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Abstract—We introduce the diffusion and superposition dis-
tances as two metrics to compare signals supported in the nodes
of a network. Both metrics consider the given vectors as initial
temperature distributions and diffuse heat through the edges of
the graph. The similarity between the given vectors is determined
by the similarity of the respective diffusion profiles. The superpo-
sition distance computes the instantaneous difference between the
diffused signals and integrates the difference over time. The dif-
fusion distance determines a distance between the integrals of the
diffused signals. We prove that both distances define valid metrics
and that they are stable to perturbations in the underlying net-
work. We utilize numerical experiments to illustrate their utility in
classifying signals in a synthetic network as well as in classifying
ovarian cancer histologies using gene mutation profiles of different
patients. We also utilize diffusion as part of a label propagation
method in semi-supervised learning to classify handwritten digits.

Index Terms—Graph signals, networks, diffusion, superposi-
tion, signal classification.

I. INTRODUCTION

N ETWORKS, or graphs, are data structures that encode
relationships between elements of a group and which, for

this reason, play an important role in many disparate disciplines
such as biology [1], [2] and sociology [3], [4] where relation-
ships between, say, genes, species or individuals, are central.
Often, networks have intrinsic value and are themselves the
object of study. This is the case, e.g., when we are interested in
distributed and decentralized algorithms in which agents iter-
ate through actions that use information available either locally
or at adjacent nodes to accomplish some sort of global outcome
[5]–[7]. Equally often, the network defines an underlying notion
of proximity, but the object of interest is a signal defined on top
of the graph. This is the matter addressed in the field of graph
signal processing, where the notions of frequency and linear
filtering are extended to signals supported on graphs [8]–[12].
Examples of network-supported signals include gene expres-
sion patterns defined on top of gene networks [13] and brain
activity signals supported on top of brain connectivity networks
[14]. Indeed, one of the principal uses of networks of gene
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interactions is to determine how a change in the expression of
a gene, or a group of genes, cascades through the network and
alters the expression of other genes. Likewise, a brain connec-
tivity network specifies relationships between areas of the brain,
but it is the pattern of activation of these regions that determines
the mental state of the subject.

In this paper we consider signals supported on graphs and
address the challenge of defining a notion of distance between
these signals that incorporates the structure of the underlying
network. We want these distances to be such that two signals
are deemed close if they are themselves close–in the examples
in the previous paragraph we have gene expression or brain acti-
vation patterns that are similar–, or if they have similar values
in adjacent or nearby nodes–the expressed genes or the active
areas of the brain are not similar but they effect similar changes
in the gene network or represent activation of closely connected
areas of the brain. We define here the diffusion and superpo-
sition distances and argue that they inherit this functionality
through their connection to diffusion processes.

Diffusion processes draw their inspiration from the diffusion
of heat through continuous matter [15], [16]. The linear dif-
ferential equation that models heat diffusion can be extended to
encompass dynamics through discrete structures such as graphs
or networks [17]–[21]. In the particular case of graphs, every
node is interpreted as containing an amount of heat which flows
from hot to cold nodes. The flow of heat is through the edges
of the graph and such that the rate at which heat diffuses is
proportional to both the heat difference between the nodes adja-
cent to the edge and the edge weight representing the proximity
between these nodes. Diffusion processes in graphs are often
used in engineering and science because they reach isothermal
configurations in steady state. Driving the network to an isother-
mal equilibrium is tantamount to achieving a consensus action
[22], [23], which, in turn, is useful in, e.g., problems in for-
mation control [24] and flocking [25], as well as an important
modeling tool in situations such as the propagation of opinions
in social networks [26]–[28].

In this paper we do not exploit the asymptotic, but rather
the transient behavior of diffusion processes. We regard the
given vectors as initial heat configurations that generate
different diffused heat profiles over time. The diffusion and
superposition distances between the given vectors are defined
as the difference between these heat profiles integrated over
time. The superposition distance compares the instantaneous
difference between the two evolving heat maps and integrates
this difference over time. The diffusion metric integrates each
of the heat profiles over time and evaluates the norm of the
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difference between the two integrals. Both of these distances
yield small values when the diffusion profiles are similar. This
happens if the given vectors themselves are close or if they
have similar values at nodes that are linked by edges with high
similarity values.

A. Contributions and summary

The contributions of this paper are: (i) To design the super-
position and diffusion distances and to prove their validity as
metrics in the space of vectors supported on a given graph.
(ii) To show that both distances are well behaved with respect
to small perturbations in the underlying network. (iii) To illus-
trate their ability to identify vectors that are similar only after
the network structure is accounted for. (iv) To demonstrate their
value in two practical scenarios; the classification of ovarian
cancer types from gene mutation profiles and the classification
of handwritten arabic digits.

We begin the paper with a brief introduction of basic con-
cepts in graph theory and metric geometry followed by a formal
description of diffusion dynamics in networks (Section II). This
preliminary discussion provides the necessary elements for a
formal definition of the superposition and diffusion distances.
In Section III we define the superposition distance between two
signals with respect to a given graph and a given input norm. To
determine this distance the signals are diffused in the graph, the
input norm of their difference is computed for all times, and the
result is discounted by an exponential factor and integrated over
time. We show that the superposition distance is a valid metric
between vectors supported in the node set of a graph.

The diffusion distance with respect to a given graph and a
given input norm is introduced in Section IV as an alterna-
tive way of measuring the distance between two signals in a
graph. In this case the diffused signals are also exponentially
discounted and integrated over time but the input norm is taken
after time integration. The diffusion distance is shown to also be
a valid metric in the space of signals supported on a given graph
and is further shown to provide a lower bound for the superpo-
sition distance. Different from the superposition distance, the
diffusion distance can be reduced to a closed form expression
with computational cost dominated by one matrix inversion.
The superposition distance requires numerical integration of the
time integral of the norm of a matrix exponential.

We further address stability with respect to uncertainty in the
specification of the network (Section V). Specifically, we prove
that when the input norm is either the 1-norm, the 2-norm, or
the infinity-norm a small perturbation in the underlying net-
work transports linearly to a small perturbation in the values
of the superposition and diffusion distances. In Section VI we
demonstrate that the diffusion and superposition distances can
be applied to classify signals in graphs with better accuracy
than comparisons that utilize traditional vector distances. We
illustrate the differences using synthetic data (Section VI-A)
and establish the practical advantages through the classifica-
tion of ovarian cancer histologies from gene mutation profiles
of different patients (Section VI-B). In Section VI-C, we uti-
lize diffusion as part of a label propagation process and present
its benefit through the classification of handwritten digits.
Concluding remarks are presented in Section VII.

II. PRELIMINARIES

A. Graphs and networks

We consider networks that are weighted, undirected, and
symmetric. Formally, we define a network as a graph G =
(V,E,W ), where V = {1, . . . , n} is a finite set of n nodes or
vertices, E ⊆ V × V is a set of edges defined as ordered pairs
(i, j), and W : E → R++ is a map from the set of edges to the
strictly positive reals, representing weights wij > 0 associated
with each edge (i, j). Since the graph is undirected, we must
have that the edge (i, j) ∈ E if and only if (j, i) ∈ E. Since
the graph is also symmetric, we must have wij = wji for all
(i, j) ∈ E. The edge (i, j) represents the existence of a rela-
tionship between i and j and we say that i and j are adjacent
or neighboring. The weight wij = wji represents the strength
of the relationship, or, equivalently, the proximity or similarity
between i and j. Larger edge weights are interpreted as higher
similarity between the border nodes. The graphs considered
here do not contain self loops, i.e., (i, i) /∈ E for any i ∈ V .
We consider the usual definitions of the adjacency, Laplacian,
and degree matrices for the weighted graph G = (V,E,W );
see e.g. [29, Chapter 1]. The adjacency matrix A ∈ R

n×n
+ is

such that Aij = wij whenever i and j are adjacent, i.e., when-
ever (i, j) ∈ E and such that for (i, j) /∈ E we have Aij = 0.
The degree matrix D ∈ R

n×n
+ is a diagonal matrix such that

the i-th diagonal element Dii =
∑

j wij contains the sum of all
the weights out of node i. The Laplacian matrix is defined as the
difference L := D −A ∈ R

n×n. Since D is diagonal and the
diagonal of A is null–because G does not have self loops–the
components of the Laplacian matrix are explicitly given by

Lij :=

⎧⎪⎨
⎪⎩
−Aij if i �= j,

∑n
k=1 Aik if i = j.

(1)

Observe that the Laplacian is positive semidefinite [30]
because it is diagonally dominant with positive diagonal
elements.

B. Metrics and norms

Our goal in this paper is to define a metric to compare vectors
defined on top of a graph. For reference, recall that for a given
space X , a metric d : X ×X → R+ is a function from pairs of
elements in X to the nonnegative reals satisfying the following
three properties for every x, y, z ∈ X:

Symmetry: d(x, y) = d(y, x).
Identity: d(x, y) = 0 if and only if x = y.
Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).
A closely related definition is that of a norm. In this case

we need to have a given vector space Y and consider elements
v ∈ Y . A norm ‖ · ‖ is a function ‖ · ‖ : Y → R+ from Y to the
nonnegative reals such that, for all vectors v, w ∈ Y and scalar
constant β, it satisfies:

Positiveness: ‖v‖ ≥ 0 with equality if and only if v = �0.
Positive homogeneity: ‖β w‖ = |β| ‖w‖.
Subadditivity: ‖v + w‖ ≤ ‖v‖+ ‖w‖.
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Norms are more stringent than metrics because they require
the existence of a null element with null norm. However, when-
ever a norm is defined on a vector space Y it induces a distance
in the same space as we formally state next [31, Chapter 1].

Lemma 1: Given any norm ‖ · ‖ on some vector space Y , the
function d : Y × Y → R+ defined as d(r, s) := ‖r − s‖ for all
pairs r, s ∈ Y is a metric.

In some of our proofs we encounter norms induced in the
vector space of matrices Rn×n by norms defined in the vector
space Rn. For a given vector norm ‖ · ‖ : Rn → R+ the induced
matrix norm ‖ · ‖ : Rn×n → R+ is defined as

‖A‖ := sup
‖x‖=1

‖Ax‖. (2)

I.e., the induced norm of matrix A is equal to the maximum
achievable vector norm when multiplying A by a vector with
unit norm. Apart from satisfying the three requirements in the
definition of norms, induced matrix norms are compatible and
submultiplicative [32, Section 2.3]. That they are submultiplica-
tive means that for any given pair of matrices A,B ∈ R

n×n the
norm of the product does not exceed the product of the norms,

‖AB‖ ≤ ‖A‖ ‖B‖. (3)

That they are compatible means that for any vector x ∈ R
n and

matrix A ∈ R
n×n it holds,

‖Ax‖ ≤ ‖A‖ ‖x‖. (4)

I.e., the vector norm of the product Ax does not exceed the
product of the norm of the vector x and the induced norm of the
matrix A.

C. Diffusion dynamics

Consider an arbitrary graph G = (V,E,W ) with Laplacian
matrix L and a vector r = [r1, . . . , rn]

T ∈ R
n where the com-

ponent ri of r corresponds to the node i of G. For a given
constant α > 0, define the time-varying vector r(t) ∈ R

n as the
solution of the linear differential equation

d r(t)

d t
= −αL r(t), r(0) = r. (5)

The differential equation in (5) represents heat diffusion on
the graph G because −L can be shown to be the discrete
approximation of the continuous Laplacian operator used to
describe the diffusion of heat in physical space [17]. The given
vector r = r(0) specifies the initial temperature distribution and
r(t) represents the temperature distribution at time t. The con-
stant α is the thermal conductivity–which depends on the units
used to measure the weights on the graph–and controls the heat
diffusion rate. Larger α results in faster changing r(t). The
solution of (5) is given by

r(t) = e−αL t r, (6)

where, for an arbitrary matrix A ∈ R
n×n, the matrix exponen-

tial eA is defined as [30]

eA :=

∞∑
k=0

1

k!
Ak. (7)

Direct substitution is enough to confirm that indeed r(t) =
e−αLtr is a solution of (5). The expression in (6) allows us
to compute the temperature distribution at any point in time
given the initial heat configuration r and the structure of the
underlying network through its Laplacian L. Notice that as time
grows, r(t) settles to an isothermal equilibrium–all nodes have
the same temperature–if the graph is connected. It is instructive
to rewrite (5) componentwise. If we focus on the variation of
the i-th component of r(t) and use the definition of L in (1) to
replace Lik = −Aik and Lii =

∑n
k=1 Aik, it follows that (5)

implies

d ri(t)

d t
=

n∑
j=1

αAij (rj(t)− ri(t)) . (8)

Further recalling that Aij = 0 if i and j are not adjacent and
that Aij = wij otherwise, we see that the sum in (8) entails
multiplying each of the differences rj(t)− ri(t) between adja-
cent nodes by the corresponding proximities wij on top of the
constant thermal conductivity α. Thus, (8) is describing the
flow of heat through edges of the graph. The flow of heat on
an edge grows proportionally with the temperature differential
rj(t)− ri(t) as well as with the proximity wij . Nodes with
larger proximity tend to equalize their temperatures faster, other
things being equal. In particular, two initial vectors r(0) = r
and s(0) = s result in similar temperature distributions across
time if they are themselves similar–all ri and si components are
close–, or if they have similar initial levels at nodes with larger
proximity–each component ri need not be similar to si itself but
might be similar to the component sj of a neighboring node for
which the edge weight wij is large. This latter fact suggests that
the diffused vectors r(t) and s(t) define a notion of proximity
between r and s associated with the underlying graph structure.
We exploit this observation to define distances between signals
supported on graphs in the following two sections.

III. SUPERPOSITION DISTANCE

Given an arbitrary graph G = (V,E,W ) with Laplacian
matrix L, an input vector norm ‖ · ‖, and two signals r, s ∈
R

n defined in the node space V , we define the superposition
distance dLsps(r, s) between r and s as

dLsps(r, s) :=

∫ +∞

0

e−t
∥∥e−αL t(r − s)

∥∥ dt, (9)

where α > 0 corresponds to the diffusion constant in (5). As
we mentioned in the discussion following (8), the distance
dLsps(r, s) defines a similarity between r and s that incorporates
the underlying network structure. Indeed, notice that the term
inside the input norm corresponds to the difference r(t)− s(t)
between the vectors that solve (5) for initial conditions r and
s [cf. (6)]. This means that we are looking at the difference
between the temperatures r(t) and s(t) at time t, which we
then multiply by the dampening factor e−t and integrate over all
times. These temperatures are similar if r and s are similar, or,
if r and s have similar values at similar nodes. The dampening
factor gives more relative importance to the differences between
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r(t) and s(t) for early times. This is necessary because after
prolonged diffusion times the network settles into an isother-
mal equilibrium and the structural differences between r and s
are lost.

Exploiting the same interpretation, we can define the super-
position norm of a vector v ∈ R

n for a given graph with
Laplacian matrix L and a given input norm ‖ · ‖ as

‖v‖Lsps :=
∫ +∞

0

e−t
∥∥e−αL tv

∥∥ dt. (10)

Although we are referring to dLsps(r, s) as the superposition
distance between r and s and ‖v‖Lsps as the superposition norm
of v we have not proven that they indeed are valid definitions
of distance and norm functions. As it turns out, they are. We
begin by showing that ‖ · ‖Lsps is a valid norm as we claim in the
following proposition.

Proposition 1: The function ‖ · ‖Lsps in (10) is a valid norm
on R

n for every Laplacian L and every input norm ‖ · ‖.

Proof: As stated in Section II, we need to show posi-
tiveness, positive homogeneity and subadditivity of ‖ · ‖Lsps. To
show positive homogeneity, utilize the positive homogeneity of
the input norm and the linearity of integrals to see that for every
vector v ∈ R

n and scalar β, it holds

‖βv‖Lsps =
∫ +∞

0

e−t ‖e−αL tβv‖dt

= |β|
∫ +∞

0

e−t ‖e−αL tv‖dt

= |β| ‖v‖Lsps. (11)

In order to show subadditivity, pick arbitrary vectors v, w ∈
R

n and use the subadditivity of the input norm ‖ · ‖ and the
linearity of integrals to see that

‖v + w‖Lsps =
∫ +∞

0

e−t ‖e−αL t(v + w)‖dt

≤
∫ +∞

0

e−t
(‖e−αL tv‖+ ‖e−αL tw‖) dt

= ‖v‖Lsps + ‖w‖Lsps, (12)

To show positiveness, first observe that for every v ∈ R
n we

have that ‖v‖Lsps ≥ 0 since for every time t the argument of the
integral in the definition (10) is the product of two nonnega-
tive terms, an exponential and a norm which itself satisfies the
positiveness property. The fact that ‖�0‖Lsps = 0 is an immedi-
ate consequence of the definition (10). Hence, we are only left
to show that ‖v‖Lsps �= 0 for v �= �0. To show this, it suffices to
prove that the argument of the integral in (10) is strictly posi-
tive for every time t which is implied by the fact that the matrix
e−αL t is strictly positive definite for every t. To see why this
is true, notice that −αL t is a real symmetric matrix, thus, it
is diagonalizable and has real eigenvalues. Consequently, the
eigenvalues of e−αL t are the exponentials of the eigenvalues
of −αL t which are strictly positive. �

If the superposition norm is a valid norm as shown by
Proposition 1 it induces a valid metric as per the construction

in Lemma 1. This induced metric is the superposition distance
defined in (9) as we show in the following corollary.

Corollary 1: The function dLsps in (9) is a valid metric on R
n

for every Laplacian L and every input norm ‖ · ‖.

Proof: Since dLsps(r, s) = ‖r − s‖Lsps for all vectors r, s ∈
R

n and ‖ · ‖Lsps is a well-defined norm [cf. Proposition 1],
Lemma 1 implies that dLsps is a metric on R

n. �
The distance dLsps incorporates the network structure to com-

pare two signals r and s supported in a graph with Laplacian L.
As a particular case the edge set E of the underlying graph G
may be empty. In this case, the Laplacian L = 0 is identically
null and we obtain from (9) that d0sps(r, s) = ‖r − s‖. This is
consistent with the fact that when no edges are present, the net-
work structure adds no information to aid in the comparison of
r and s and the superposition distance reduces to the standard
distance induced by the input norm. The same effect is obtained
when the thermal conductivity α is set to zero.

The computational cost of evaluating the superposition dis-
tance is significant in general. To evaluate dLsps(r, s) we approx-
imate the improper integral in (9) with a finite sum and evaluate
the norm of the matrix exponential ‖e−αL t(r − s)‖ at the
points required by the appropriate discretization. Notice that the
decaying exponential modulation in (9) renders the first time
points more relevant for the approximation, thus, a finer dis-
crete time grid should be used for smaller times. An alternative
notion of distance for graph-supported signals that is compu-
tationally more tractable comes in the form of the diffusion
distance that we introduce in the next section.

IV. DIFFUSION DISTANCE

Given an arbitrary graph G = (V,E,W ) with Laplacian L,
an input vector norm ‖ · ‖ and two signals r, s ∈ R

n defined in
the node space V , the diffusion distance dLdiff(r, s) between r
and s is given by

dLdiff(r, s) :=

∥∥∥∥
∫ +∞

0

e−t e−αL t(r − s) dt

∥∥∥∥ , (13)

with α > 0 corresponding to the diffusion constant in (5). As
in the case of the superposition distance in (9), the diffusion
distance incorporates the graph structure in determining the
proximity between r and s through the solutions r(t) and s(t)
of (5) for initial conditions r and s [cf. (6)]. The difference is
that in the diffusion distance the input norm of the difference
between r(t) and s(t) is taken after discounting and integra-
tion, whereas in the superposition distance the input norm is
applied before discounting and integration. An interpretation in
terms of heat diffusion is that the diffusion distance compares
the total (discounted) energy that passes through each node. The
superposition distance compares the energy difference at each
point in time and integrates that difference over time. Both are
reasonable choices. Computational aspects aside, whether the
superposition or diffusion distance is preferable depends on the
specific application.

A definite advantage of the diffusion distance is that the
matrix integral in (13) can be resolved to obtain a closed solu-
tion that is more amenable to computation. To do so, notice that
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the primitive of the matrix exponential e−te−αLt = e−(I+αL)t

is given by −(I + αL)−1e−(I+αL)t to conclude that (13) is
equivalent to

dLdiff(r, s) =
∥∥(I + αL)−1(r − s)

∥∥ . (14)

As in the case of the superposition distance of Section III, a
vector norm can be defined based on the same heat diffusion
interpretation used to define the distance in (13). Therefore,
consider a given a graph with Laplacian L and a given input
norm ‖ · ‖ and define the diffusion norm of the vector v ∈ R

n

as

‖v‖Ldiff :=

∥∥∥∥
∫ +∞

0

e−t e−αL tv dt

∥∥∥∥ =
∥∥(I + αL)−1v

∥∥ , (15)

where the second equality follows from the same primitive
expression used in (14). We refer to (I + αL)−1v as the
diffused version of vector v.

The diffusion distance is a proper metric and the diffusion
norm is a proper norm. We show first that ‖ · ‖Ldiff is a valid
norm as we formally state next.

Proposition 2: The function ‖ · ‖Ldiff in (15) is a valid norm
on R

n for every Laplacian L and every input norm ‖ · ‖.

Proof: To prove the validity of ‖ · ‖Ldiff we need to
show positiveness, positive homogeneity and subadditivity; see
Section II. Positive homogeneity follows directly from the pos-
itive homogeneity of the input norm, i.e. for any vector v ∈ R

n

and scalar β we have that

‖βv‖Ldiff = ‖(I + αL)−1βv‖
= |β|‖(I + αL)−1v‖ = |β|‖v‖Ldiff . (16)

In order to show subadditivity, pick arbitrary vectors v, w ∈
R

n and use the subadditivity of the input norm ‖ · ‖ to see that

‖v + w‖Ldiff = ‖(I + αL)−1(v + w)‖
≤ ‖(I + αL)−1v‖+ ‖(I + αL)−1w‖
= ‖v‖Ldiff + ‖w‖Ldiff . (17)

Given the positiveness property of the input norm ‖ · ‖, to
show positiveness of the diffusion norm ‖ · ‖Ldiff it is enough
to show that (I + αL)−1v �= �0 for all vectors v ∈ R

n different
from the null vector. This is implied by the fact that (I + αL)−1

is a positive definite matrix. To see why (I + αL)−1 is positive
definite, first notice that L is positive semidefinite as stated in
Section II. Consequently, αL is also positive semidefinite since
α > 0 and I + αL is positive definite since every eigenvalue
of I + αL is a unit greater than the corresponding eigenval-
ues of αL, thus, strictly greater than 0. Finally, since inversion
preserves positive definiteness, the proof is completed. �

From Proposition 2 and Lemma 1 it follows directly that the
diffusion distance defined in (13) is a valid metric as we prove
next.

Corollary 2: The function dLdiff in (13) is a valid metric on
R

n for every Laplacian L and every input norm ‖ · ‖.

Proof: Since dLdiff(r, s) = ‖r − s‖Ldiff for all vectors r, s ∈
R

n and ‖ · ‖Ldiff is a well-defined norm [cf. Proposition 2],
Lemma 1 implies that dLdiff is a metric on R

n. �

As in the case of the superposition norm and distance, the
diffusion norm and distance reduce to the input norm and its
induced distance when α = 0 or the edge set is empty. In that
case we have L = 0 and it follows from the definitions in (15)
and (13) that ‖v‖Ldiff = ‖v‖0diff = ‖v‖ and that dLdiff(r, s) =
d0diff(r, s) = ‖r − s‖. Notice also that for the particular case
in which the input norm is ‖ · ‖2, dLdiff coincides with the
Mahalanobis distance with covariance matrix (I + αL)2 [33].

The superposition and diffusion distances differ in the order
in which the input norm and time integral are applied. It
is therefore reasonable to expect some relationship to hold
between their values. In the following proposition we show
that the diffusion distance is a lower bound for the value of the
superposition distance.

Proposition 3: Given any graph G = (V,E,W ) with
Laplacian L, any two signals r, s ∈ R

n defined in V and any
input vector norm ‖ · ‖, the diffusion distance dLdiff(r, s) defined
in (13) is a lower bound on the superposition distance dLsps(r, s)
defined in (9)

dLsps(r, s) ≥ dLdiff(r, s). (18)

Proof: Since the exponential e−t in (9) is nonnegative, we
may replace it with its absolute value to obtain

dLsps(r, s) =

∫ +∞

0

∣∣e−t
∣∣ ∥∥e−αL t(r − s)

∥∥ dt

=

∫ +∞

0

∥∥e−te−αL t(r − s)
∥∥ dt, (19)

where we used the positive homogeneity property of the input
norm to write the second equality. Further using the subadditiv-
ity property of the input norm we may write

dLsps(r, s) ≥
∥∥∥∥
∫ +∞

0

e−te−αL t(r − s) dt

∥∥∥∥ . (20)

The right hand side of (20) is the definition of the diffu-
sion distance dLdiff(r, s) in (13). Making this substitution in (20)
yields (18). �

For applications in which the superposition distance is more
appropriate, the diffusion distance is still valuable because,
as it follows from Proposition 3, it can be used as a lower
bound on the superposition distance. This lower bound is useful
because computing the diffusion distance is less expensive than
computing the superposition distance.

A. Discussion

In order to illustrate the superposition and diffusion distances
and their difference with the standard vector distances, con-
sider the undirected graph in Fig. 1 where the weight of each
undirected edge is equal to 1. Define three different vectors
supported in the node space and having exactly one component
equal to 1 and the rest equal to 0. The vector r has its posi-
tive component for node x1, colored in red, the vector g has its
positive for node x6, colored in green, and the vector y has its
positive component for node x7, colored in yellow.
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Fig. 1. Example of an underlying graph used to compute the superposition and
diffusion distances. Three signals r, g and y are compared taking a value of 1
in the red, green, and yellow nodes, respectively, and zero everywhere else.

For the traditional vector metrics, the distances between each
of the vectors r, g and y are the same. In the case when, e.g.,
the �2 distance is used as input metric, we have that ‖r −
g‖2 = ‖g − y‖2 = ‖y − r‖2 =

√
2. In the case of the �1 and

�∞ distances we have that ‖r − g‖1 = ‖g − y‖1 = ‖y − r‖1 =
2 and ‖r − g‖∞ = ‖g − y‖∞ = ‖y − r‖∞ = 1. However, by
observing the network in Fig. 1, it is intuitive that signals g and
y should be more alike than they are to r since they affect nodes
that are closely related. E.g., if we think of the vectors r, g and
y as signaling faulty nodes in a communication network, it is
evident that the impact of nodes x6 and x7 failing would dis-
rupt the communication between the right and left components
of the graph, whereas the failure of x1 would entail a different
effect. This intuition is captured by the diffusion and superposi-
tion distances. Indeed, if we fix α = 1 and we use the �2 norm
as input norm to the diffusion distance, we have that the dis-
tance between the vectors that signal faults at x6 and x7 are
[cf. (14)]

dLdiff(g, y) = ‖(I + L)−1(g − y)‖2 = 0.418, (21)

where L is the Laplacian of the graph in Fig. 1. However, the
diffusion distances from these green and yellow vectors to the
red vector that signals a fault at node x1 are

dLdiff(r, g) = ‖(I + L)−1(r − g)‖2 = 0.664,

dLdiff(r, y) = ‖(I + L)−1(r − y)‖2 = 0.698. (22)

The distances in (22) are larger than the distance in (21) sig-
naling the relative similarity of the g and y vectors with respect
to the r vector. The differences are substantial–almost 60%
increase–, thus allowing identification of g and y as somehow
separate from r. Further observe that the distance between r and
g is slightly smaller than the distance between r and y. This is
as it should be, because node x1 is closer to node x6 than to
node x7 in the underlying graph.

Repeating the exercise, but using the superposition dis-
tance instead [cf. (9)], we obtain that dLsps(r, g) = 0.701,
dLsps(r, y) = 0.742, and dLsps(g, y) = 0.456. Although the num-
bers are slightly different, the qualitative conclusions are the
same as those obtained for the diffusion distance. We can tell
that g and y are more like each other than they are to r, and
we can tell that g is slightly closer to r than y is. Also note
that the diffusion distances are smaller than the superposition
distances between the corresponding pairs, i.e., dLsps(r, g) ≥
dLdiff(r, g), d

L
sps(r, y) ≥ dLdiff(r, y), and dLsps(g, y) ≥ dLdiff(g, y).

This is consistent with the result in Proposition 3.

To further illustrate the intuitive idea behind the diffusion
and superposition distances, Fig. 2 plots the evolution of the
diffused signals r(t), g(t) and y(t) for each of the respective
initial conditions r, g, and y. At time t = 0 each of the signals
is concentrated at one specific node. The signals are, as a conse-
quence, equally different to each other. At very long times, the
signals are completely diffused and therefore indistinguishable.
For intermediate times, the signal distributions across nodes for
the green and yellow signals are more similar than between
the green and red or yellow and red signals. This difference
between the evolution of the diffused signals results in different
values for the superposition and diffusion distances.

Remark 1: Computation of the diffusion distance using the
closed form expression in (14) requires the inversion of the
n× n identity plus Laplacian matrix followed by multiplication
with the difference vector r − s. The cost of this computa-
tion is of order n3, but is much smaller when the matrix L is
sparse, as is typically the case. Further observe that most com-
putations can be reused when computing multiple distances,
because the vectors change, but the matrix inverse (I + αL)−1

stays unchanged.

V. STABILITY

The superposition and diffusion distances depend on the
underlying graphs through their Laplacian L. It is therefore
important to analyze how a perturbation of the underlying net-
work impacts both distances. We prove in this section that these
distances are well behaved with respect to perturbations of the
underlying graph. I.e., we show that if the network perturba-
tion is small, the change in the diffusion and superposition
distances is also small. We think of a perturbation of a given
network as noise added to its edge weights, thus, we quantify
the network perturbation as the matrix p-norm of the difference
between the Laplacians of the original and perturbed networks.
We focus our analysis on the most frequently used norms where
p ∈ {1, 2,∞}. We begin with a formal statement for the case of
the superposition distance defined by (9).

Proposition 4: Given any graph with Laplacian L, an input
�p norm ‖ · ‖p with p ∈ {1, 2,∞}, and bounded signals s and r
on the network with ‖s‖p ≤ γ and ‖r‖p ≤ γ, if we perturb the
network such that the resulting Laplacian L′ = L+ E where
the perturbation E is such that ‖E‖p ≤ ε‖L‖p < 1, then

∥∥∥dL′
sps(s, r)− dLsps(s, r)

∥∥∥ ≤ 2γ‖L‖pε. (23)

Proof: See Appendix A. �
Proposition 4 guarantees that for any two vectors, the dif-

ference between their superposition distances computed based
on different underlying graphs is bounded by a term which is
bilinear in a bound on the magnitude of the input vectors γ
and a bound on the difference between the Laplacians of both
underlying graphs ‖E‖p ≤ ε‖L‖p. This implies that vanishing
perturbations on the underlying network have vanishing effects
on the distance between two signals defined on the network.

Similarly to the case of the superposition distance, perturba-
tions have limited effect on the diffusion metric defined in (13)
as shown next.
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Fig. 2. Heat maps of the diffused signals for r, g, and y as diffusion evolves for every node in the network in Fig. 1. Darker colors represent stronger signals. The
heat maps of g and y are more similar, entailing smaller diffusion and superposition distances.

Proposition 5: For the same setting described in Proposition
4, we have that

∥∥∥dL′
diff(s, r)− dLdiff(s, r)

∥∥∥ ≤ 2γ‖L‖pε+ o(ε). (24)

Proof: See Appendix B. �
In contrast to Proposition 4, the bound in (24) contains higher

order terms that depend on the magnitude of the perturbation.
Hence, since the other terms of the bound in (24) tend to zero
super linearly, we may divide (24) by ε‖L‖p and compute the
limit as the perturbation vanishes

lim
ε→0

∥∥∥dL′
diff(s, r)− dLdiff(s, r)

∥∥∥
ε‖L‖p ≤ 2γ, (25)

which implies that for small perturbations the difference in
diffusion distances grows linearly.

When constructing the underlying graph to compare signals
in a real-world application, noisy information can be intro-
duced. This means that the similarity weight between two nodes
in the underlying graph contains inherent error. Propositions 4
and 5 show that the superposition and diffusion distances are
impervious to these minor perturbations.

In order to illustrate the stability results presented, consider
again the underlying network in Fig. 1. We perturb this network
by multiplying every edge weight–originally equal to 1–by a
random number uniformly picked from [0.95, 1.05] and then
compute the diffusion and superposition distances between vec-
tors r and g with the perturbed graph as underlying network. For
these illustrations we pick the input norm to be �2 and observe
that γ = 1 given the definitions of r and g. In Fig. 3 we plot his-
tograms of the absolute value of the difference in the distances
when using the original and the perturbed graphs as underly-
ing networks normalized by the norm of the perturbation for
1000 repetitions of the experiment. From (23) we know that
this value should be less than 2 for the superposition distance
and from (25) we know this should also be the case for the dif-
fusion distance for vanishing perturbations. Indeed, as can be
seen from Fig. 3, all perturbations are below the threshold of 2
by a considerable margin. This stability property is essential for
the practical utility of the diffusion and superposition distances
as seen in the next section.

Remark 2: In Propositions 4 and 5 we focus our analysis on
the input norms ‖ · ‖p for p ∈ {1, 2,∞} because these norms

Fig. 3. Histogram of the absolute value of the normalized difference, i.e.
|dL′

(g, r)− dL(g, r)|/‖E‖2, for the diffusion and superposition distances.
For this particular network and perturbations, the difference is considerably
lower than the theoretical upper bound of 2.

lead to the simple bounds in (23) and (24). The simplicity of
these bounds is derived from the fact that ‖e−Lt‖p ≤ 1 and
‖(I + L)−1‖p ≤ 1 for the values of p previously mentioned.
For other matrix norms satisfying (3) and (4), including all
induced matrix norms, the equivalence of norms guarantees that
bounds analogous to those in (23) and (24) must exist, but with
more involved constant terms.

VI. APPLICATIONS

We illustrate the advantages of the superposition and dif-
fusion distances developed in Sections III and IV respec-
tively through numerical experiments in both synthetic
(Section VI-A) and real-world data (Sections VI-B and VI-C).

A. Classification of synthetic signals on networks

The diffusion and superposition distances lead to better clas-
sification of signals on networks compared to traditional vector
distances such as the Euclidean �2 metric. Consider the network
presented in Fig. 4(a) containing three clusters–blue, red, and
green–where nodes within each cluster are highly connected
and there exist few connections between nodes in different
clusters. This network was generated randomly, where an undi-
rected edge between a pair of nodes in the same cluster is
formed with probability 0.4 and its weight is picked uniformly
between 1 and 3. In addition, three edges were added with
weight 1 between random pairs of nodes in different clusters.
We consider three types of signals on this network. The strength
of all signals is equal to 1 on three nodes in the network and 0
on the remaining ones. Among the three nodes with value 1
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Fig. 4. (a) Three-cluster network on which signals to be classified are defined. The width of the links is proportional to the weights of the corresponding edges.
(b) Sample signals for the three types considered. Type 1 signals have stronger presence in the blue cluster, type 2 in the red, and type 3 in the green cluster.

for the first type of signals, two of them are randomly selected
from the blue cluster and the remaining one is randomly cho-
sen from the other clusters. Similarly, for the second type of
signals, exactly two out of the three nodes with positive value
belong to the red cluster and the remaining one is chosen ran-
domly between the blue and green clusters. Finally, the third
type of signal has two positive values on the green cluster and
the third value randomly chosen from the rest of the network.
Sample signals for each type are illustrated in Fig. 4(b) where
positive signal values are denoted by larger nodes.

We generate ten signals of each type and measure the dis-
tance between them with the superposition, diffusion, and �2
metrics. For the superposition and diffusion metrics we use �2
as input norm and α = 1. The use of each metric generates
a different metric space with the thirty signals as the com-
mon underlying set of points. In order to illustrate these higher
dimensional spaces, in Fig. 5 (left) we present heat maps of the
distance functions, where darker colors represent closer signals.
It is clear that for the diffusion and superposition distances,
three blocks containing ten points each appear along the diago-
nal in exact correspondence with the three types of signals. In
contrast, the heat map corresponding to the �2 metric does not
present any clear structure. To further illustrate these implica-
tions, in Fig. 5 (right) we present 2D multi dimensional scaling
(MDS) [34] representations of the three metric spaces. The
points corresponding to type 1 signals are represented as blue
circles, type 2 as red circles, and type 3 as green circles. The
MDS representations for diffusion and superposition are funda-
mentally different from the one obtained for �2. For the latter,
the circles of different colors are spread almost randomly on
the plane, with no clear clustering structure. For diffusion and
superposition, in contrast, signals of different colors are clearly
separated so that any clustering method is able to recover the
original signal type.

B. Ovarian cancer histology classification

We demonstrate that the diffusion distance can provide a
better classification of histology subtypes for ovarian cancer
patients than the traditional �2 metric. To do this, we consider
240 patients diagnosed with ovarian cancer corresponding to
two different histology subtypes [35]: serous and endometrioid.
Our objective is to recover the histology subtypes from patients’
genetic profiles.

Fig. 5. Heat maps (left) and 2D multi dimensional scaling (MDS) [34] rep-
resentations (right) for the metric spaces generated by the �2 (top), diffusion
(middle) and superposition (bottom) distances. The diffusion and superposi-
tion metrics perfectly classify the signals into the three types while �2 does not
reveal any clear classification.

For each patient i, her genetic profile consists of a binary
vector vi ∈ {0, 1}2458 where, for each of the 2458 genes stud-
ied, vi contains a 1 in position k if patient i presents a mutation
in gene k and a 0 otherwise. One way of building a metric in
the space of 240 patients is by quantifying the distance between
patients i and j as the �2 distance between their genetic profiles,

d�2(i, j) = ‖vi − vj‖2. (26)

In this approach, every gene is considered orthogonal to
each other and compared separately across patients. An alterna-
tive approach is to take into account the relational information
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Fig. 6. Histology classification of ovarian cancer patients based on k nearest neighbors with respect to the �2 and diffusion distances of their genetic profile.
(a) Light bars denote the error when patients are classified using the �2 distance while the dark bars denote the error when diffusion distance is used for different
k-NN classifiers. The diffusion distance reduces the classification error consistently across classifiers. (b) Accuracy of serous subtype vs. endometrioid subtype.
Classifiers using diffusion (green) are closer to the top right corner, i.e. perfect classification, than those using the �2 distance (blue).

across genes when comparing patients. In order to do so, we
apply the diffusion distance on an underlying gene-to-gene
network built based on publicly available data [36]. In order
to build this network, we first extract the pairwise gene-gene
interactions from [36] using the NCI_Nature database. After
normalization, every edge weight is contained between 0 and
1, which we interpret as a probability of interaction between
genes. We assign to each path the probability obtained by mul-
tiplying the probabilities in the edges that form the path. For
every pair of genes in the network, we compute a similarity
value between them corresponding to the maximum probabil-
ity achievable by a path that links both genes. Finally, we apply
normalization and thresholding operations to obtain the gene-
to-gene network that we use in our experiments. Observe that
the gene-to-gene network contains accepted relations between
genes in humans in general and is not patient dependent, hence,
it defines a common underlying network for all subjects being
compared. Thus, denoting as L the Laplacian of the gene-to-
gene network and using the �2 as input norm we compute the
diffusion distances between patients i and j as [cf. (14)]

dLdiff(i, j) = ‖(I + αL)−1(vi − vj)‖2, (27)

where α was set to 15, however, results are robust to this par-
ticular choice. Given that in Section VI-A we obtained similar
performance between the diffusion and superposition distances,
combined with the fact that the latter is computationally expen-
sive, we do not implement the superposition distance in this
data set.

In order to evaluate the classification power of both
approaches–�2 and diffusion distance–we perform 240-fold
cross validation for a k nearest neighbors (k-NN) classifier.
More precisely, for a particular patient, we look at the k nearest
patients as given by the metric being evaluated and assign to this
patient the most common cancer histology among the k near-
est patients. We then compare the assigned histology with her
real cancer histology and evaluate the accuracy of the classifier.
Finally, we repeat this process for the 240 women considered
and obtain a global classification accuracy for both approaches.

In Fig. 6(a) we show the reduction in histology classifica-
tion error when using the diffusion distance (27) compared to
using the �2 distance (26) when comparing genetic profiles. The
four groups of bars correspond to classifiers built using different
numbers of neighbors k ∈ {1, 3, 5, 7}. Notice that the reduc-
tion in error is consistent across all classifiers analyzed with
an average error reduction of over 21%, unveiling the value
of incorporating the network information in the classification
process.

To further analyze the obtained results, in Fig. 6(b) we
present the accuracy obtained for the serous subtype versus
the accuracy obtained for the endometrioid subtype for dif-
ferent classifiers based on the diffusion (green) and �2 (blue)
distances. Points on the top right corner of the plot are ideal,
obtaining perfect classification for both subtypes. When using
diffusion, accuracies shift towards the ideal position since the
accuracies for the serous subtypes increase by 20% to 40%
whereas the accuracies for endometrioid subtypes decrease by
less than 5%. Furthermore, among the 240 patients analyzed,
there are 196 of them with endometrioid subtype and only 44
with serous subtype. Hence, a nearest neighbor classifier based
on an uninformative distance would tend to have a high classifi-
cation accuracy for the former but a low one for the latter. This
is the case for the �2 metric. The diffusion distance, in contrast,
by exploiting the gene-to-gene interaction can overcome this
limitation.

C. Handwritten digit recognition

Diffusion distance can be instrumental in the classification
of digits via semi-supervised learning. To illustrate this, con-
sider the well-known MNIST handwritten digit database [37].
Each observation consists of a square gray-scaled image of a
handwritten digit with 28× 28 pixels. Consequently, we can
think of each observation as a vector x ∈ R

784 where the value
of each component corresponds to the intensity of the asso-
ciated pixel. A subset of these images–the training set–are
labeled, i.e. we know the digit that the image represents. The
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rest of the images–the testing set–are unlabeled and our objec-
tive is to correctly identify the digits they represent. Given n
the total number of images–labeled or unlabeled–, we define
X ∈ R

784×n as X = [x1, x2, . . . , xn] so that each column in
X corresponds to the pixels of one digit.

K nearest neighbors is a simple conventional approach used
to classify the digits. In order to implement it, we first com-
pute the �2 pairwise distance between all the vectors xi.
Equivalently, if we denote by ei the i-th canonical vector–all
entries of ei are zero except the i-th entry which is 1–the �2
distance between digits i and j can be written as

d�2(i, j) = ‖X(ei − ej)‖2. (28)

To obtain the estimated label of an image in the testing set,
we look at the labels of the k closest images among those in the
training set as given by (28) and pick the mode of these labels,
i.e., the most popular one.

An alternative k-NN approach can be designed using diffu-
sion by defining a graph Gτ whose nodes are the handwritten
digits. To do this, we draw an edge–with weight 1–between two
digits i and j in Gτ if the �2 pairwise distance (28) is less than a
threshold τ . We can interpret digit i as being represented by the
signal ei on Gτ , with value 1 at node i and 0 elsewhere. The dif-
fused version of ei is given by (I + αLτ )

−1ei [cf. (15)] where
Lτ is the Laplacian of Gτ . We can then quantify the distance
between two diffused digits i and j as

dLτ

diff(i, j) = ‖X(I + αLτ )
−1(ei − ej)‖2. (29)

We can then train a k-NN classifier based on the distance
between the diffused digits and compare the results with the
conventional k-NN based on the �2 distance without diffusion.
Notice that dLτ

diff(i, j) reduces to d�2(i, j) when Lτ = 0.
In Fig. 8 we present the attribution error comparison between

both approaches when performing a binary attribution task
between hard-to-distinguish digits: 3 vs. 5, 3 vs. 8, and 5 vs. 8.
For each of these cases, we use the entire MNIST training set
and testing set with k ∈ {3, 5, 7}. It is immediate to see that
the diffusion approach outperforms the traditional k-NN in the
three tasks. To see why this is the case, in Fig. 7 (top) we present
two handwritten images that correspond to threes but are mis-
classified as fives by the traditional k-NN method. In Fig. 7
(bottom) we present their representations after diffusion in Gτ .
It is clear that diffusion averages out irregularities found in par-
ticular handwritten digits and drives them towards a canonical
representation of the number 3.

If we replicate the comparison for a ten class classifica-
tion problem, i.e. for all digits between 0 and 9, diffusion still
improves the accuracy by reducing the error rates from 4.43%
to 4.21% (training set of 8600 digits, testing set of 1400 digits
and k = 3). Moreover, further accuracy improvements can be
obtained by combining the traditional and the diffused k-NN
methods by choosing the most popular label among the k near-
est neighbors in the traditional approach and the k + 1 nearest
neighbors in the diffused approach. The error rate is further
reduced to 3.93%. We pick k neighbors from one approach and
k + 1 from the other to obtain an odd total number of neighbors,
reducing the possibility of a multimodal distribution of labels.

Fig. 7. Two instances of handwritten threes (top) which are interpreted as
fives by the classical k-NN approach and their corresponding diffused image
(bottom). Diffusion averages out irregularities, achieving higher classification
accuracy.

Fig. 8. Error rates for three binary classification problems of written digits
given by the traditional and diffused k-NN approaches. Error is reduced by
diffusion in the three cases.

For the cases where k ∈ {5, 7}, similar results are obtained
where we see still see the benefit of using diffusion which is
further boosted by combining the traditional and the diffused
k-NN methods.

Notice that this application of the diffusion distance is fun-
damentally different from the one presented in Section VI-B.
In the ovarian cancer case, the nodes in the network represent
genes and each signal on the network represents a patient. In
contrast, in the current case, both the nodes in the network and
the signals represent handwritten digits. This approach can be
used in general for label propagation problems in graphs.

VII. CONCLUSION

The superposition and diffusion distances, as metrics to com-
pare signals in networks, were introduced. Both metrics rely
on the temporal heat map induced by the diffusion of signals
across the network. The superposition distance quantifies the
instantaneous difference between the diffused signals while the
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diffusion distance evaluates the accumulated effect across time.
Both distances were shown to be stable with respect to pertur-
bations in the underlying network, however, due to its closed
form, the diffusion distance was found to be more suitable for
implementation. We showed how both distances can be used to
obtain a better classification of signals in networks both in syn-
thetic settings as well as in a real-world classification of cancer
histologies. Finally, we illustrated the use of diffusion as part of
a label propagation process to classify handwritten digits.

APPENDIX A

PROOF OF PROPOSITION 4

The next lemma is central to the proof of Proposition 4.
Lemma 2: Given the Laplacian L for some undirected net-

work, the matrix exponential of nonpositive multiples of the
Laplacian e−τL with τ ≥ 0 is a doubly stochastic matrix.

Proof: Since L = D −A, all off-diagonal components of
−τL are nonnegative, making −τL a Metzler matrix [38].
Since the exponentials of Metzler matrices are nonnegative [38,
Theorem 8.2], we are guaranteed that all elements of e−τL are
nonnegative. From the power series of matrix exponentials, we
have

e−τL =

∞∑
k=0

1

k!
(−τL)k = I − τL+

τ2L2

2
− τ3L3

3!
+ · · · .

(30)

If we are able to show that all rows and columns of Lk add
up to 0 for any integer k ≥ 1, then we know that all rows and
columns of

∑∞
k=1(−τL)k/k! also add up to 0. Therefore, when

we add the identity matrix to this summation to obtain the expo-
nential e−τL as in (30) we are guaranteed that the rows and
columns sum up to 1. Combining this with the non negativity
of e−τL implies doubly stochasticity, as wanted. To see that the
rows and columns of Lk indeed add up to 0 for any integer
k ≥ 1, denote by �1 and �0 the vectors of all-ones and all-zeros,
respectively. Then, by the definition of the graph Laplacian (1),
it follows that �1TL = L�1 = �0 which immediately implies that
�1TLk = Lk�1 = �0 for all k ≥ 1. �

We now use Lemma 2 to show Proposition 4.

Proof of Proposition 4: Given the definition of L′, from
(9) we have that

dL
′

sps(s, r) =

∫ ∞

0

e−t
∥∥∥e−(L+E)t(s− r)

∥∥∥
p
dt, (31)

where without loss of generality we assume α = 1. If α �= 1,
then αL′ defines a Laplacian and we can think of the distance
dαL

′
sps (s, r) where the new α parameter is equal to 1. If we focus

on the input norm ‖ · ‖p inside the integral in (31), we may add
and subtract e−Lt(s− r) to obtain∥∥∥e−(L+E)t(s− r)

∥∥∥
p

=
∥∥∥
(
e−(L+E)t − e−Lt

)
(s− r) + e−Lt(s− r)

∥∥∥
p

≤
∥∥∥
(
e−(L+E)t − e−Lt

)
(s− r)

∥∥∥
p
+
∥∥e−Lt(s− r)

∥∥
p
,

(32)

where we used the subadditivity property of the input norm.
To further bound the first term on the right hand side of (32) we
apply the compatibility property of p-norms (4) followed by the
subadditivity property to obtain that∥∥∥

(
e−(L+E)t − e−Lt

)
(s− r)

∥∥∥
p

≤
∥∥∥e−(L+E)t − e−Lt

∥∥∥
p
‖(s− r)‖p

≤
∥∥∥e−(L+E)t − e−Lt

∥∥∥
p
(‖s‖p + ‖r‖p) . (33)

In order to bound the first term on the right hand side of (33),
we use a well-known result in matrix exponential analysis [30],
[39] that allows us to write the difference of matrix exponentials
in terms of an integral,

∥∥∥e−(L+E)t − e−Lt
∥∥∥
p
=

∥∥∥∥
∫ t

0

e−L(t−τ)Ee−(L+E)τdτ

∥∥∥∥
p

≤
∫ t

0

∥∥∥e−L(t−τ)Ee−(L+E)τ
∥∥∥
p
dτ

≤ ‖E‖p
∫ t

0

∥∥∥e−L(t−τ)
∥∥∥
p

×
∥∥∥e−(L+E)τ

∥∥∥
p
dτ, (34)

where the first inequality follows from subadditivity of the input
p-norm and the second one from submultiplicativity (3).

We now bound each of the three terms on the right hand
side of (34). For the first term, ‖E‖p ≤ ε‖L‖p by assumption.
From Lemma 2, the doubly stochasticity of e−L(t−τ) implies
that ‖e−L(t−τ)‖1 = ‖e−L(t−τ)‖∞ = 1. For p = 2, notice that
−L(t− τ) is a negative semi-definite matrix with an eigen-
value at 0. Since the eigenvalues of e−L(t−τ) are equal to the
exponentials of the eigenvalues of −L(t− τ), it follows that the
largest eigenvalue of e−L(t−τ) is 1 and hence ‖e−L(t−τ)‖2 = 1.
For the term

∥∥e−(L+E)τ
∥∥
p
, notice that L+ E = L′ is in itself

a Laplacian, meaning that we can follow the aforementioned
argument and upper bound this term by 1. Substituting these
bounds in (34) and solving the integral yields∥∥∥e−(L+E)t − e−Lt

∥∥∥
p
≤ ε‖L‖p t. (35)

Further substitution in (33) combined with the fact that
‖s‖p ≤ γ and ‖r‖p ≤ γ, results in∥∥∥

(
e−(L+E)t − e−Lt

)
(s− r)

∥∥∥
p
≤ 2γε‖L‖p t. (36)

By substituting this result in (32) and inputing the resultant
inequality in the integral in (31) we conclude that

dL
′

sps(s, r) ≤
∫ ∞

0

te−t2γε‖L‖pdt

+

∫ ∞

0

e−t
∥∥e−Lt(s− r)

∥∥
p
dt. (37)

Notice that the rightmost summand in (37) is exactly equal
to dLsps(r, s) [cf. (9)]. Thus, solving the integral in the first
summand we get that

dL
′

sps(s, r)− dLsps(s, r) ≤ 2γε‖L‖p. (38)
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Following the same methodology but starting from the defi-
nition of dLsps(s, r), it can be shown that

dLsps(s, r)− dL
′

sps(s, r) ≤ 2γε‖L‖p. (39)

Finally, by combining (38) and (39), we obtain (23), conclud-
ing the proof. �

APPENDIX B

PROOF OF PROPOSITION 5

In the proof of Proposition 5 we use two lemmas. The first
one is similar to Lemma 2 and shows that (I + L)−1 is doubly
stochastic.

Lemma 3: Given the Laplacian L for some undirected net-
work, the inverse of the Laplacian plus identity matrix (I +
L)−1 is a doubly stochastic matrix.

Proof: Since all the off-diagonal entries of I + L are less
than or equal to zero, I + L is a Z-matrix [40]. Moreover,
due to the fact that all eigenvalues of I + L have positive real
parts, I + L is an M -matrix. Since the inverse of an M -matrix
is elementwise nonnegative [41], (I + L)−1 is a nonnegative
matrix. Thus, to show doubly stochasticity, we only need to
prove that all rows and columns of (I + L)−1 add up to 1.
Recall that �1 and �0 stand for the vectors of all-ones and all-
zeros, respectively, and that L�1 = �0 [cf. (1)] Thus, we may
write (I + L)�1 = �1 from which we have that

�1 = (I + L)−1 (I + L)�1 = (I + L)−1�1, (40)

showing that all the rows of (I + L)−1 sum up to 1. Similarly,
it can be shown that all the columns of (I + L)−1 sum up to 1,
concluding the proof. �

The second lemma is a statement about the stability of
inverse matrices.

Lemma 4: If A is nonsingular and ‖A−1E‖p < 1, then A+
E is nonsingular and it is guaranteed that

∥∥(A+ E)−1 −A−1
∥∥
p
≤ ‖E‖p‖A−1‖2p

1− ‖A−1E‖p . (41)

Proof: See [32, Theorem 2.3.4]. �
We now use Lemmas 3 and 4 to show Proposition 5.

Proof of Proposition 5: Given the definition of L′, from
(14) we have that

dL
′

diff(s, r) =
∥∥(I + L+ E)−1(s− r)

∥∥
p
. (42)

As in the proof of Proposition 4, we can assume that α =
1 without loss of generality. Subtracting and adding (I +
L)−1(s− r) from (42) and applying the subadditivity property
of the p-norm implies

dL
′

diff(s, r) ≤
∥∥((I + L+ E)−1 − (I + L)−1

)
(s− r)

∥∥
p

+
∥∥(I + L)−1(s− r)

∥∥
p
, (43)

where the second term in the sum is exactly dLdiff(s, r) [cf. (14)].
Therefore we may write

dL
′

diff(s, r)− dLdiff(s, r)

≤ ∥∥((I + L+ E)−1 − (I + L)−1
)
(s− r)

∥∥
p
. (44)

By applying compatibility of p-norms (4) followed by the
subadditivity property we obtain that

dL
′

diff(s, r)− dLdiff(s, r)

≤ ∥∥((I + L+ E)−1 − (I + L)−1
)∥∥

p
‖(s− r)‖p

≤ ∥∥((I + L+ E)−1 − (I + L)−1
)∥∥

p
(‖s‖p + ‖r‖p)

(45)

Given that I + L is nonsingular we have to show that ‖(I +
L)−1E‖p < 1 in order to be able to apply Lemma 4 with A =
(I + L) and further bound (45).

Due to doubly stochasticity [cf. Lemma 3], we have
that ‖(I + L)−1‖1 = ‖(I + L)−1‖∞ = 1. Moreover, ‖(I +
L)−1‖2 = 1 comes from the fact that the smallest eigenvalue
of (I + L) and hence the largest eigenvalue of (I + L)−1 is
equal to 1. Consequently, we may write

‖(I + L)−1E‖p ≤ ‖(I + L)−1‖p‖E‖p < 1, (46)

for p ∈ {1, 2,∞}, as wanted, where the first inequality follows
from submultiplicativity (3). Hence, applying Lemma 4 with
A = (I + L) yields

∥∥(I + L+ E)−1 − (I + L)−1
∥∥
p
≤ ‖E‖p‖(I + L)−1‖2p

1− ‖(I + L)−1E‖p .
(47)

Recalling that ‖(I + L)−1‖p = 1 for any p ∈ {1, 2,∞}
allows us to further bound (47) to obtain

∥∥(I + L+ E)−1 − (I + L)−1
∥∥
p
≤ ‖E‖p

1− ‖E‖p ≤ ε‖L‖p
1− ε‖L‖p ,

(48)

where we used that ‖E‖p ≤ ε‖L‖p < 1 for the last inequality.
Utilizing the Taylor series of 1/(1− ε‖L‖p) and substituting

(48) into (45) combined with the fact that ‖s‖p ≤ γ and ‖r‖p ≤
γ we have that

dL
′

diff(s, r)− dLdiff(s, r) ≤
∞∑

n=1

2γ(ε‖L‖p)n = 2γ‖L‖pε+ o(ε).

(49)

In a similar manner but starting from the definition of
dLdiff(s, r), it can be shown that

dLdiff(s, r)− dL
′

diff(s, r) ≤ 2γ‖L‖pε+ o(ε). (50)

Finally, by combining (49) and (50), we obtain (24) and the
proof concludes. �
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