =*
is the solution to the problem in @) and K is the constant
defined in (53).

Proof. See Appendix [C] []

Theorem [3] assures that if the environment is viable for an
agent selecting actions from a bounded set X, the saddle point
controller defined in (B0)-(3I)) gives origin to trajectories that
are feasible and strongly optimal. The fit bounds in theorems
[2) and [3] prove a trade off between optimality and feasibility.
If optimality of the trajectory is not of interest it is possible
to get strongly feasible trajectories with fit that is bounded by
a constant independent of the time horizon 7' (cf. Theorem
[2). When an optimality criterion is added to the problem, its
satisfaction may come at the cost of a fit that may increase as
V/T. An important consequence of this difference is that even
if we could set the gain ¢ to be arbitrarily large, the fit bound
cannot be made arbitrarily small. The fit would still grow as
v KT. The result in Theorem [3| also necessitates Assumption
which is not needed for Theorem 2

As in the cases of theorems |I| and [2] it is possible to have
the environment and objective function selected strategically.
Further note that, again, similar to theorems E] and @, the
initial value of the energy function used to bound both regret
and fit is related with the square of the distance between the
initial action and the optimal offline solution of problem (2).
Therefore, the closer we start from this action the smaller the
bound of regret and fit will be.

V. NUMERICAL EXPERIMENTS

We evaluate performance of the saddle point algorithm
defined by (30)-(31) in the solution of the shepherd problem
introduced in Section We determine sheep paths using a
perturbed polynomial characterization akin to the one in (8.
Specifically, letting p,(¢) be elements of a polynomial basis,
the path y;(t) = [y;1(t), yi2(t)]T followed by the ith sheep is
given by the expression

n;—1

yir(t) = Z YikjDj () + wir(t), (59
i=o

where k = 1,2 denotes different path components, n; the total
number of polynomials that parameterize the path followed by
sheep i, and y;;,; represent the corresponding n; coefficients.
The noise terms w;y(t) are Gaussian white with zero mean,
standard deviation o, and chosen independently across com-
ponents and sheep. Their purpose is to obtain more erratic
paths.

To determine y;x; we make w;(t) = 0 in (39) and require
all sheep to start at position y;(0) = [0,0]7 and finish at
position y;(T") = [1,1]7. A total of L random points {g; }%~,
are then drawn independently and uniformly at random in the
unit box [0, 1]2. Sheep i = 1 is required to pass trough points
7 at times {T/(L+1), i.e., y1 (IT/(L+1)) = ;. For each of

the other sheep i # 1 we draw L random offsets {Ag; -,
uniformly at random from the box [—A, A]? and require the
ith sheep path to satisfy y;(IT/(L + 1)) = @i + Ag;. Paths
yi(t) are then chosen as those that minimize the path integral
of the acceleration squared subject to the constraints of each
individual path, i.e.,

T
v —avgmin | [(0) .
0

s.t. yL(O) = [OvO]Tv yz(T) = [15 I]Ta
yi(IT/(L+ 1)) = i + A,

where, by construction Ag;; = 0 for ¢ = 1. The minimum
acceleration paths in can be computed as solutions of a
quadratic program [30]. Let y’(¢) be the trajectory given by
(9) when we set y;x; = yj},;. We obtain the paths y;x(t) by
adding w;(t) to yr (t).

In subsequent numerical experiments we consider m = 5
sheep, a time horizon T' = 1, and set the proximity constraint
in @) to r; = 0.3. We use the standard polynomial basis
p;(t) = t7 in both, (B) and (39). The number of basis elements
in both cases is set to n = n; = 30. To generate sheep paths we
consider a total of L = 3 randomly chosen intermediate points,
set the variation parameter to A = 0.1, and the perturbation
standard deviation to o = (0.1. These problem parameters are
such that the environment is most likely viable in the sense of
Definition [I] We check that this is true by solving the offline
feasibility problem. If the environment is not viable a new one
is drawn before proceeding to the implementation of (30)-(B1).

We emphasize that even if the complete trajectory of the
sheep is known to us, the information is not used by the con-
troller. The controller is only fed information of the position
of the sheep at the current time, which it uses to evaluate the
environment functions f;(¢,z) in (9), their gradients f;, (¢,)
and the gradient of fy(¢,). In the first problem considered
fo(t,z) is identically zero, in the second takes the form of
and in the last problem the form of (TT).

(60)

A. Strongly feasible trajectories
We first consider a problem without optimality criterion in

which case (B0)-(3I) simplifies to (32)-(3I) and the strong
feasibility result in Theorem [2] applies.

The system’s behavior is illustrated in Figure 2| when the
gain is set to ¢ = 50. A qualitative examination of the
sheep and shepherd paths shows that the shepherd succeeds in
following the herd. A more quantitative evaluation is presented
in Figure [3] where we plot the instantaneous constraint viola-
tion f;(t,x(t)) with respect to each sheep for the trajectories
x(t) from (32)-(BI). Observe the oscillatory behavior that
has the constraint violations f;(¢,x(t)) hovering at around
fi(t,xz(t)) = 0. When the constraints are violated, i.e., when
fi(t,z(t)) > 0, the saddle point controller drives the shepherd
towards a position that makes him stay within r; of all sheep.
When a constraint is satisfied we have f;(¢,z(t)) < 0. This
drives the multiplier \;(¢) towards 0 and removes the force
that pushes the shepherd towards the sheep (c.f. Figure [3). The
absence of this force makes the constraint violation grow and
eventually surpass the maximum tolerance f;(¢,z(t)) = 0. At

Sheep 1
15F" + Sheep2
Sheep 3
Sheep 4
Sheep 5
Shepherd

y (m)

0.5

-0.5

T
Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

0.1H “‘} 1v~‘

o

=}

@
T

=)
T

Constraint violation (m2)

| | !
il |

(IR N
W“:« Wy I

"

Wl

-0.05

0 0.2 0.4 0.6 0.8 1 12
x(m)

Fig. 2: Path of the sheep and the shepherd for the feasibility-only
problem (Section when the gain of the saddle point controller
is set to be € = 50. The shepherd succeed in following the herd since
its path — in red — is close to the path of all sheep.

this point the multipliers start to grow and, as a consequence,
to push the shepherd back towards proximity with the sheep.

The behavior observed in Figure [3] does not contradict the
result in Theorem [2] which gives us a guarantee on fit, not
on instantaneous constraint violations. The components of
the fit are shown in Figure fa where we see that they are
indeed bounded. Thus, the trajectory is feasible in the sense
of Definition [2] even if the constraints are being violated at
specific time instances. Further note that the fit is not only
bounded but actually becomes negative. This is a consequence
of the relatively large gain £ = 50 which helps the shepherd
to respond quickly to the sheep movements. The fit for a
second experiment in which the gain is reduced to ¢ = 5
is shown in Figure b] In this case the fit stabilizes at a
positive value. This behavior is expected because reducing e
decreases the speed with which the shepherd can adapt to
changes in the sheep paths. More to the point, the fit bound in
Theorem [2] is inversely proportional to the gain e. The paths
and instantaneous constraints violations for ¢ = 5 are not
shown but they are qualitatively similar to the ones shown
for ¢ = 50 in figures [2] and 3]

B. Preferred sheep problem

Besides satisfying the constraints defined in (9), the shep-
herd is interested in following the first (black) sheep as close as
possible. This translates into the optimality criterion defined in
(T0). Since we construct sheep trajectories that are viable the
hypotheses of Theorem [3] hold. Thus, if the shepherd follows
the dynamics described by (30) and (31), the resulting action
trajectory is feasible and strongly optimal.

Given that the trajectory is guaranteed to be feasible, we
expect to have the fit bounded by a sublinear function of
T. This does happen, as can be seen in the fit trajectories
illustrated in Figure [5] where a gain ¢ = 50 is used. In
fact, the fit does not grow and is actually bounded by a
constant for all time horizons 7. The trajectory is therefore

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Instantaneous constraint value.

0.2

Multiplier Sheep 1
Multiplier Sheep 2
Multiplier Sheep 3
Multiplier Sheep 4
Multiplier Sheep 5

Multipliers (mzs)
o
o

o
o
5}

~0.05 L L L L L L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

(b) Temporal evolution of the multipliers.

Fig. 3: Relationship between the instantaneous value of the
constraints and their corresponding Lagrange multipliers for the
feasibility-only problem (Section [V-A). At the times in which the
value of a constraint is positive, its corresponding multiplier in-
creases. When the value of the multipliers is large enough a decrease
of the value of the constraint function is observed. Once the constraint
function is negative the corresponding multiplier decreases until it
reaches zero.

not only feasible but strongly feasible. This does not contradict
Theorem [3] because strong feasibility implies feasibility. The
reason why it’s reasonable to see bounded fit here is that the
objective function pushing the shepherd closer to the sheep
is, in a sense, redundant with the constraints that push the
shepherd to stay closer to all sheep. This redundancy can
be also observed in the fact that the fit in this problem (c.f.
Figure [3) is smaller than the fit in the problem of Section
(c.f. Figure #a). To explain why this may happen, focus on
the value of the multipliers in Figure 3b] between, e.g., times
0.7s < t < 2.1s. During this time all the multipliers are equal
to zero because the shepherd is satisfying all constraints and,

0.01 T

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5 H

-0.01

-0.02-

Fit (m?s)

-0.03

-0.04

-0.05 L L L L L L I I I

0.12

Sheep 1
0.1} Sheep 2 : . Do 4

Sheep 3 N
Sheep 4
Sheep 5

0.08 -

Fit (m?s)

0.06 - ,,,\,,7,»'// 4

004k frov e S S -

0.02-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (s)

(a) Experiment with gain £ = 50.

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

(b) Experiment with gain € = 5.

Fig. 4: Fit Fr for two different controller gains in the feasibility-only problem (Section [V-A). Fit is bounded in both cases as predicted by
Theorem [2} As is also predicted by Theorem [2| the larger the value of the gain € the smaller the fit of the shepherd’s trajectory.

as a consequence, the Lagrangian subgradient with respect to
the action is identically zero in the time interval. In turn, this
implies that the action is constant and no effort is made to
reduce the value of the constraints. If the optimality criterion
were present, the shepherd would still be pushed towards the
black sheep and fit would be further reduced.

The regret trajectory for this experiment with ¢ = 50 is
shown in Figure [f] Since the trajectory is strongly optimal
as per Theorem [3| we expect regret to be bounded. This is
the case in Figure [6] where regret is actually negative for all
times ¢ € [0, T]. Negative regret implies that the trajectory of
the shepherd is incurring a total cost that is smaller than the
one associated with the optimal solution. Notice that while
the optimal fixed action minimizes the total cost as defined
in it does not minimize the objective at all times. Thus,
by selecting different actions the shepherd can suffer smaller
instantaneous losses than the ones associated with the optimal
action. If this is the case, regret — which is the integral of the
difference between these two losses — can be negative.

The path of the shepherd is not shown for this experiment
as it is qualitatively analogous to the one in Figure [2] for the
feasibility-only problem considered in Section [V-A]

C. Minimum acceleration problem

We consider, as in sections [V-A] and an environment
defined by the distances between the shepherd and the sheep
given by (9), but add the minimum acceleration objective
defined in (TT)). Since the construction of the target trajectories
gives a viable environment we satisfy, again, the hypotheses
of Theorem [3] Hence, for a shepherd following the dynamics
given by (B0) and (3I)), the action trajectory is feasible and
strongly optimal. For the simulation in this section the gain of
the controller is set to € = 50.

A feasible trajectory implies that the fit must be bounded
by a function that grows sub linearly with the time horizon 7.

Notice that this is the case in Figure [§] Periods of growth of
the fit are observed, yet the presence of inflection points is an
evidence of the growth being controlled. The fit in this problem
is larger than the one in problem (c.f figures [3] and [3).
This result is predictable since the constraints and the objective
function push the action in different directions. For instance,
suppose that all constraints are satisfied and that the Lagrange
multipliers are zero. Then, the subgradient of the Lagrangian is
equal to the subgradient of the objective function. Hence the
action will be modified trying to minimize the acceleration
without taking the constraints (distance with the sheep) into
account. Hence, pushing the action to the boundary of the
feasible set. In this problem, this translates into the fact that
the shepherd does not follow the sheep as closely as in the
problems in sections and (c.f Figure [7).

Since the trajectory is strongly optimal, we should observe
a regret bounded by a constant. This is the case in Figure
[Notice that regret increases since the initial action differs
from the optimal. However, as in the case of the fit, the
inflection point at the end of the simulation is the evidence
that the regret is being controlled. Compared with the regret
of the black sheep problem (c.f Figure [6)), the regret in this
problem is larger. This is again explained by the fact that in
this problem objective and constraints can push the action
in different directions while in the problem in Section
the objective and the constraints point in the same general
direction.

VI. CONCLUSION

We considered a continuous time environment in which
an agent must select actions to satisfy a set of constraints.
These constraints are time varying and the agent does not
have information regarding their future evolution. We defined a
viable environment as one in which there is a fixed action that
verifies all the constraints at all times. We defined the concept

0.01 T

Sheep 1
Sheep 2
Sheep 3 H

Sheep 4
Sheep 5

-0.01-

-0.02 -

-0.03-

-0.04 -

Fit (m?s)

-0.05-

-0.06 -

-0.07 -

-0.08

~0.09 L L L L L L I I I

Sheep 1
151 + Sheep2
Sheep 3
Sheep 4
Sheep 5
Shepherd

y (m)

051

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Time (s)

Fig. 5: Fit Fr for the preferred sheep problem (Section when
the gain of the saddle point controller is set to be € = 50. As predicted
by Theorem [3] the trajectory is feasible since the fit is bounded, and,
in fact, appears to be strongly feasible. Since the subgradient of the
objective function is the same as the subgradient of the first constrain
the fit is smaller than in the pure feasibility problem (c.f Figure E[)

0

Regret (m2/53)

0.7 L L L L L L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Time (s)

Fig. 6: Regret Rt for the preferred sheep problem (Section
when the gain of the saddle point controller is set to be ¢ = 50. The
trajectory is strongly feasible, as predicted by TheoremEl

of fit as the total constraint violation and the notions of feasible
and stronlgy feasible trajectories. In feasible trajectories the
fit is bounded by a constant that is independent of the time
horizon, and in strongly feasible trajectories the fit is bounded
by a sub linear function of the time horizon. An objective
function was considered as well to select a strategy that meets
an optimality criterion from the set of strategies that satisfy
the constraints. We defined regret in continuous time as the
difference between the integral of the cost the agent incurs and
the minimum total cost that a clairvoyant agents would suffer.
We then defined strongly optimal trajectories as those for
which the regret is bounded by a constant that is independent
of the time horizon.

We proposed an online version of the saddle point controller
of Arrow-Hurwicz to generate trajectories with small fit and

0 0.2 0.4 0.6 : 0.8 1 12
x(m)

Fig. 7: Path of the sheep and the shepherd for the minimum
acceleration problem (Section when the gain of the saddle point
controller is set to be ¢ = 50. Observe that the shepherd path — in
red — is not as close to the path of the sheep as in Figure 2] This
is reasonable because the objective function and the constraints push
the shepherd in different directions.

Sheep 1 VAR |
Sheep 2 /
Sheep 3 /

0.1f Sheep 4 : 7
Sheep 5

012

Fit (mzs)

0.02

-0.02

I I I I I
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Time (s)

~0.04 L L L I

Fig. 8: Fit Fr for the minimum acceleration problem (Section
when the gain of the saddle point controller is set to ¢ = 50. Since the
fit is bounded, the trajectory is feasible in accordance with Theorem
El Since the gradient of the objective function and the gradient of the
feasibility constraints tend to point in different directions, the fit is
larger than in the preferred sheep problem (c.f Figure |§])

regret. We showed that for any viable environment the tra-
jectories that follow the dynamics of this controller are: (i)
Strongly feasible if no optimality criterion is considered. (ii)
Feasible and strongly optimal when an optimality criterion is
considered. Numerical experiments on a shepherd that tries to
follow a herd of sheep support these theoretical results.

APPENDIX
A. Proof of Lemma []|

In order to develop this proof we need to define the concept
of tangent cone and to state Lemma [3] relating the projection

15

10

@
T
I

Regret (mzlss)

=)
T
I

~10 1 1 1 1 1 1 I I I
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Time (s)

Fig. 9: Regret Ry for the minimum acceleration problem (Section
[V-C) when the gain of the saddle point controller is set to be € =
50. The trajectory is strongly optimal as predicted by Theorem [3]
Since the gradient of the objective function and the gradient of the
feasibility constraints tend to point in different directions, regret is
larger than the regret of the preferred sheep problem (c.f Figure EI)

of a vector over a set with the projection over the tangent
cone.

Definition 5 (Tangent cone). Let X C R" be a closed convex
set. We define the tangent cone to X at xg as

U O(x — xp).

6>0,zeX

Tx(xo) = (61)

The above union is over all the points of the set X and over
all the positive reals 6. Notice that the | ;- o 0(2—x0) is the ray
from x(and intersecting the point x. Thus, the tangent cone
is then the closure of the cone formed by all rays emanating
from x(and intersecting at least one point z € X different
from xg.

Lemma 3. For arbitrary § and v the projection over the set
X can be written as

Px (xo + 51}) =29 + 6PTX($0)(U) + 0(5), (62)
where O(9) is a function such that lims_,o O(8)/6 = 0.
Proof. See [28] Lemma 4.6 page 300.]

Corollary 2. Let X € R™ be a closed convex set, let xy € X
and let v € R™. Then the projection of v over the set X at x

defined in (1) is

Hx(l'o,’l)) = PTx(xo)(U)' (63)

Proof. The proof is trivial from lemma 3]]

Proof of Lemma [I] Consider the case in which z¢ € int(X).
Then, for any v there exits a small enough § > 0 such that
xo + dv € X. Hence Px(z¢ + 0v) = xg + dv, and then we
have that

Px(xo + 0v) — z¢ = vd. (64)

Thus IIx (z,v) = v and then we have trivially that

(xo — x)THX(xo, v) = (xo — x)Tv. (65)

Let’s now consider the case in which xg is in the border of X,
here two case are posible: either xg + dv € Tx (zg) for small
enough § > 0 or zg + dv ¢ Tx(xp) for all § > 0. Because of
this distinction is that the result of Corollary [2] is important.
In the first case we trivially have that

x (20,v) = Pry(z0)(v) = v. (66)

And therefore (63) holds in this case as well. Let us now
consider the case in which zg € dX and zo + dv ¢ Tx (o).
Because X is a convex set there exists a vector a € R™ with
|la]] = 1 defining a supporting hyperplane at z

H={zecR":a”(z —z0) =0}. (67)

Since it ‘H is a supporting hyperplane, for all z € X we have
that

a7 (z — w0) < 0. (68)

If the set is smooth at xo then the border of the tangent cone
at the point x(is contained in the hyperplane H, therefore
Hx(wg,v) C H. Thus, a’Tlx(z0,v) = 0. In this case we
have as well that aTv > 0, otherwise there must exists a
d > 0 such that zg + dv € Tx (o). On the other hand if there
is a corner at xg there are infinite supporting hyperplanes.
One of them verifies that aTv > 0 and contains the border
of the tangent cone, thus a’ Tl x (zg,v) = 0. Since I x (20, v)
is the projection of v over the tangent cone, we have that:
ILx (%0,v) = Pry(s)(v) = (alv)ayr, where a; € R™ and
verifies that a’a* = 0 and ||a*|| = 1. Projecting the vectors
x9 — x and v over a and at, we have

T _ ,T

(o —2)Tv = (0 —2)TavTa+ (vg — x)Ta v ay. (69)

Because of the previous discusion the above equation reduces
to

(xg — 2)Tv = (g — 2)TavTa + (xo —)T x (x0,v). (70)

Using the fact that a is the vector director of a supporting
hyperplane (68) and using the fact that vT'a > 0 the following

inequality holds
(o — x)Tv > (xg —) TIx (z0,v). (71)

Hence we have proved the lemma for all posible cases. W

B. Proof of Lemma [2]
If Assumption [3] holds, for any 2z € X we have that

K > fo(t,z) — gfafg)f(lfo(t»m) (72)

In particular, set * = z*, where z* is the solution to the
offline convex optimization problem defined in (2). Rearrange
the terms in the above equation to get

Lnei)r(l folt,x) — fo(t,z*) > —K. (73)

Since for any € X we have that fy(¢, x) > mingex fo(t, z),
in particular

fo(t,z(t)) — fo(t,2") > —K, (74)

where z(t) is the action at time ¢ when the agent follows the
dynamics defined by and (31). Integrate both sides of the
above equation in the interval [0, T

T T
/ folt,z(@®)dt — | fo(t,a*)dt > —KT (715
0 t=0

Since the left hand side of the above equation is the definition
of regret up to time 7' defined in we proved the lower
bound stated on the Lemma.

C. Proof of Theorem 3]

Consider action trajectories z(t) and multiplier trajectories
A(t) and the corresponding energy function V 5 (z(t), A(Z)) in
{33), for arbitrary given action z € R™ and multiplier A € A.
The derivative Vi, 5(x(t), A(t)) of the energy with respect to
time is then given by

Ve s(@(), A1) = ((t) = 2)Ta(t) + (A(t) = M)TA®). (76)

If the trajectories x(t) and A(t) follow from the saddle point
dynamical system defined by (30) and (BI) respectively we
can substitute the action and multiplier derivatives by their
corresponding values and reduce (76) to

Vaa(@(t), M) = (x(t) —) Tx (2, —e(fo,x(t, 2(t))
Lot x(0))A) + () = N (z, e f (8, 2(1))). (T7)
Then, use Lemma [I] for both X and A to write

Vaa(z(t), A1) < e[—(z(t) = 2)" (fou(t,2(1)) (78)
+ folt, z(E)AR)) + (A(E) = V)T f(t, 2 (D).

Notice that £(t, z(t), \(t)) = fo(t,z(t))+A&)T f(t,z(t)) is a
convex function with respect to the actions since it is a sum of
convex functions with respect to x. Then, using the definition
of subgradient (c.f. Definition [3)) we can upper bound the inner
product

—(@(t) = 2)" (fou(t, (1)) + folt, 2()A(D))

= —(2(t) = 2)" La(t, (1), A1)

by the difference L(t, Z, A(¢)) — L(t, z(t), A\(t)). Then, we can

upper bound the right hand side of the equation [/8| and obtain
Vo (@(t), A1) < elfo(t, @) + AT (1) F(t,2) — fo(t, x(1))

= N F (2 (1) + (AE) = N f(E (1))
(80)

Notice that on the right hand side of the above inequality the
fourth and the fifth term are opposite. Thus we can reduce the
above equation to

Vax(@(®),A(t) < elfo(t,m) + AT (1) f(t, T)
—folt,z(t)) = AT f(t,z(t)]. (8D

Rewriting the above equation and then integrating both sides
with respect to the time from time ¢ = 0 to ¢ = 7', we obtain

/0 folt.a(t)) — folt,) + AT f(t,a(t)) — XT (1) (¢, 7)dt

(79)

T
<=1 [Vala.A@)ar

Using the result (42) the above equation reduces to

T
/0 folt,(8)) — folt, 7) + NTf(t,x(t) — AT (1) f (1, D)t

< TV (#(0),A0)).

(83)

Since (83) holds for any Z € X and any A € A, it holds for the
particular choice # = x*, A = 0. Since A\T'(¢)f(t,2*)dt <0
V¢ € [0, T] we can lower bound the left hand side of to
obtain:

/0 fo(t,z(t)) — fo(t,z™)dt < éVx*’o(m(O)J\(O)). (84)

Notice that the left hand side of the above equation is the
definition of regret given in [3] Thus, we have shown that the
upper bound for the regret is the one stated in (38). And since
the right hand side of the above equation is a constant for all
T > 0 we proved that the trajectory generated by the saddle
point controller is strongly optimal. It remains to prove that
the trajectory generated is feasible. In order to do so, choose
T = x*, and use the result of Lemma [2] to transform (83) into

/T NTF(t 2 (0)=AT () f(t, ") dt
0

< 2V, 5(#(0),A0)) + KT,

(85)
Since AT(t)f(t,z*)dt < 0 Vt € [0,T] we can again
lower bound the left hand side of the above equation by
AT fOT f(t,z(t)) and obtain

T
3 [p(ea0)at < (Ve s(2(0).00) /2 + KT 66

Now let’s choose A\ = UOT f(t,x(t))dt]+. The projection
on the positive orthant is needed because A\ € R’ Let
I =1{i=1.m| [} fi(t,z(t))dt > 0)}. Notice that if i ¢ I,
then \; foT fi(t,x(t))dt = 0. On the other hand, if i € I,

< T T 2
Ai Jy filt,z(t)dt = (fo fi(t, x(t)) dt) > 0. Therefore,
for all 7 € I we have:

T 2
</ fi(t,z(t)) dt)
0
1

v

< Ve U7 e at] (a(

0),A(0)) + KT. (87)
Notice that, the left hand side of the above equation is the
square of the ith component of the fit. Thus for all ¢ € I it is
clear that:

1 1/2

Fri < (EV’”*»UOT Fto) dt]+(x(0)7 A(0)) + KT) . (88)
Now if ¢ ¢ I it means that Fr; < O therefore it is also
smaller than the established bound in (88). Which proves that
the trajectories generated by the saddle point controller defined
by (30) and (BI) are feasible since they are bounded by a

sublinear function of the time horizon for all 7.

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

REFERENCES

K. J. Arrow and L. Hurwicz, Studies in linear and nonlinear program-
ming. CA: Stanford University Press, 1958.

M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations,
dynamical systems, and an introduction to chaos, vol. 60. Academic
press, 2004.

M. Kirsti¢ and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4,
pp- 595-601, 2000.

K. B. Ariyur and M. Krstic, Real-time optimization by extremum-seeking
control. John Wiley & Sons, 2003.

Y. Tan, D. Nesi¢, and 1. Mareels, “On non-local stability properties of
extremum seeking control,” Automatica, vol. 42, no. 6, pp. 889-903,
2006.

W. H. Moase, C. Manzie, and M. J. Brear, “Newton-like extremum-
seeking part i: theory,” in Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on, pp. 3839-3844, IEEE,
2009.

E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” Robotics and Automation, IEEE Transactions on,
vol. 8, no. 5, pp. 501-518, 1992.

C. W. Warren, “Global path planning using artificial potential fields,” in
Robotics and Automation, 1989. Proceedings., 1989 IEEE International
Conference on, pp. 316-321, IEEE, 1989.

0. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Rob. Res., vol. 5, pp. 90-98, Apr. 1986.

S. A. Masoud and A. A. Masoud, “Constrained motion control using
vector potential fields,” Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, vol. 30, no. 3, pp. 251-272, 2000.
S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path
planning,” IEEE Transactions on robotics and automation, vol. 16, no. 5,
pp. 615-620, 2000.

P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial
potential fields and their application in real time robot path planning,”
in Evolutionary Computation, 2000. Proceedings of the 2000 Congress
on, vol. 1, pp. 256-263, IEEE, 2000.

S.-i. Azuma, M. S. Sakar, and G. J. Pappas, “Nonholonomic source
seeking in switching random fields,” in Decision and Control (CDC),
2010 49th IEEE Conference on, pp. 6337-6342, 1EEE, 2010.

S.-i. Azuma, M. S. Sakar, and G. J. Pappas, “Stochastic source seeking
by mobile robots,” Automatic Control, IEEE Transactions on, vol. 57,
no. 9, pp. 2308-2321, 2012.

N. Atanasov, J. Le Ny, N. Michael, and G. J. Pappas, “Stochastic source
seeking in complex environments,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, pp. 3013-3018, IEEE, 2012.
S.-J. Liu and M. Krstic, “Stochastic source seeking for nonholonomic
unicycle,” Automatica, vol. 46, no. 9, pp. 1443 — 1453, 2010.

A. Nedi¢ and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of optimization theory and applications, vol. 142,
no. 1, pp. 205-228, 2009.

H. Uzawa, “Iterative methods for concave programming,” Studies in
linear and nonlinear programming, vol. 6, 1958.

D. Maistroskii, “Gradient methods for finding saddle points,” Matekon,
vol. 14, no. 1, pp. 3-22, 1977.

S. H. Low and D. E. Lapsley, “Optimization flow control- i: basic
algorithm and convergence,” IEEE/ACM Transactions on Networking
(TON), vol. 7, no. 6, pp. 861-874, 1999.

M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255-312,
2007.

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathematical
Imaging and Vision, vol. 40, no. 1, pp. 120-145, 2011.

S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107-
194, 2011.

V. Vapnik, The nature of statistical learning theory. Springer, 2000.
M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in ICML, pp. 928-936, 2003.

E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169-192, 2007.

[27]

(28]
[29]

[30]

M.-G. Cojocaru and L. Jonker, “Existence of solutions to projected
differential equations in hilbert spaces,” Proceedings of the American
Mathematical Society, vol. 132, no. 1, pp. 183-193, 2004.

D. Zhang and A. Nagurney, “On the stability of projected dynamical
systems,” J. Optim. Theory Appl., vol. 85, pp. 97-124, Apr. 1995.

D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

	Introduction
	Viability, feasibility and optimality
	Regret and fit
	The shepherd problem

	Unconstrained regret in continuous time.
	Saddle point algorithm
	Strongly feasible trajectories
	Strongly optimal feasible trajectories

	Numerical experiments
	Strongly feasible trajectories
	Preferred sheep problem
	Minimum acceleration problem

	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3

	References

