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Abstract—A method for authorship attribution based on func-
tion word adjacency networks (WANSs) is introduced. Function
words are parts of speech that express grammatical relationships
between other words but do not carry lexical meaning on their
own. In the WANs in this paper, nodes are function words
and directed edges from a source function word to a target
function word stand in for the likelihood of finding the latter
in the ordered vicinity of the former. WANSs of different authors
can be interpreted as transition probabilities of a Markov chain
and are therefore compared in terms of their relative entropies.
Optimal selection of WAN parameters is studied and attribution
accuracy is benchmarked across a diverse pool of authors and
varying text lengths. This analysis shows that, since function
words are independent of content, their use tends to be specific
to an author and that the relational data captured by function
WAN:Ss is a good summary of stylometric fingerprints. Attribution
accuracy is observed to exceed the one achieved by methods
that rely on word frequencies alone. Further combining WANs
with methods that rely on word frequencies, results in larger
attribution accuracy, indicating that both sources of information
encode different aspects of authorial styles.

I. INTRODUCTION

The discipline of authorship attribution is concerned with
matching a text of unknown or disputed authorship to one
of a group of potential candidates. More generally, it can
be seen as a way of quantifying literary style or uncovering
a stylometric fingerprint. The most traditional application of
authorship attribution is literary research, but it has also been
applied in forensics [2], defense intelligence [3] and plagiarism
[4]. Both, the availability of electronic texts and advances
in computational power and information processing, have
boosted accuracy and interest in computer based authorship
attribution methods [S]-[7]].

Authorship attribution dates at least to more than a century
ago with a work that proposed distinguishing authors by
looking at word lengths [8]]. This was later improved by
[9] where the average length of sentences was considered as
a determinant. A seminal development was the introduction
of the analysis of function words to characterize authors’
styles [[10] which inspired the development of several methods.
Function words are words like prepositions, conjunctions, and
pronouns which on their own carry little meaning but dictate
the grammatical relationships between words. The advantage
of function words is that they are content independent and,
thus, can carry information about the author that is not biased
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by the topic of the text being analyzed. Since [10], function
words appeared in a number of papers where the analysis of
the frequency with which different words appear in a text plays
a central role one way or another; see e.g., [11]-[16]. Other
attribution methods include the stylometric techniques in [[17]],
the use of vocabulary richness as a stylometric marker [[18]]-
[20] — see also [21] for a critique —, the use of stable words
defined as those that can be replaced by an equivalent [22]], and
syntactical markers such as taggers of parts of speech [23]-
[25]]. Other recent methods have begun to use topic models to
distinguish authors [26]-[28].

In this paper, we use function words to build stylometric
fingerprints but, instead of focusing on their frequency of
usage, we consider their relational structure. We encode these
structures as word adjacency networks (WANs) which are
asymmetric networks that store information of co-appearance
of two function words in the same sentence (Section [[II). With
proper normalization, edges of these networks describe the
likelihood that a particular function word is encountered in
the text given that we encountered another one. In turn, this
implies that WANSs can be reinterpreted as Markov chains de-
scribing transition probabilities between function words. Given
this interpretation it is natural to measure the dissimilarity
between different texts in terms of the relative entropy between
the associated Markov chains (Section [[II-A). Markov chains
have also been used as a tool for authorship attribution in [29]—
[31]. However, the chains in these works represent transitions
between letters, not words. Although there is little intuitive
reasoning behind the notion that an author’s style can be
modeled by his usage of individual letters, these approaches
generate somewhat positive results.

The classification accuracy of WANs depends on various
parameters regarding the generation of the WANSs as well as
the selection of words chosen as network nodes. We consider
the optimal selection of these parameters and develop an
adaptive strategy to pick the best network node set given the
texts to attribute (Section [[V). Using a corpus composed of
texts by 21 authors from the 19th century, we illustrate the
implementation of our method and analyze the changes in
accuracy when modifying the number of candidate authors
as well as the length of the text of known (Section [V-A)
and unknown (Section authorship. Further, we analyze
how the similarity of styles between two authors influences
the accuracy when distinguishing their texts (Section [V-C).
We then incorporate authors from the early 17th century
to the corpus and analyze how differences in time period,
genre, and gender influence the classification rate of WANs
(Sections to [VI-C). We also show that WANs can be



used to detect collaboration between several authors (Section
[VI-D). We further demonstrate that our classifier performs
better than techniques based on function word frequencies
alone (Section [VII). Perhaps more important, we show that the
stylometric information captured by WANS is not the same as
the information captured by word frequencies. Consequently,
their combination results in a further increase in classification
accuracy.

II. PROBLEM FORMULATION

We are given a set of n authors A = {ay,as,...,a,}, a set
of m known texts T' = {t1,ta, ..., t,n } and a set of k unknown
texts U = {uq,us, ..., u}. We are also given an authorship
attribution function rr : T — A mapping every known text
in T to its corresponding author in A, i.e. rr(t) € A is the
author of text ¢ for all ¢t € T. We further assume 77 to be
surjective, this implies that for every author a; € A there is at
least one text ¢; € T with rp(t;) = a;. Denote as T C T
the subset of known texts written by author a;, i.e.

TO = {t |t eT,rr(t) = a;}. (1)

According to the above discussion, it must be that |T(*)| > 0
for all 4 and {T()}7_, must be a partition of 7. In Section
we use the texts contained in 7(*) to generate a relational
profile for author a;. There exists an unknown attribution
function 7y : U — A which assigns each text u € U to
its actual author ry(u) € A. Notice that we assume that
the real author of every unknown text is contained in the
pool of candidate authors. Our objective is to approximate
this unknown function with an estimator 7y built with the
information provided by the attribution function r7. We define
the classification accuracy of said estimator 7y as the fraction
of unknown texts that are correctly attributed. With I denoting
the indicator function we can write the classification accuracy
p as

pliv) =3 v =@}, @
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We use p(7y7) to gauge performance of the proposed classifier
in Sections [[V] to

III. FUNCTION WORDS ADJACENCY NETWORKS

In order to solve the proposed problem, we construct word
adjacency networks (WANs) for the known texts ¢ € T' and
unknown texts © € U and then build an estimator 7;; based
on the comparison of WANS.

WANs are weighted and directed networks that contain
function words as nodes. The weight of a given edge rep-
resents the likelihood of finding the words connected by this
edge close to each other in the text. In constructing WANS,
the concepts of sentence, proximity, and function words are
important. Every text consists of a sequence of sentences,
where a sentence is defined as an indexed sequence of words
between two stopper symbols. We think of these symbols as
grammatical sentence delimiters, but this is not required. For
a given sentence, we define a directed proximity between two
words parametric on a discount factor & € (0, 1) and a window

Common Function Words

the and a of to in that  with as it
for but at on this all by which  they S0
from no or one what if an would  when  will

TABLE I: Most common function words in analyzed texts.

length D. If we denote as i(w) the position of word w within
its sentence the directed proximity d(w1,ws) from word w; to
word wy when 0 < i(wz) —i(wy) < D is defined as

d(wy,wo) 1= @) 7ilen) =L (3)

The directed proximity in (3) can be interpreted as the value
of a gappy bigram [32[]-[34] consisting of words w; and wo
where « is the decaying factor that quantifies the magnitude
of the gap between the pair of words.

In every sentence there are two kind of words: function and
non-function words [35]. While in (3) the words w; and ws
need not be function words, in this paper we are interested
only in the case in which both w; and wy are function words.
Function words are words that express primarily a grammatical
relationship. These words include conjunctions (e.g., and, or),
prepositions (e.g., in, at), quantifiers (e.g., some, all), modals
(e.g., may, could), and determiners (e.g., the, that). We exclude
gender specific pronouns (he, she) as well as pronouns that
depend on narration type (I, you) from the set of function
words to avoid biased similarity between texts written using
the same grammatical person. The 30 function words that
appear most often in our experiments are listed in Table
For a full list of the function words considered, see [30].
The concepts of sentence, proximity, and function words are
illustrated in the following example.

Example 1 Define the set of stopper symbols as {. ; }, let the
parameter o = 0.8, the window D = 4, and consider the text

“A swarm in May is worth a load of hay; a swarm in
June is worth a silver spoon; but a swarm in July is not
worth a fly.”

The text is composed of three sentences separated by the
delimiter { ; }. We then divide the text into its three constituent
sentences and highlight the function words

a swarm in May is worth a load of hay
a swarm in June is worth a silver spoon
but a swarm in July is not worth a fly

The directed proximity from the first @ to swarm in the first
sentence is o’ = 1 and the directed proximity from the first
a to in is o' = 0.8. The directed proximity to worth or load
is 0 because the indices of these words differ in more than
D =4.

To formally define a WAN, from a given text ¢ we construct
the network W; = (F, Q) where F' = {f1, fa, ..., fn} is the set
of nodes composed by a collection of function words common
to all WANs being compared and @; : FF x FF — Ry is a
similarity measure between pairs of nodes. Methods to select
the elements of the node set F' are discussed in Section

In order to calculate the similarity function Q;, we first
divide the text ¢ into sentences s where h ranges from 1 to



the total number of sentences. We denote by s?(e) the word
in the e-th position within sentence h of text t. In this way,
we define

D
Qufinf) = STl (e) = £} 0% I{sh(e +d) = £},

h,e d=1
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for all f;, f; € F not necessarily distinct, where a € (0, 1)
is the discount factor that decreases the assigned weight as
the words are found further apart from each other and D is
the window limit to consider that two words are related. The
similarity measure in (@) is the sum of the directed proximities
from f; to f; defined in (@) for all appearances of f; when
the words are found at most D positions apart in the same
sentence. Since in general Q¢(f;, f;) # Q+(f;, fi), the WANs
generated are directed. Notice that the function in (4]) combines
into one similarity number the frequency of co-appearance of
two words and the distance between these two words in each
appearance, making both effects indistinguishable.

Example 2 Consider the same text and parameters of Exam-
ple |1} There are four function words yielding the set F' =
{a, in, of, but}. The matrix representation of the similarity
function Q) is

a in of but
a 0 3x08 08 0
in | 2x0.8° 0 0 0
Qi = of 0 0 0 o | ©
but 1 0.82 0 0

The total similarity value from a to in is obtained by summing
up the three 0.8' proximity values that appear in each sen-
tence. Although the word a appears twice in every sentence,
Q(a,a) = 0 because its appearances are more than D = 4
words apart.

Using text WANs, we generate a network W, for every
author a, € A as W, = (F,Q.) where

Q=Y Q. ©6)

teT ()

Similarities in (). depend on the amount and length of the
texts written by author a.. This is undesirable since we want
to be able to compare relational structures among different
authors. Hence, we normalize the similarity measures as

: Qelfir /3)

Qc(fis f7) S 0(fi f) (N
forall f;, f; € F. In this way, we achieve normalized networks
P, = (F, Qc) for each author a.. In we assume that there
is at least one positively weighted edge out of every node f;
so that we are not dividing by zero. If this is not the case for
some function word f;, we fix Q.(fi, f;) = 1/|F| for all f;.

Example 3 By applying normalization to the similarity
function in Example [2] we obtain the following normalized

similarity matrix

a in of but

a 0 075 025 0

. in 1 0 0 0
Qi = of | 025 0.25 025 0.25 ®)

but \ 0.61 0.39 0 0

Similarity Q; no longer depends on the length of the text ¢
but on the relative frequency of the co-appearances of function
words in the text.

Our claim is that every author a. has an inherent relational
structure P, that serves as an authorial fingerprint and can be
used towards the solution of authorship attribution problems.
]5C = (F, QC) estimates P. with the available known texts
written by author a..

A. Network Similarity

The normalized networks P, can be interpreted as discrete
time Markov chains (MC) since the similarities out of every
node sum up to 1. Thus, the normalized similarity between
words f; and f; is a measure of the probability of finding f;
in the words following an encounter of f;. In a similar manner,
we can build a MC P, for each unknown text u € U.

Since every MC has the same state space F', we use the
relative entropy H (P, P») as a dissimilarity measure between
the chains P, and P». The relative entropy is given by

_ , v P )
H(Py, Py) = ;w(fopl(fufﬂlog Bl ) 9)

where 7 is the limiting distribution on P; and we consider
0 log0 to be equal to 0. The choice of H as a measure of
dissimilarity is not arbitrary. In fact, if we denote as w; a
realization of the MC Py, H(Py, P,) is proportional to the
logarithm of the ratio between the probability that w; is a
realization of P; and the probability that w; is a realization
of P. In particular, when H(Py, P,) is null, the ratio is 1
meaning that a given realization of P; has the same probability
of being observed in both MCs [37]]. Relative entropy (9),
also called Kullback-Leibler divergence rate [38]], is a common
dissimilarity measure among Markov chains and is used in a
variety of applications such as face recognition [39] and gene
analysis [40]]. Notice that the limit distribution 7 in (9) retains
some information about the frequency of appearance of the
function words. E.g., for the MC in Example [3] the highest
limit probability 7(a) = 0.44 is obtained for the most frequent
word a while the lowest limit probability w(but) = 0.04 is
achieved by one of the two words that appears only once in the
text fragment in Example [ We point out that relative entropy
measures have also been used to compare vectors with function
word frequencies [41]. This is unrelated to their use here as
measures of the relational information captured in function
WAN:S. Attribution in [42] is also based on the comparison
of graphs via information theoretic measures. However, both
the graphs constructed and the measure used differ from those
developed in this paper.



Using (9), we generate the attribution function 7y (u) by
assigning the text u to the author with the most similar
relational structure

fu(u) = ap, where p = argmin H(P,, Pc) (10)
(&

Whenever a transition between words appears in an unknown

text but not in a profile, the relative entropy in (I0) takes

an infinite value for the corresponding author. In practice we

compute the relative entropy in (9) by summing over the non-

zero transitions in the profiles,

>

1,5\ P2(fi,f5)70

Pi(fi, £7)
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Observe that if there is a transition between words that appears
often in the text P; but never in the profile P, the expression
in (TT) skips the relative entropy summand. This is undesirable
because the often appearance of this transition in the text
network Pj is a strong indication that this text was not written
by the author whose profile network is P,. The expression
in Q) would capture this difference by producing an infinite
value for the relative entropy. However, this infinite value is
still produced if a transition between words does not appear
in the author profile P, and appears just once in the text Pj.
In this case, the null contribution to the relative entropy in
is more reasonable than the infinity contribution in (9)
because the rarity of the transition in both texts is an indication
that the text and the profile belong to the same author. Our
experiments show that the latter situation is more common than
the former. Transitions rare enough so as not to appear in a
profile are, for the most part, also infrequent in all texts. This
is reasonable because rare combinations of function words are
properties of the language more than of individual authors.
We have also explored the use of Laplace smoothing to avoid
infinite entropies — see e.g., [43] Chapter 13], but (II) still
achieves better results in practice.

Most of the computational burden of the method proposed
resides in the construction of the WANS, that is, going from
the written texts to the dissimilarity function @Q; in ().
Nevertheless, this is a one-time effort given that once the WAN
is built, it can be utilized for various attribution problems.
The attribution time is based on the computation of relative
entropies [cf. (@) and (TI)] which, for the network sizes
considered in practice, take in the order of 3 ms. In this
way, the attribution of a text among, e.g., 10 authors takes
approximately 30 ms.

We proceed to compare our network similarity approach
with the more conventional maximum likelihood test for
Markov chains after the following remark.

H(Py,P,) =

Remark 1 For the relative entropies in (I0) to be well de-
fined, the MCs P, associated with the unknown texts have
to be ergodic to ensure that the limiting distributions 7 in (9)
and are unique. In practice, this is usually true if the texts
that generated P, are sufficiently long. If this is not true for
a particular network, then the limiting distribution 7 is not
well defined since it depends on the state in which the MC is
initialized. Hence, for these cases, we replace 7(f;) in @I) and

by the expected fraction of time 7(f;) that a randomly
initialized walk spends in state f;. The random initial state
— function word — is drawn from a distribution given by the
relative function word frequencies in the text. Formally

7l = lim pT P!, (12)
t—o00

where p is a vector of length |F'| and contains in the i-th

position the relative frequency of function word f; in the

unknown text u. Notice that for ergodic P;, 7 coincides with

7 independently of the probability distribution p.

B. Network Similarity vs. Maximum Likelihood Estimation

A more conventional approach towards the attribution of an
unknown text among a group of authors associated to Markov
chains would be as follows: we first relate the unknown
text to a particular realization of a Markov chain and then
assign such text to the author whose MC has the largest
probability of outputting such a realization. Essentially, we
would be computing the maximum likelihood test [44] for
a given unknown text. As it turns out, whenever a Markov
chain realization can be associated with a text, both the
relative entropy and the maximum likelihood approaches are
equivalent.

To be more specific, let us define the following problem:
we are given two Markov chains P and R defined on the
same state space of function words F' = {f1, f2,..., fn}.
We are also given a walk W on the state space F|, i.e., an
ordered sequence of words W = {w;} for i = 1,...,m such
that w; € F for all . We want to compare this walk W
with the chains P and R. In particular, we want to compare
the maximum likelihood approach with the network similarity
one proposed in Section For the former, we find the
likelihood of W being generated by P and R and assign the
walk to the chain with the largest likelihood. For the latter,
we empirically generate a third chain @ based on the walk W
and compare () with P and R via relative entropies (9). We
then assign W to the chain closer to Q.

Indeed, both approaches are equivalent. To see this, observe
that the log-likelihood that W is generated by one of the
chains, say P is given by

m—1
LW, P) =" log(P(w, wk11))- (13)
k=1
Notice that for two particular function words f;, f; € F, in the
above summation the term log(P(f;, f;)) appears F;Q(fi, f;)
times where F; is the number of times that state f; appears in
walk W without considering its last state. This implies that

LW, P) =Y FQ(fi, f;)log(P(fi, f;)).

2]

(14)

If we apply any strictly decreasing function g : R — R to L,
then the lower the value of h := g o £ the more similar W is
to the chain P. In particular, pick the function

o) = 2+ QU ) os(QU ). 19)
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Notice that g does not depend on P. By composing g with £
we obtain

C?(jlaf})
h(W, P)=goL(W,P)= i fi) 1o
(16)
Finally, for an ergodic MC, the fraction F;/(m — 1) is very

close to the limit probability 7(f;) except for a minor border
effect in the first and last observation. Thus, we obtain that

, Vo Qfi i) _
;w(fw(fz,f])l S pr )~ H@QP).
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h(W, P) ~

where H stands for relative entropy (9). Hence, the larger the
likelihood between W and P, the smaller the entropy between
@ and P, making both approaches equivalent.

Even though both approaches are identical when a chain
realization can be defined for the text to attribute, for the
purposes of our paper the network similarity approach is
preferable since each text does not clearly define a walk W.
For each appearance of a function word in a text, we do not
only consider the transition to the next function word but, in
turn, we consider a distribution of possible transitions over
the next words with a dampening factor. This distribution is
naturally represented by a MC itself. In particular, if in a
text two function words appear always as a pair but with a
third function word in between, we want to detect this. The
associated walk W would not record any transition between
these two words whereas the MC built does capture this
interaction. For this reason, we choose the relative entropy
operator H to compare Markov Chains.

In the next section, we proceed to specify the selection of
function words in I for the construction of WANs as well as
the choice of the parameters v and D.

IV. SELECTION OF FUNCTION WORDS AND WAN
PARAMETERS

The classification accuracy of the function WANs intro-
duced in Section [lII] depends on the choice of several variables
and parameters: the set of sentence delimiters or stopper
symbols, the window length D, the discount factor «, and the
set of function words F' defining the nodes of the adjacency
networks. In this section, we study the selection of these
parameters to maximize classification accuracy.

The selections of stopper symbols and window lengths are
not critical. As stoppers we include the grammatical sentence
delimiters ‘., ‘?° and ‘!’, as well as semicolons ‘;” to form
the stopper set {. ? ! ;}. We include semicolons since they
are used primarily to connect two independent clauses [35].
In any event, the inclusion or not of the semicolon as a stopper
symbol entails a minor change in the generation of WANs due
to its infrequent use. As window length we pick D = 10, i.e.,
we consider that two words are not related if they appear more
than 10 positions apart from each other. Larger values of D
lead to higher computational complexity without increase in
accuracy since grammatical relations of words more than 10
positions apart are rare.

In order to choose which function words to include when
generating the WANs we present two different approaches: a
static methodology and an adaptive strategy. The static ap-
proach consists in picking the function words — among all the
functions words considered; see [36] — most frequently used
in the union of all the texts being considered in the attribution,
i.e, all those that we use to build the profile and those being
attributed. By using the most frequent function words we
base the attribution on repeated grammatical structures and
limit the influence of noise introduced by unusual sequences
of words which are not consistent stylometric markers. In
our experiments, we see that selecting a number of functions
words between 40 and 70 yields optimal accuracy. For way of
illustration, we consider in Fig. [E the attribution of 1,000
texts of length 10,000 words among 7 authors chosen at
random from our pool of 19th century authors [36] for a fixed
value of o = 0.75 and profiles of 100,000 words — see also
Section [V]for a description of the corpus. The solid line in this
figure represents the accuracy achieved when using a network
composed of the n most common function words in the texts
analyzed for n going from 2 to 100. Accuracy is maximal
when we use exactly 50 function words, but the differences
are minimal and likely due to random variations for values of
n between n = 42 and n = 66. The flatness of the accuracy
curve is convenient because it shows that the selection of n
is not that critical. In this particular example we can choose
any value between, say n = 45 and n = 60, without affecting
reliability. In a larger test where we also vary the length of the
profiles, the length of the texts attributed, and the number of
candidate authors, we find that including 60 function words is
empirically optimal.

The adaptive approach still uses the most common function
words but adapts the number of function words used to the
specific attribution problem. In order to choose the number of
function words, we implement repeated leave-one-out cross
validation as follows. For every candidate author a; € A, we
concatenate all the known texts 7() written by a; and then
break up this collection into IV pieces of equal length. We
build a profile for each author by randomly picking N — 1
pieces for each of them. We then attribute the unused pieces
between the authors utilizing WANs containing the n most
common function words for n varying in a given interval
[Pmin, Pmax]. We perform M of these cross validation rounds
in which we change the random selection of the N — 1
texts that build the profiles. The value of n that maximizes
accuracy across these M trials is selected as the number
of nodes for the WANs. We perform attributions using the
corresponding n word WANSs for the profiles as well as for
the texts to be attributed. In our numerical experiments we
have found that using N = 10, npin = 20, nmax = 80, and
M varying between 10 and 100 depending on the available
computation time are sufficient to find values of n that yield
good performance.

The dashed line in Fig. [Ta] represents the accuracy obtained
by implementing the adaptive strategy with N = 10, Ny =
20, nmax = 80, and M = 100 for the same attribution problem
considered in the static method — i.e., attribution of 1,000 texts
of length 10,000 words among 7 authors for a = 0.75 and
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Fig. 1: Both figures present the accuracy for the attribution of 1,000 texts of length 10,000 words among 7 authors chosen at
random with 100,000 words profiles. (a) The solid line represents the accuracy achieved for static networks of increasing size.
The dashed line is the accuracy obtained by the adaptive method. (b) Mean accuracy (blue) is maximized for values of the
discount factor « in the range between 0.65 and 0.85. Percentiles - 25 and 75 - are depicted in dashed green.

profiles of 100,000 words. The accuracy is very similar to the
best correct classification rate achieved by the static method.
This is not just true of this particular example but also true
in general. The static approach is faster because it requires no
online training to select the number of words n to use in the
WANSs. The adaptive strategy is suitable for a wider range
of problems because it contains less assumptions than the
static method about the best structure to differentiate between
the candidate authors. E.g., when shorter texts are analyzed,
experiments show that the optimal static method uses slightly
less than 60 words. Likewise, the optimal choice of the number
of words in the WANSs changes slightly with the time period
of the authors, the specific authors considered, and the choice
of parameter . These changes are captured by the adaptive
approach. We advocate adaptation in general and reserve the
static method for rapid attribution of texts or cases when the
number of texts available to build profiles is too small for
effective cross-validation.

To select the decay parameter we use the adaptive leave-
one-out cross validation method for different values of o and
study the variation of the correct classification rate as « varies.
In Fig. we show the variation of the correct classification
rate with o when attributing 1,000 texts of length 10,000 words
between 7 authors of the 19th century picked at random from
our text corpus [36] using profiles with 100,000 words — see
also Section[V]for a description of the corpus. As in the case of
the number of words used in the WANs there is a wide range
of values for which variations are minimal and likely due to
randomness. This range lies approximately between o« = 0.65
and o = 0.85. Notice that for the particular case of o = 1,
the WANs store the frequencies of appearances for pairs of
function words within the window length D. However, Fig.
[Ib] reveals that the discounted approach where o < 1 achieves
better results when « is optimized. In a larger test where we
also vary text and profile lengths as well as the number of
candidate authors we find that o = 0.75 is optimal. We found
no gains in an adaptive method to choose «.

V. ATTRIBUTION ACCURACY

Henceforth, we fix the WAN generation parameters to the
optimal values found in Section i.e., the set of sentence
delimiters is { . ? ! ; }, the discount factor is a = 0.75, and
the window length is D = 10. The set of function words F' is
picked adaptively for every attribution problem by performing
M = 10 cross validation rounds.

The text corpus used for the simulations consists of authors
from two different periods [36]]. The first group corresponds to
21 authors spanning the 19th century, both American — such
as Nathaniel Hawthorne and Herman Melville — and British
— such as Jane Austen and Charles Dickens. For these 21
authors, we have an average of 6.5 books per author with a
minimum of 4 books for Charlotte Bronte and a maximum
of 10 books for Herman Melville and Mark Twain. In terms
of words, this translates into an average of 560,000 words
available per author with a minimum of 284,000 words for
Louisa May Alcott and a maximum of 1,096,000 for Mark
Twain. The second group of authors corresponds to 7 Early
Modern English playwrights spanning the late 16th century
and the early 17th century, namely William Shakespeare,
George Chapman, John Fletcher, Ben Jonson, Christopher
Marlowe, Thomas Middleton, and George Peele. For these
authors we have an average of 22 plays per author with a
minimum of 4 plays for Peele and a maximum of 47 plays
written either completely or partially by Fletcher. In terms
of word length, we count with an average length of 400,000
words per author with a minimum of 50,000 for Peele and a
maximum of 900,000 for Fletcher.

To illustrate authorship attribution with function WANSs, we
solve an authorship attribution problem with two candidate
authors: Mark Twain and Herman Melville. For each candidate
author we are given five known texts and are asked to attribute
ten unknown texts, five of which were written by Twain while
the other five belong to Melville [36]. Every text in this
attribution belongs to a different book and corresponds to a
10,000 word extract, i.e. around 25 pages of a paper back
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Fig. 2: (a) Perfect accuracy is attained for two candidate authors. Every empty marker falls in the half plane corresponding to
the associated filled marker of their color. (b) One mistake is made for three authors. One green empty triangle falls in the

region attributable to the blue square author.

midsize edition. The five known texts from each author are
used to generate corresponding profiles as described in Section
Relative entropies in (TI) from each of the ten unknown
texts to each of the two resulting profiles are then computed.

Since relative entropies are not metrics, we use multidi-
mensional scaling (MDS) [45] to embed the two profiles
and the ten unknown texts in 2-dimensional Euclidean metric
space with minimum distortion. The result is illustrated in Fig.
[2a] Twain’s profile is depicted as a filled red circle whereas
Melville’s profile is depicted as a filled blue square. Unknown
texts are depicted as empty circles and squares, where the
color and the shape indicates the real author, i.e. red circles
for Twain and blue squares for Melville. A solid black line
composed of points equidistant to both profiles is also plotted.
This line delimits the two half planes that result in attribution
to one author or the other. From Fig. we see that the
attribution is perfect for these two authors. All red (Twain)
empty circles fall in the half plane closer to the filled red circle
and all blue (Melville) empty squares fall in the half plane
closer to the filled blue square. We emphasize that the WAN
attributions are not based on these Euclidean distances but on
the non-metric dissimilarities given by the relative entropies.
Since the number of points is small, the MDS distortion is
minor and the distances in Fig. [2a] are close to the relative
entropies. The latter separate the points better, i.e., relative
entropies are smaller for texts of the same author and larger
for texts of different authors.

We also illustrate an attribution between three authors by
creating a profile for Jane Austen using five 10,000 word
excerpts and adding five 10,000 word excerpts of texts written
by Jane Austen to the ten excerpts to attribute from Twain and
Melville’s books. We then perform an attribution of the 15
texts to the three profiles constructed. An MDS approximate
representation of the relative entropies between texts and
profiles is shown in Fig. 2b] where the filled green triangle
represents Austen’s profile and the empty green triangles

represent her texts to attribute. Circles and squares still repre-
sent Twain’s and Melville’s works, respectively. We also plot
the Voronoi tessellation induced by the three profiles, which
specify the regions of the plane that are attributable to each
author. Different from the case in Fig. attribution is not
perfect since one of Austen’s texts is mistakenly attributed
to Melville. This is represented in Fig. [2b] by the green
empty triangle that appears in the section of the Voronoi
tessellation that corresponds to the blue square profile. In
general, for larger number of candidate authors, the distortion
introduced by the MDS embedding is higher, compromising
the reliability of any classifier based on the low-dimensional
metric representation. Notice that this does not affect the WAN
attribution, which is based on the non-metric dissimilarities
given by the relative entropies.

Besides the number of authors, the other principal determi-
nants of classification accuracy are the length of the profiles
(training set), the length of the texts of unknown authorship
(testing set), and the similarity of writing styles as captured by
the relative entropy dissimilarities between profiles. We study
these effects in sections [V-AIV-B| and [V-C| respectively.

A. Varying the Training Set: Length of Profiles

The profile (training set) length is defined as the total
number of words, function or otherwise, used to construct the
profile. To study the effect of varying the training set size,
we fix o = 0.75, D = 10, and vary the length of author
profiles from 10,000 to 100,000 words in increments of 10,000
words. For each profile length, we attribute texts containing
25,000, 5,000 and 1,000 words, i.e., we consider three different
testing set sizes. Moreover, for each given combination of
profile and text length, we consider problems ranging from
binary attribution to attribution between ten authors. To build
profiles, we use ten texts of the same length randomly chosen
among all the texts written by a given author. The length of
each excerpt is such that the ten pieces add up to the desired



Number of words in profile (thousands)

Nr.of authors o 5 30 40 50 60 70 80 90 100  Rand.
3 0927 0964 0084 00985 00981 09079 0981 098 0992 0988 0500
3 0871 0934 0949 0962 0968 0975 0982 0978 0974 0978 0333
4 0833 0905 0931 00949 0948 0964 0963 0968 0969 0977 0250
5 0.800 0887 0923 0950 0945 0951 0953 0961 0961 0969 0.200
6 0760 0880 0929 0932 0937 0941 0948 0952 0950 0973 0.167
7 0755 0851 0909 0924 0937 0943 0937 0957 0960 0957 0.143
8 0722 0841 0898 0911 0932 0941 0938 0947 0952 0955 0.125
9 0711 0855 0882 0905 0915 0931 0932 0944 0952 0955 0.111
10 0701 0827 0882 0910 0923 0923 0934 0935 0943 0935 0.100

TABLE II: Profile length vs. accuracy for different number of authors (text length = 25,000)

Number of words in profile (thousands)

Nr.of authors o 5 30 40 50 60 70 80 90 100  Rand.
3 0863 0930 0032 0045 0928 0952 0942 0907 09042 0967 0500
3 0821 0884 088 0890 0910 0901 0943 0912 0911 0914 0333
4 0728 0833 0849 0862 0892 0867 0888 0905 0882 0885 0250
5 0698 0819 0825 0839 0862 0884 0859 0865 0882 0893 0200
6 0673 0754 0789 0798 0832 0837 0863 0870 0896 0878 0.167
7 0616 0754 0806 0838 0812 0848 0859 0.854 0873 0868 0.143
8 0600 0720 0748 0820 0805 0831 0831 0854 0857 0850 0.125
9 0587 0718 0767 0781 079 0809 0833 0849 0843 0847 0.111
10 0556 0693 0737 0753 0805 0827 0829 0824 0843 0846 0.100

TABLE III: Profile length vs. accuracy for different number of authors (text length = 5,000)

Number of words in profile (thousands)

Nr.of authors o 5 30 40 50 60 70 80 90 100  Rand.
3 0738 0788 0747 0823 0803 0805 0802 0800 0812 0793 0500
3 0599 0698 0690 0737 0713 0744 0724 0726 0757 0701 0333
4 0528 0638 0640 0672 0658 0663 0656 0663 0651 0707 0250
5 0491 0561 0598 0627 068 0621 0633 0661 0674 0632 0200
6 0469 0549 0578 0593 0626 0594 0598 0617 0606 0582 0.167
7 0420 0469 0539 0551 0583 0564 0603 0593 0583 0598 0.143
8 0392 0454 0544 0540 0572 0551 0583 0589 0563 0599 0.125
9 0385 0449 0489 0528 0519 0556 0551 0580 0560 0576 0.111
10 0353 0410 0466 0480 0506 0536 0529 0542 055 0553 0.100

TABLE 1IV: Profile length vs. accuracy for different number of authors (text length = 1,000)

profile length. E.g., to build a profile of length 50,000 words
for Melville, we randomly pick ten excerpts of 5,000 words
each among all the texts written by him. For the texts to be
attributed, however, we always select contiguous extracts of
the desired length. E.g., for texts of length 25,000 words, we
randomly pick excerpts of this length written by some author —
as opposed to the selection of ten pieces of different origin we
do for the profiles. This resembles the usual situation where the
profiles are built from several sources but the texts to attribute
correspond to a single literary creation. For a given profile size
and number of authors, several attribution experiments were
run by randomly choosing the set of authors among those from
the 19th century [36] and randomly choosing the texts forming
the profiles. The amount of attribution experiments was chosen
large enough to ensure that every accuracy value in tables
- [Vl is based on the attribution of at least 600 texts.

The accuracy results of attributing a text of 25,000 words
are stated in Table|lll This word length is equivalent to around
60 pages of a midsize paperback novel — i.e., a novella, or a
few book chapters — or the typical length of a Shakespeare
play. In the last column of the table we inform the expected
accuracy of random attribution between the candidate authors.
The purpose of this column is not to provide a performance
benchmark. However, the difference between the accuracies of
this column and the rest of the table indicates that WANs do

carry stylometric information useful for authorship attribution.
For a comparison of the performance of WAN attribution with
state of the art classifiers see Section Overall, attribution
of texts with 25,000 words can be done with high accuracy
even when attributing among a large number of authors if
reasonably large corpora are available to build author profiles
with 60,000 to 100,000 words. E.g., for a profile containing
40,000 words, our method achieves an accuracy of 0.985
for binary attributions whereas the corresponding random
accuracy is 0.5. As expected, accuracy decreases when the
number of candidate authors increases. E.g., for profiles of
80,000 words, an accuracy of 0.986 is obtained for binary
attributions whereas an accuracy of 0.935 is obtained when
the pool of candidates contains ten authors.

Accuracy increases with longer profiles. E.g., when per-
forming attributions of 25,000 word texts among 6 authors,
the accuracy obtained for profiles of length 10,000 is 0.760
whereas the accuracy obtained for profiles of length 60,000
is 0.941. There is a saturation effect concerning the length
of the profile that depends on the number of authors being
considered. For binary attributions there is no major increase
in accuracy beyond profiles of length 30,000. However, when
the number of candidate authors is 7, accuracy stabilizes for
profiles of length in the order of 80,000 words. There seems to
be little benefit in using profiles containing more than 100,000



words, which corresponds to a short novel of about 250 pages.

Correct attribution rates of shorter excerpts containing 5,000
words are shown in Table for the same profile lengths
and number of candidate authors considered in Table [l A
text of this length corresponds to about 13 pages of a novel
— something in the order of the chapter of a book — or an
act in a Shakespeare play. When considering these shorter
texts, acceptable classification accuracy is achieved except for
very short profiles and large number of authors, while reliable
attribution requires a small number of candidate authors or
a large profile. E.g., attribution between three authors with
profiles of 70,000 words has an average accuracy of 0.943.
While smaller than the corresponding correct attribution rate of
0.982 for texts of length 25,000 words, this is still a respectable
number. To achieve an accuracy in excess of 0.9 for the case
of three authors we need a profile of at least 50,000 words.

For very short texts of 1,000 words, which is about the
length of an opinion piece in a newspaper, a couple pages in
a novel, or a scene in a Shakespeare play, we can provide
indications of authorship but cannot make definitive claims.
As shown in Table the best accuracies are for binary
attributions that hover at around 0.8 when we use profiles
longer than 40,000 words. For attributions between more than
2 authors, maximum correct attribution rates are achieved for
profiles containing 90,000 or 100,000 words and range from
0.757 for the case of three authors to 0.556 when considering
ten authors. These rates are markedly better than random
attribution but not sufficient for definitive statements. The
results can be of use as circumstantial evidence in support
of attribution claims substantiated by further proof.

B. Varying the Testing Set: Length of Texts to Attribute

In this section we analyze the effect of varying the length
of the texts to attribute (testing set) in attribution accuracy for
different profile lengths (training set) and number of candidate
authors. Using o = 0.75 and D = 10, we consider profiles of
length 100,000, 20,000 and 5,000 words and vary the number
of candidate authors from two to ten. The lengths of the texts
to attribute considered are 1,000 words to 6,000 words in
1,000 word increments, 8,000 words, and 10,000 to 30,000
words in 5,000 word increments. We use the finer resolution
of 1,000 word increments for short texts, since the attribution
accuracy is very sensitive to the text length in this regime. As
in Section for every combination of number of authors
and text length, enough independent attribution experiments
were performed to ensure that every accuracy value in tables
V- is based on at least 600 attributions.

For profiles of length 100,000 words, the results are reported
in Table [V] As done in tables we state the expected
accuracy of random attribution in the last column of the
table. Accuracies reported towards the right end of the table,
i.e. 20,000-30,000 words, correspond to the attribution of a
dramatic play or around 60 pages of a novel, which we will
refer to as long texts. Accuracies for columns in the middle
of the table, i.e. 5,000-8,000 words, correspond to an act in a
dramatic play or between 12 and 20 pages of a novel, which
we will refer to as medium texts. The left columns of this
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Fig. 3: Binary attribution accuracy as a function of the inter-
profile dissimilarity. Higher accuracy is attained for attribution
between authors which are more dissimilar.

table, i.e. 1,000-3,000 words, correspond to a scene in a play,
2 to 7 pages in a novel or an article in a newspaper, which we
will refer to as short texts. For the attribution of long texts,
we achieve a mean accuracy of 0.988 for binary attributions
which decreases to an average accuracy of 0.945 when the
number of candidate authors is increased to ten. For medium
texts, the decrease in accuracy is not very significant for binary
attributions, with a mean accuracy of 0.955, but the accuracy
is reduced to 0.856 for attributions among ten authors. The
accuracy is decreased further when attributing short texts, with
a mean accuracy of 0.894 for binary attributions and 0.700 for
the case with ten candidates. This indicates that when profiles
of around 100,000 are available, WANS achieve accuracies
over 0.95 for medium to long texts. For short texts, acceptable
classification rates are achieved if the number of candidate
authors is between two and four.

If we reduce the length of the profiles to 20,000 words,
reasonable accuracies are attained for small pools of candidate
authors; see Table E.g, for binary attributions, the range of
correct classification varies between 0.812 for texts of 1,000
words to 0.969 for texts with 30,000 words. The first of these
numbers means that we can correctly attribute a newspaper
opinion piece with accuracy 0.812 if we are given corpora
of 20 opinion pieces by the candidate authors. The second of
these numbers means that we can correctly attribute a play be-
tween two authors with accuracy 0.969 if we are given corpora
of 20,000 words by the candidate authors. Further reducing the
profile length to 5,000 words results in classification accuracies
that are acceptable only when we consider binary attributions
and texts of at least 10,000 words; see Table For shorter
texts or larger number of candidate authors, WANSs can provide
supporting evidence but not definitive proof.

In Sections and the profiles across all candidates
authors are balanced, i.e. they contain the same number
of words. Attribution can be performed in scenarios with
unbalanced profiles where the shortest profile contains nghor
words and the longest one contains 7o, Words. In this case,
the accuracy obtained is lower than the one corresponding to a
balanced scenario with the same number of candidate authors
and every profile of length mjon, and larger than that of a
balanced scenario with profiles of length ngox Words.



Number of words in texts (thousands)

Nr. of authors 4 2 3 4 5 6 8 v 15 20 25 30 Rand
2 0.840 0917 0925 0938 0940 0.967 0958 0.977 0967 0.989 0988 0.986 0.500
3 0.789 0.873 0.890 0919 0913 0932 0936 0956 0952 0979 0979 0975 0.333
4 0.736  0.842 0870 0.902 0906 0.933 0937 0952 0965 0970 0973 0974 0.250
5 0.711  0.797 0.858 0.874 0.891 0906 0924 0.925 0955 0971 0980 0.964 0.200
6 0.690 0.796 0.828 0.886 0.884 0911 0919 0922 0944 0957 0969 0961 0.167
7 0.633 0.730 0.814 0.855 0874 0.890 0910 0911 0.928 0947 0956 0.951 0.143
8 0.602 0.740 0811 0.846 0.882 0.887 0915 0910 0930 0944 0957 0.963 0.125
9 0.607 0.721 0.774 0826 0.845 0.870 0.889 0.890 0918 0.948 0951 0953 0.111
10 0.578 0.731 0.792 0.816 0.842 0.855 0.872 0.893 0921 0.933 0942 0.961 0.100

TABLE V: Text length vs. accuracy for different number of authors (profile length = 100,000)
. Number of words in texts (thousands)

Nr. of authors 4 2 3 4 5 6 8 v 15 20 25 30 Rand
2 0.812 0.850 0903 0912 0913 0912 0938 0945 0918 0964 0964 0.969 0.500
3 0.760 0.797 0.858 0.899 0.887 0918 0920 0918 0919 0938 0.929 0928 0.333
4 0.670 0.747 0813 0.852 0.868 0.887 0.889 0.906 0918 0915 0900 0913 0.250
5 0.621 0.721 0.749 0.813 0.823 0.819 0.859 0.878 0.876 0.887 0.889 0.893 0.200
6 0.557 0.681 0.754 0.782 0.799 0.831 0.852 0.866 0.871 0.879 0.881 0.872 0.167
7 0493 0.610 0.674 0.706 0.731 0.770  0.798 0.807 0.828 0.862 0.867 0.858 0.143
8 0467 0.623 0.675 0.721 0.741 0.769 0.790 0.826 0.822 0.857 0.841 0.857 0.125
9 0.474 0574 0.656 0.672 0.710 0.734 0.781 0.783 0.813 0.845 0.837 0.841 0.111
10 0433 0.535 0612 0.663 0684 0.706 0.752 0.772 0.836 0.840 0.848 0.848 0.100

TABLE VI: Text length vs. accuracy for different number of authors (profile length = 20,000)
. Number of words in texts (thousands)

Nr. of authors 4 2 3 4 5 6 8 v 15 20 25 30 Rand
2 0.672 0.740 0.747 0.707 0.803 0.823 0.788 0.848 0.820 0.802 0.827 0.832 0.500
3 0.547 0.623 0.626 0.653 0.744 0.710 0.712 0.757 0.736 0.764 0.734 0.733 0.333
4 0.452 0487 0528 0.597 0.652 0.623 0.623 0.662 0.682 0.661 0.632 0.694 0.250
5 0403 0493 0535 0.538 0505 0573 0618 0.592 0681 0.606 0.638 0.570 0.200
6 0.372 0457 0480 0485 0.529 0.518 0545 0.577 0.605 0.631 0.599 0.601 0.167
7 0.349 0.382 0460 0469 0475 0.504 0522 0.539 0528 0.568 0.588 0.562 0.143
8 0302 0390 0453 0440 0473 0.510 0505 0.517 0541  0.530 0534 0549  0.125
9 0.296 0.347 0.370 0427 0477 0439 0485 0.492 0506 0.530 0.557 0.532 0.111
10 0.254 0337 0373 0405 0413 0427 0455 0487 0480 0.460 0443 0.463 0.100

TABLE VII: Text length vs. accuracy for different number of authors (profile length = 5,000)

C. Inter-Profile Dissimilarities

Besides the number of candidate authors and the length
of the texts and profiles, the correct attribution of a text
is also dependent on the similarity of the writing styles of
the authors themselves. Indeed, repeated binary attributions
between Henry James and Washington Irving with random
generation of 100,000 word profiles yield a perfect accuracy
of 1.0 on the classification of 400 texts of 10,000 words each.
The same exercise when attributing between Grant Allen and
Robert Louis Stevenson yields a classification rate of 0.91.
This occurs because the stylometric fingerprints of Allen and
Stevenson are harder to distinguish than those of James and
Irving.

Dissimilarity of writing styles can be quantified by com-
puting the relative entropies between the profiles [cf. (TI)].
Since relative entropies are asymmetric, i.e., H (P, Py) #
H(P,, Py) in general, we consider the average of the two
relative entropies between two profiles as a measure of their
dissimilarity. For each pair of authors, the relative entropy is
computed based on the set of function words chosen adaptively
to maximize the cross validation accuracy. For the 100,000
word profiles of James and Irving, the inter-profile dissimilar-
ity resulting from the average of relative entropies is 0.184.
The inter-profile dissimilarity between Allen and Stevenson is
0.099. This provides a formal measure of similarity of writing

styles which explains the higher accuracy of attributions
between James and Irving with respect to attributions between
Allen and Stevenson.

The correlation between inter-profile dissimilarities and
attribution accuracy is corroborated by Fig. |3} Each point in
this plot corresponds to the selection of two authors at random
from our pool of 21 authors from the 19th century. For each
pair we select ten texts of 10,000 words each to generate
profiles of length 100,000 words. We then attribute ten of the
remaining excerpts of length 10,000 words of each of these
two authors among the two profiles and record the correct
attribution rate as well as the dissimilarity between the random
profiles generated. The process is repeated twenty times for
these two authors to produce the average dissimilarity and
accuracy that yield the corresponding point in Fig. 3] E.g.,
consider two randomly chosen authors for which we have 50
excerpts of 10,000 word available. We select ten random texts
to form a profile and attribute 20 out of the remaining 80
excerpts — 10 for each author. After repeating this procedure
twenty times we get the average accuracy of attributing 400
texts of length 10,000 words between the two authors.

Besides the positive correlation between inter-profile dis-
similarities and attribution accuracies, Fig. [3] shows that clas-
sification is perfect for 11 out of 12 instances where the
inter-profile dissimilarity exceeds 0.16. Errors are rare for



Stevenson Alger Melville Allen James Alcott Abbott Austen Garland Hawthorne
Stevenson 33/938 10.0/00 6.1/2.0 6.7/0.5 109700 107/02 100/05 127/00 6.4/2.0 79710
Alger 10.0/080 42/966 109/05 11.6/00 104/05 11.8/00 134/00 11.6/02 10.0/12 11.0/0.2
Melville 6.1/5.8 109/05 34/760 62/70 108/10 127/14 86/25 11.7/08 7.1/1.0 72140
Allen 6.7 /9.5 11.6/05 62/62 38/650 114/12 13.0/02 7.7/6.0 11.1/0.8 7.2/8.0 791724
James 109/00 104/12 108/00 114/05 38/962 140/00 138/00 9.7/00 11.8/0.8 87/13
Alcott 10.7/00 11.8/09 127/00 13.0/00 140/00 35/988 16.1/00 150/00 99/03 129/0.0
Abbott 10.0/1.8 134/18 86/0.8 77115 138/05 16.1/50 27/82 11.6/00 9.7/0.2 9.1/02
Austen 12.7 /0.0 116/00 11.7/00 11.1/00 97/00 150/00 11.6/0.5 35/995 12.7/0.0 9.6/0.0
Garland 64/12 100/0.0 71/32 72/28 11.8/00 99/05 9.71/0.0 128700 3.6/91.8 89705
Hawthorne 7.9/0.0 11.0/00 72/12 79/0.2 87/00 129/00 9.1/02 9.6/0.0 8.9/70.0 2.9/98.4

TABLE VIII: Confusion matrix for ten 19th century authors. The first value in each cell is the profile dissimilarity in cn
between authors. The second value is the percentage of texts from the author in the row which are attributed to the author in
the column. As marked in bold, high confusion rates are related to low profile dissimilarities.

profile dissimilarities between 0.10 and 0.16 since correct
classifications average 0.984 and account for at least 0.96
of the attribution results in all but three outliers. For pairs
of authors with dissimilarities smaller than 0.1 the average
accuracy is 0.942.

To further emphasize the effect of inter-profile dissimilar-
ities in the attribution accuracy, we present the confusion
matrix for a 10-class classification among ten of the authors
analyzed; see Table Inter-profile dissimilarities were
computed based on the WANSs that maximize the 10-class
cross validation accuracy. Intra-profile dissimilarities, i.e. dis-
similarities between an author and himself, were computed as
the average relative entropy among various random partitions
of his work into two pieces. Observe that intra-profile dissim-
ilarities are markedly smaller than inter-profile dissimilarities,
as expected. E.g., the intra-profile dissimilarity for Melville
is 3.4cn whereas his average inter-profile dissimilarity with
the remaining nine authors is 9.0cn. In Table we also
inform the confusion rate in attribution, i.e., the percentage
of an author’s texts that are attributed to another author.
Notice that, in general, higher confusion rates are associated
with lower inter-profile dissimilarities. E.g., the most common
mistake when attributing Hawthorne’s texts is to assign them to
Melville — 1.2% error — which coincides with being the author
closest to him with an inter-profile dissimilarity of 7.2cn.

VI. META ATTRIBUTION STUDIES

WANSs can also be used to study problems other than
attribution between authors. In this section we demonstrate
that WANSs carry information about time periods, the genre
of the composition, and the gender of the authors. We also
illustrate the use of WANSs in detecting collaborations.

A. Time

WANS carry information about the point in time in which
a text was written. If we build random profiles of 200,000
words for Shakespeare, Chapman, and Melville and compute
the inter-profile dissimilarity as in Section [V-C| we obtain a
dissimilarity of 0.04 between Shakespeare and Chapman and
of 0.17 between Shakespeare and Melville. Since inter-profile
dissimilarity is a measure of difference in style, these values
are reasonable given that Shakespeare and Chapman were
contemporaries but Melville lived more than two centuries
after them.

Marlowe Chapman
Shakespeare (Com.) 11.6 7.7
Shakespeare (His.) 7.6 9.3

TABLE IX: Inter-profile dissimilarities (x100) between au-
thors of different genres.

To further illustrate this point, in Fig. fa] we plot a two
dimensional MDS representation of the dissimilarity between
eight authors whose profiles were built with all their available
texts in our corpus [36]]. Four of the profiles correspond to
early 17th century authors — Shakespeare, Chapman, Jonson,
and Fletcher — and are represented by blue stars while the
other four — Doyle, Melville, Garland, and Allen — correspond
to 19th century authors and are represented by red dots.
Notice that authors tend to have a smaller distance with their
contemporaries and a larger distance with authors from other
periods. This fact is also illustrated by the heat map of inter-
profile dissimilarities in Fig. Ab] where bluish colors represent
smaller entropies. The first 7 rows and columns correspond
to authors of the 17th century whereas the remaining 21
correspond to authors of the 19th century, where profiles were
built with all the available texts. Notice that the blocks of blue
color along the diagonal are in perfect correspondence with the
time period of the authors, verifying that WANs can be used
to determine the time in which a text was written. The average
entropies among authors of the 17th century and among those
of the 19th century are 0.096 and 0.098 respectively, whereas
the average entropies between authors of different epochs is
0.273. Le., the relative entropy between authors of different
epochs almost triples that of authors belonging to the same
time period.

B. Genre

Even though function words by themselves do not carry
content, WANSs constructed from a text contain, rather sur-
prisingly, information about its genre. We illustrate this fact
in Fig. 5] where we present the relative entropy between 20
pieces of texts written by Shakespeare of length 20,000 words,
where 10 of them are history plays — e.g., Richard II, King
John, Henry VIII — and 10 of them are comedies — e.g., The
Tempest, Measure for Measure, The Merchant of Venice. As
in Fig. {ib] bluish colors in Fig. [5 represent smaller relative
entropies. Two blocks along the diagonal can be distinguished
that coincide with the plays of the two different genres. Indeed,
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Fig. 4: (a) Authors from the early 17th century are depicted as blue stars while authors from the 19th century are depicted as
red dots. Inter-profile dissimilarities are small within the groups and large between them. (b) High inter-profile dissimilarities
are illustrated with warmer colors. Two groups of authors with small inter-profile dissimilarities are apparent: the first seven
correspond to 17th century authors and the rest to 19th century authors.

Sh. Jon. Fle. Mid.
19.1 20.0 18.2 20.2

Cha.
19.5

Marl.
20.9

TABLE X: Relative entropies from Two Noble Kinsmen to
different profiles (x100).

if we sequentially extract one text from the group and attribute
it to a genre by computing the average relative entropies to the
remaining histories and comedies, the 20 pieces are correctly
attributed to their genre.

More generally, inter-profile dissimilarities between authors
that write in the same genre tend to be smaller than between
authors that write in different genres. As an example, in Table
[X] we compute the dissimilarity between two Shakespeare
profiles — one built with comedies and the other with histories
— and two contemporary authors: Marlowe and Chapman. All
profiles contain 100,000 words formed by randomly picking
10 extracts of 10,000 words. Marlowe never wrote a comedy
and mainly focused on histories — Edward 1, The Massacre at
Paris — and tragedies — The Jew of Malta, Dido —, while the
majority of Chapman’s plays are comedies — All Fools, May
Day. Genre choice impacts the inter-profile dissimilarity since
the comedy profile of Shakespeare is closer to Chapman than
to Marlowe and vice versa for the history profile of Shake-
speare. The inter-profile dissimilarity between Shakespeare
profiles is 6.2, which is still smaller than any dissimilarity in
Table [[X] This points towards the conclusion that the identity
of the author is the main determinant of the writing style but
that the genre of the text being written also contributes to
the word choice. In general, two texts of the same author but
different genres are more similar than two texts of the same
genre but different authors which, in turn, are more similar
than two texts of different authors and genres.

C. Gender

Word usage can be used for author profiling and, in
particular, to infer the gender of an author from the written

histories comedies

histories

comedies

Fig. 5: Heat map of relative entropies between 20 Shakespeare
extracts. The first 10 texts correspond to history plays while
the last 10 correspond to comedy plays. Relative entropies
within texts of the same genre are smaller than across genres.

Sh. Jon. Fle. Mid. Cha. Marl.
Sh. 19.1 192 179 190 19.1 193
Jon. 192 200 184 195 193 193
Fle. 179 184 182 184 182 18.1
Mid. 19.0 19.5 184 202 194 189
Cha. 19.1 193 182 194 195 194
Marl. 193 193 18.1 189 194 209

TABLE XI: Relative entropies from Two Noble Kinsmen to
hybrid profiles composed of two authors (x100).

text. To illustrate this, we divide the 21 authors from the 19th
century into females — five of them — and males. We pick
a gender at random and pick an excerpt of 10,000 words from
any author of the selected gender. We then build two 100,000
words profiles, one containing pieces of texts written by male



Nr. of authors N. Bayes  1-NN 3-NN DT-gdi  DT-ce SVM WAN  Voting
2 2.6 35 5.2 12.2 12.2 2.7 1.6 0.9
4 6.0 9.2 12.4 25.3 25.5 6.8 4.6 33
6 8.1 11.7 15.2 31.9 322 7.9 53 3.8
8 9.6 15.4 19.2 36.4 37.2 11.1 6.7 52
10 10.8 16.7 214 42.1 42.1 11.5 8.3 6.0

TABLE XII: Error rates in % achieved by different methods for profiles of 100,000 words and texts of 10,000 words. The
WANSs achieve the smallest error rate among the methods considered separately. Voting decreases the error even further by
combining the relational data of the WANs with the frequency data of other methods.

authors and the other by female authors. In order to avoid
bias, we do not include any text of the author from which
the text to attribute was chosen in the gender profiles. We
then attribute the chosen text between the two gender profiles.
After repeating this procedure 5,000 times, we obtain a mean
accuracy of 0.63. Although this accuracy is lower than state-
of-the-art gender profiling methods [47], the difference with
random attribution, i.e. accuracy of 0.5, validates the fact that
WANSs carry gender information about the authors.

D. Collaborations

WANS can also be used for the attribution of texts written
collaboratively between two or more authors. Since collabora-
tion was a common practice for playwrights in the early 17th
century, we consider the attribution of Early Modern English
plays [36]. For a given play, we compute its relative entropy
to six contemporary authors — Shakespeare, Jonson, Fletcher,
Middleton, Chapman, and Marlowe — by generating 50 random
profiles for each author of length 80,000 words and averaging
the 50 entropies to obtain one representative number. We do
not consider Peele in the analysis due to the short total length
of available texts.

When two authors collaborate to write a play, the resulting
word adjacency network is close to the profiles of both authors,
even though these profiles are built with plays of their sole
authorship. As an example, consider the play Two Noble
Kinsmen which is an accepted collaboration between Fletcher
and Shakespeare [48]. In Table [X| we present the relative
entropies between the play and the six analyzed authors.
Notice that the two minimum entropies correspond to those
who collaborated in writing it.

Collaboration can be further confirmed by the construction
of hybrid profiles, i.e. profiles built containing 40,000 words
of two different authors. Each entry in Table corresponds
to the relative entropy from Two Noble Kinsmen to a hybrid
profile composed by the authors in the row and column of
that entry. Notice that the diagonal of Table corresponds
to profiles of sole authors and, thus, coincides with Table
The smallest relative entropy in Table is achieved by the
hybrid profile composed by Fletcher and Shakespeare, which
is consistent with the accepted attribution of the play.

VII. COMPARISON AND COMBINATION WITH FREQUENCY
BASED METHODS

Machine learning tools have been used to solve attribution
problems by relying on the frequency of appearance of func-
tion words [49]]. These methods consider the number of times

an author uses different function words but, unlike WAN:S,
do not contemplate the order in which the function words
appear. The most common techniques include naive Bayes 50}
Chapter 8], nearest neighbors (NN) [50, Chapter 2], decision
trees (DT) [50, Chapter 14], and support vector machines
(SVM) [50, Chapter 7].

In Table we inform the percentage of errors obtained
by different methods when attributing texts of 10,000 words
among profiles of 100,000 words for a number of authors
ranging from two to ten. For a given number of candidate
authors, we randomly pick them from the pool of 19th century
authors [36]] and attribute ten excerpts of each of them using
the different methods. We then repeat the random choice of
authors 100 times and average the error rate. For each of
the methods based on function word frequencies, we pick
the set of parameters and preprocessing that minimize the
attribution error rate. E.g., for SVM the error is minimized
when considering a polynomial kernel of degree 3 and normal-
izing the frequencies by text length. For the nearest neighbors
method we consider two strategies based on one (1-NN) and
three (3-NN) nearest neighbors as given by the Il metric in
Euclidean space. Also, for decision trees we consider two
types of split criteria: the Gini Diversity Index (DT-gdi) and
the cross-entropy (DT-ce) [51]].

The WANS achieve a lower attribution error than frequency
based methods; see Table For binary attributions, naive
Bayes and SVM achieve error rates of 2.6% and 2.7% respec-
tively and, thus, outperform nearest neighbors and decision
trees. However, WANs outperform the aforementioned meth-
ods by obtaining an error rate of 1.6%. This implies a reduction
of 38% in the error rate. For 6 authors, WANSs achieve an error
rate of 5.3% that outperform SVMs achieving 7.9% entailing a
33% reduction. This trend is consistent across different number
of candidate authors, with WANSs achieving an average error
reduction of 29% compared with the best traditional machine
learning method.

More important than the fact that WANSs tend to outperform
methods based on word frequencies, is the fact that they carry
different stylometric information. Thus, we can combine both
methodologies to further increase attribution accuracy. We do
this via a voting method, where we perform majority voting
between WANSs and the two best performing frequency based
methods, namely, naive Bayes and SVMs. More specifically,
each of the three methods gives one vote to its preferred candi-
date author and then the voting method chooses the author with
more votes. In case of a three-way tie, the candidate author



voted by the WANSs is chosen. In the last column of Table
we inform the error rate of majority voting. These error
rates are consistently smaller than those achieved by WANs
and, hence, by the other frequency based methods as well.
E.g., for attributions among four authors, voting achieves an
error of 3.3% compared to an error of 4.6% of WANSs. This
corresponds to a 28% reduction in error. Averaging among
attributions for different number of candidate authors, majority
voting entails a reduction of 30% compared with WANs. The
combination of WANs and function word frequencies halves
the attribution error rate with respect to the traditional machine
learning methods.

Although the error rates presented in Table correspond
to profiles of balanced length, the results also hold for sce-
narios where different profiles contain different number of
words. This means that, for unbalanced scenarios, the WANs
still outperform traditional classifiers and the voting method
also achieves the lowest error rates.

VIII. CONCLUSIONS AND FUTURE WORK

Relational data between function words was used as stylo-
metric information to solve authorship attribution problems.
Normalized word adjacency networks (WANs) were used as
relational structures. We interpreted these networks as Markov
chains in order to facilitate their comparison using relative
entropies. The accuracy of WANs was analyzed for varying
number of candidate authors, text lengths, profile lengths and
different levels of heterogeneity among the candidate authors,
regarding genre, gender, and time period. The method works
best when the corpora of known texts is of substantial length,
when the texts being attributed are long, or when the number
of candidate authors is small. If long profiles are available
— more than 60,000 words, corresponding to 150 pages of
a midsize paperback book —, we demonstrated very high
attribution accuracy for texts longer than a few typical novel
chapters even when attributing between a large number of
authors, high accuracy for texts as long as a play act or a novel
chapter, and reasonable rates for short texts such as newspaper
opinion pieces if the number of candidate authors is small.
WANs were also shown to classify accurately the time period
when a text was written, to acceptably estimate the genre of
a piece, and to have some predictive power on the gender
of the author. The applicability of WANSs to identify multiple
authors in collaborative works was also demonstrated. With
regards to existing methods based on the frequency with which
different function words appear in the text, we observed that
WANSs exceed their classification accuracy. More importantly,
we showed that WANs and frequencies captured different
stylometric aspects so that their combination is possible and
ends up halving the error rate of existing methods.

As directions for future research, we plan to investigate
more sophisticated ways to combine the attribution power
of WANs with existing methods in order to improve the
attribution accuracy in general and to gain discriminating
power for short texts. Moreover, we want to extend our method
towards the attribution of other types of creative work such as
the identification of a composer based on a musical piece.
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