
1
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Abstract—We develop a hybrid system architecture that en-1

ables a team of mobile robots to complete a task in a complex2

environment by self-organizing into a multi-hop ad hoc network3

and solving the concurrent communication and mobility problem.4

The proposed system consist of a two-layer feedback loop.5

An outer layer performs infrequent global coordination of the6

team and operates at a centralized coordination unit. The inner7

layer operates in a decentralized manner and is responsible for8

continuous determination of motion control and data commu-9

nication variables. This two-layered architecture allows for the10

lightweight coordination and responsiveness that is typical of11

decentralized systems without the characteristic drawback of12

convergence to local minima, which are avoided by the operation13

of the outer loop. This results in a system that allows a team14

of robots to complete a task in complex environments while15

maintaining desired end-to-end data rates and retaining the16

light coordination and responsiveness of decentralized systems.17

The behavior of the system is evaluated in simulations and18

experiments. In particular, we demonstrate: (i) Successful task19

completion in complex environments by avoiding local minima.20

(ii) Efficient operation for large team sizes and environments. (iii)21

The achievement of equal or greater end-to-end data rates as22

compared to a centralized system. (iv) Robustness to unexpected23

events such as motion restriction. We conclude by exemplifying24

the efficacy of the proposed system to complete a high-level task,25

by considering hallway patrolling while maintaining a target end-26

to-end data rate for the lead member of the patrol.27

I. INTRODUCTION28

Cooperative task completion for teams of autonomous mo-29

bile robots has seen an increase in interest over the past few30

years. This higher-level interest is due to both, the decrease31

in the cost of robotic components, as well as the increase in32

computational abilities of such robots. These factors have lead33

to advancements in the field of multi-robot systems, ranging34

from flock behavior, to surveillance, to exploration. While35

these robots have become cheaper and more ubiquitous, the36

underlying assumption in most systems is the existence of a37

wireless network over which the robots can communicate. This38

assumption, while valid in some scenarios, prevents the current39

algorithms from operating in environments where they are of40

the most use. For instance, when performing search and rescue41

in a collapsed building after an earthquake, the assumption of42

the existence of a wireless network is most likely invalid. This43

requires that the multi-robot team not only execute the search44
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algorithm, but also create and maintain the ad-hoc network 1

that such an algorithm relies on. 2

Two main factors complicate the creation of such a network. 3

The first being the dynamic motion of the robots in the 4

network; as a robot moves through the environment, the link 5

between it and every other robot in the network changes. 6

These changes at the link level, no matter how small, can 7

have large effects on the network, and as such the system 8

needs to take this into account as the robots move. The second 9

complication arises from the random nature of wireless links. 10

In environments with few obstructions inter-robot distances 11

dominates the change in the wireless links. As the environ- 12

ments become more complex, the effects of obstacles, in the 13

form of shadowing shadowing, and multi-path propagation, in 14

the form of fading, begin to dominate. 15

Many systems attempt to control the effect of motion on 16

the underlying communication network. These systems rely 17

on graph-theoretic metrics to measure and maintain the desired 18

communication network properties. We can organize the con- 19

trol laws used in these systems into two distinct classes, global 20

and local. When implementing a global control law, the system 21

seeks to command each robot at the same time to perform 22

an action based on global information, in order to reach a 23

globally-optimal solution. These systems have demonstrated 24

that it is feasible to control the global properties of the underly- 25

ing communication graph, such as the second eigenvalue of the 26

Laplacian [1], [2] or k-connectedness [3]. In contrast to global, 27

a local control law utilizes local information and therefore 28

cannot guarantee a globally optimal solution. However, using 29

only local information, one can develop systems that are able 30

to maintain connectivity through either distributed estimation 31

of the Laplacian’s second eigenvalue [4], [5], hysteresis [6], 32

switching network theory [7], [8], or dual gradient descent 33

algorithms [9]. 34

To mitigate the random nature of the wireless links, these 35

systems use one of three categories of link models, depending 36

on the assumed environment. The first category is a binary disc 37

model, in which two robots are able to communicate if they 38

are within some nominal distance of each other, [6]–[8], [10]. 39

While this model is effective in simple environments, [11] 40

shows that small changes in the nominal distance used can 41

have dramatic effects on the network topology,. The second 42

category models the reliability of a link as a function of the 43

inter-robot distance, [1]–[5], [9], [12]. This class of model 44

performs well in complex environments but loses accuracy as 45

the number of obstacles increases. The third, and most recent, 46

category is a probabilistic model in which not only is the 47

expected value of the channel used but also the variance to 48
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capture the effects of shadowing and fading, [13]–[17].1

Most of the previously mentioned systems do not con-2

sider network routing, only two [9], [16] incorporate network3

routing into the problem formulation. Incorporating routing4

is advantageous because it focus on maintaining reliability5

of the links that are actually being used for communication6

and it further adds the ability to reroute information to more7

reliable links. However, incorporating network routing into8

motion control results in a complex optimization problem re-9

quiring joint optimization of motion and routing. The resulting10

systems that solve this problem are either centralized, requir-11

ing global coordination but able to obtain globally-optimal12

solutions, or distributed, needing only local information but13

susceptible to local minima. The system developed in [16] is14

an example of a globally-optimal centralized system that is15

able to control a team of robots in a complex environment16

using global coordination, while maintaining a minimum end-17

to-end rate between a robot and an access point. In contrast, the18

system developed in [9] is an example of a distributed system19

that can also maintain a minimum end-to-end rate between a20

robot and an access point, but local minima limit it to simple21

environments.22

In this paper, we propose a hybrid system that combines the23

benefits of both a distributed and a globally-optimal central-24

ized system while avoiding their deficiencies. To achieve this25

we construct a multi-layer feedback system composed of two26

distinct layers, an outer and inner layer, each with specific27

responsibilities. The outer layer is responsible for the infre-28

quent global coordination and the inner layer is responsible29

for the motion control and network routing at the robot level.30

The behavior of this system is evaluated in simulations and31

experiments. We begin the paper by defining the problem that32

is under consideration in this paper - Section II. Then we detail33

the construction and implementation of the hybrid system -34

Section III. We then describe the experimental platform and35

operating environments - Section IV. Next we present the36

results of two simulations, the first highlights the limitations of37

the distributed system in [9] that are not present in the hybrid38

system and the second demonstrates the scalability of the hy-39

brid system to teams with over 20 robots - Section V. Shifting40

to empirical validation, we offer results from two experiments41

comparing the performance of the hybrid system to the the42

centralized system in [16] - Section VI. The first experiment43

demonstrates the superior performance of the hybrid system to44

the centralized system and the second demonstrates the ability45

of the hybrid system to mitigate unexpected occurrences that46

cause the centralized system to fail. Finally, we present an47

application of the fundamental algorithms presented here to a48

long-duration monitoring task - Section VII.49

II. PROBLEM FORMULATION50

In this paper we consider a team of N mobile robots51

operating in a known environment. The position of robot i52

in the environment is xi(t) ∈ R3 and the collection of all53

the robot positions, called a formation, is x(t) ∈ R3N . The54

team is deployed at time t0 in formation x(t0) and given a55

task that it has to accomplish by time tf . We assume that56

the task is given in the form of a scalar convex function, 1

Γ(x) : RN×3 → R whose minimum x∗ is the desired final 2

formation. If the team’s trajectory satisfy x(tf ) = x∗ we say 3

that the task has been successfully completed. To model the 4

kinematics of a single robot, we begin with a single input 5

control system, ẋi(t) = f(xi(t), ui(t)), with input ui(t). We 6

only consider robots with simple dynamics that are assumed 7

fully controllable so that we can write ẋi(t) = ui(t). 8

Our goal here is to find control inputs ẋ(t) for the team 9

as a whole. These control inputs are required to complete 10

the task successfully, while avoiding environmental obstacles 11

and collisions with each other. Define then O as the set 12

of environmental obstacles and the configuration free space 13

F as the set of formations x ∈ R3N for which robots 14

don’t collide with each other, namely, formations such that 15

‖xi(t) − xj(t)‖2 > δ, and for which they remain outside of 16

the obstacle space, namely, xi(t) /∈ O. Using this definition of 17

free space and the integral team trajectory that follows from 18

full controllability, we can write trajectory planning as the 19

optimization problem, 20

min
ẋ(t)

Γ (x (tf )) (1)

s. t. x(t) = x(t0) +

∫ t

0

ẋ(s)ds, x(t) ∈ F , t ∈ [t0, tf ].

In (1), we find a trajectory whose final formation x(tf ) 21

minimizes the task function Γ(x) while evolving according 22

to the control law x(t) = x(t0) +
∫ t
0
ẋ(s)ds and staying in 23

configuration free space F . This problem formulation is well 24

understood and a variety of solution methodologies exist that 25

provide a guarantee that x(tf ) = x∗ if this is possible. In this 26

paper we modify (1) by adding communication constraints as 27

we explain in the following section. 28

A. Communication Links and Networking 29

We model communication using the normalized point to 30

point rate R(xi, xj) : R6 → [0, 1] that measures the infor- 31

mation rate from robot i at position xi to robot j at position 32

xj . Using these point to point rate functions we construct the 33

rate matrix, R(x) ∈ RN×N , with entries Rij(x) = R(xi, xj). 34

The information flow over the network is specified by a set 35

of routing variables αij ∈ [0, 1], that denote the fraction 36

of time that robot i transmits data to robot j. As with the 37

communication rates, we group the variables in the matrix 38

α ∈ RN×N , with entries αij . Further observe that since they 39

represent time fractions we must have that
∑N
j=1 αij ≤ 1 40

for all i. With these definitions it follows that the product 41

αijR(xi, xj) is the rate at which data is transmitted over the 42

communication link from robot i to robot j. We can then 43

compute the communication rate margin for robot i as the 44

difference between the rate at which information is sent to 45

other robots and the rate at which it is received, 46

ai(α,x) =

N∑
j=1

αijR(xi, xj)−
N∑

j=1, i 6∈D

αjiR(xj , xi). (2)

In the second summation in (2) the set D represents the 47

information destinations. They are excluded because destina-1

tions i ∈ D don’t send information out. In order to prevent2
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unbounded growth of the communication queues and ensure3

network stability we must have ai(α,x) ≥ 0 for all i. With4

this restriction the value of ai(α,x) can now be reinterpreted5

as the rate at which robot i can add data to the network.6

The formulation in (2) is for a static formation and a single7

information flow. In a robotic team we have dynamic forma-8

tions and multiple information flows. To allow for dynamic9

formations we add a dependence on time to (2),10

ai(α(t),x(t)) =

N∑
j=1

αij(t)R(xi(t), xj(t))

−
N∑

j=1, i 6∈D

αji(t)R(xj(t), xi(t)). (3)

This allows the routing solutions to adjust as the team’s11

formation changes. For the multiple information flows, we12

assume that the communication constraints are given as a13

collection of K quality of service (QoS) requirements, where14

each requirement consists of a set of destinations, Dk ⊆15

{1, . . . , N}, and a minimum data rate, aki,m ∈ [0 . . . 1] for16

all terminals i. When all of the QoS requirement are satisfied,17

we say that network integrity is achieved. To accommodate18

the multiple QoS requirements, we extend α from RN×N to19

RN×N×K . This results in a per requirement version of (3),20

aki (α(t),x(t)) =

N∑
j=1

αkij(t)R(xi(t), xj(t))

−
N∑

i=1, i 6∈Dk

αkji(t)R(xj(t), xi(t)). (4)

As with the single flow formulation, αkij represents a time21

fraction, thus it must be
∑K
k=1

∑N
i=1 α

k
ij =

∑
j,k α

k
ij ≤ 122

for all i. Using (4) we can write a set of constraints that23

when satisfied ensure that for the given trajectory, the series of24

routing solution preserve network integrity. These constraints25

can be written as,26

aki (α(t),x(t)) ≥ aki,m,
∑
j,k

αkij(t) ≤ 1, (5)

and are required to hold for all terminals i, flows k, and times27

t ∈ [t0, tf ]. Adding the constraints in (5) to the problem28

statement in (1) results in the full mobility and communication29

optimization problem,30

min
ẋ(t)

Γ (x (tf )) (6)

s. t. x(t) = x(t0) +

∫ t

0

ẋ(s)ds, x(t) ∈ F ,

aki (α(t),x(t)) ≥ aki,m,
∑
j,k

αkij(t) ≤ 1.

where the constraints are assumed to hold for all terminals i,31

flows k, and times t ∈ [t0, tf ].32

The goal of this paper is to find a trajectory that is optimal in33

the sense of solving problem (6). Methods to plan coordinated 1

trajectories at a central location that approximate a solution 2

to (6) exist [16]. The drawback of this centralized strategy 3

is the cost of aggregating environmental information and 4

disseminating plans which, e.g., makes it difficult to react to 5

changing conditions. Distributed methods to find local minima 6

of (6) also exist [9]. Their drawback is the limited progress that 7

such a controller can make in a complex environment. This 8

paper develops a hybrid methodology that utilizes a centralized 9

controller to feed intermediate points to a distributed controller 10

that is responsible for the determination and execution of 11

motion and communication variables as we explain in the 12

following section. 13

III. HYBRID SYSTEM 14

The goal of the hybrid system is to drive an arbitrary 15

number of mobile robots through a complex environment 16

while maintaining a minimum QoS in order to complete a 17

given task. To accomplish this, we propose an architecture that 18

consists of a two stage feedback system shown in Figure 1. 19

This architecture is composed of an outer centralized planning 20

feedback loop and an inner distributed control feedback loop. 21

The process is initiated by the user providing a global task 22

function Γ(x) to the outer loop. This begins the planning 23

process which generates a set of dense candidate trajectories 24

for the system that we denote as x̃(t) = {x̃i(t)}Ni=1. Given the 25

model that has been provided as input to the outer loop, these 26

trajectories give an approximate robust solution to a stochastic 27

formulation of (6) – see Section III-A. The candidate trajectory 28

x̃(t) is never executed but rather fed to a waypoint generator 29

that converts the dense trajectories into a series of waypoints 30

for each robot, 31

Xi =
{
x̃i(τw)

}W
w=1

. (7)

The waypoints in (7) are sampled at the same set of times 32

{τw}Ww=1 for all robots and represent a decomposition of (6) 33

into subproblems that can be solved by the distributed control 34

inner loop. 35

The waypoints in (7) serve as sequential inputs to the dis- 36

tributed control loop. In contrast to the centralized loop which 37

only operates only when a new task is given, the distributed 38

loop operates continuously on each robot. The distributed 39

controller accepts a target location xi,0 as input and attempts 40

to drive the robot to that location while avoiding physical 41

obstacles and preserving network integrity. The process that 42

is used to implement this driving is distributed in that it 43

relies on communication between adjacent robots only – see 44

Section III-B. When robot i receives a new set of waypoints Xi 45

from the global planner its waypoint curator is responsible for 46

updating the target location xi,0. This is done by setting xi,0 to 47

the first waypoint in the series, i.e., by making xi,0 = x̃i(τ1). 48

Then, when the distance to the target location falls bellow a 49

given tolerance ω > 0, namely, when ‖xi(t)− xi,0‖ ≤ ω, the 50

waypoint is declared reached and xi,0 is updated to the next 51

waypoint in the series. The curator advances though successive 52

waypoints until the final waypoint is reached at which time the 53

task is declared accomplished for robot i. 54

Notice that the candidate trajectory x̃(t) generated by the 55

centralized planner is optimal for the model that is available.1

However, given the possibility for model mismatch, the trajec-2

tory is not necessarily optimal during actual deployment. The3
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ẋ(t)

↵k
ij(t)

Fig. 1: Hybrid architecture diagram. The red indicates the outer, centralized, loop of the system while the green indicates the
inner, local controller, loop.

distributed controller corrects for this mismatch because, due4

to the small communication overhead of its implementation,5

it can adapt to the conditions observed during execution.6

Thus, the hybrid system proposed here resolves the lack of7

adaptability of the centralized planner while avoiding the local8

minima that can limit the progress of the distributed control9

loop. We describe the centralized and distributed loops in the10

following sections.11

A. Centralized Path Planning12

The purpose of global path planning is to find a trajectory13

that solves (6). The challenge in finding this plan is that14

we want to construct long term trajectories that visit points15

in space for which the channel reliabilities that appear in16

(6) can’t be measured. Solving this problem is therefore17

not possible because the constraints can’t be evaluated. We18

overcome this problem with the introduction of a probabilistic19

formulation [16]. Reinterpret then Rij as a Gaussian random20

variable with mean R̄ij and variance R̃ij . With this modeling21

assumption, the flow rates in (4) become random variables22

as well and we can reformulate the satisfaction of (5) in a23

probabilistic manner. To do so, introduce a tolerance ε and24

replace the deterministic constraint in (5) by the probabilistic25

constraint that requires the target rates aki,m to be achieved26

with probability at least 1− ε,27

P

[
aki (α(t),x(t)) ≥ aki,m

]
> 1− ε, (8)

Observe that the flow aki (α(t),x(t)) has a normal distribu-28

tion because the rates Rij are assumed to be Gaussian and 1

aki (α(t),x(t)) is a linear function of Rij for given x. As it fol- 2

lows from (4), the mean āki (α(t),x(t)) := E
[
aki (α(t),x(t))

]
3

of this Gaussian variable can be written as 4

āki (α(t),x(t)) =

N∑
j=1

αkij(t)R̄(xi(t), xj(t))

−
N∑

j=1,i6∈Dk

αkji(t)R̄(xj(t), xi(t)), (9)

and the corresponding variance ãki (α(t),x(t)) := 5

var
[
aki (α(t),x(t))

]
is given by the expression 6

ãki (α(t),x(t)) =

N∑
j=1

(αkij(t))
2R̃(xi(t), xj(t))

+

N∑
j=1,i6∈Dk

(αkji(t))
2R̃(xj(t), xi(t)). (10)

Using the mean and variances in (9) and (10) and letting 7

Φ−1(ε) stand for the inverse Gaussian complementary cumu- 8

lative distribution function, we can write the probability in (8) 9

as 10

āki (α(t),x(t))− aki,m√
ãki (α(t),x(t))

≥ Φ−1(ε). (11)

The constraint in (11), being dependent on the probabilistic 11

model variables R̄ij and R̃ij , can be evaluated by the global 12

path planner. We therefore modify (6) to write the optimization 13

problem 14
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min
ẋ(t),α(t)

Γ (x (tf )) (12)

s. t. x(t) = x(t0) +

∫ t

0

ẋ(s)ds, x(t) ∈ F ,

āki (α(t),x(t)) ≥ aki,m + Φ−1(ε)
√
ãki (α(t),x(t)),∑

j,k

αkij(t) ≤ 1,

where, as in (6), the constraints hold for all terminals i, flows 15

k, and times t ∈ [t0, tf ].1

The formulation in (12) is termed robust routing in [16]2

where the constraint in (11) is shown to define a second order3

cone as long as ε < 0.5 – which is not restrictive since we4

want ε to be small. Therefore, the determination of routing5

variables α that satisfy this constraint can be written as a6

second order cone program if the formation x(t) is given.7

This implies that determining routing variables for a given8

formation can be done in polynomial time by using convex9

programing techniques [18]. In particular, checking if routing10

variables that satisfy the constraint in (11) exist is tractable,11

which in turn implies that finding formations that are feasible12

for the problem in (12) is also tractable. This is exploited in13

the solution of (12) with a Rapidly Exploring Random Tree14

(RRT) [19] as we explain in Section III-A1.15

Do notice that acquiring an accurate probabilistic model16

of reliabilities is itself challenging. The values of R̄ij and17

R̃ij are dependent on shadowing and fading effects that can18

vary substantially in different propagation environments. The19

problem formulation in (12) circumvents this problem with20

the use of the robust routing constraint in (8). If the available21

propagation model is rough, this is captured in large values22

for the variances R̃ij , which in turn result make it difficult23

to find formations that satisfy (8). This leads to conservative24

plans that can later be refined by the distributed controller25

which, different from the global planner, can rely on online26

modification of the propagation model.27

1) Rapidly exploring random tree: The robust routing con-28

straints in (12) modify the configuration free space F . On top29

of physical obstacles and collision avoidance, we also need to30

remove formations for which satisfying (11) is not possible31

– which, as we argued before, can be done in polynomial32

time. We explore the resulting free space with a RRT. The33

RRT algorithm is initialized by first setting the current valid34

formation as the root of a tree. Then the following process is35

repeated until a formation that satisfies the task objective is36

added to the tree, Γ(x) = Γ(x∗). A random point from the37

configuration space, corresponding to a formation, is drawn.38

If the formation does not satisfy (11) then is it discarded39

and another point is sampled. When a formation that satisfies40

(11) is found, the nearest node in the tree is found. For this41

configuration space a simple Euclidean distance is used to42

determine the nearest node. Now using the nearest node as a43

starting point the system attempts to reach the sampled point44

under the motion dynamics of the platform. The system either45

reaches the sampled point at which time the point is added46

to the tree with the a branch from the nearest node to it,47

or some obstacle in the environment prevents a simple path.48

If the system is prevented from reaching the destination the 1

formation that corresponds to the halting point is checked 2

against (11). If the halting point is feasible it is added to 3

the tree with a branch from the nearest node, otherwise the 4

sample is discarded and the search process is repeated. When 5

a formation that satisfies the task objective is added to the tree, 6

the process is terminated. 7

The path through the tree starting at the current formation 8

to the goal formation is then extracted. Since a node can only 9

be added to the tree if the flow constraints are satisfied it 10

is guaranteed that for every node in the final path the flow 11

constraints are satisfied. This path corresponds to a feasible 12

trajectory for each robot from its current location to a final 13

location. 14

B. Distributed Controller 15

The purpose of the distributed controller is to manage the 16

mobility and network routing of an individual robot using the 17

waypoints generated by the centralized controller [cf. (7)]. 18

This dual mandate requires that we solve both the motion 19

control and the network routing. To accomplish this, we run 20

concurrently a continuous-time motion-gradient control and a 21

discrete-time dynamic computation of optimal communication 22

variables [9]. 23

For the motion-control portion of the distributed controller 24

we employ a navigation function that is capable of driving the 25

robot to a goal location xi,0 while avoiding obstacles [20], 26

[21]. However, obstacles here are not physical but determined 27

by the need to guarantee network integrity. Assume then that 28

routing variables α(t) are given – their adaptive computation is 29

explained in Section III-B1 – and recall that network integrity 30

is defined as the satisfaction of the QoS requirements in (5). If 31

we further introduce a strictly positive tolerance e > 0 we can 32

thus define the obstacle function for robot i associated with 33

the kth constraint as 34

βki (x(t)) ,
N∑
j=1

αkij(t)Rij(x(t))

−
N∑
j=1

αkji(t)Rji(x(t))− aki,m + e. (13)

The function βki (x(t)) is positive when the kth QoS require- 35

ment for robot i is satisfied within the tolerance e for the 36

current formation x(t), and negative otherwise. This allows 37

a gradient controller to treat the zero points of βki (x(t)) as 38

the border of a virtual obstacle that, if crossed, would result 39

in a violation of the integrity of the kth flow. Observe that, 40

different from the centralized controller, this QoS constraint 41

can be accurately evaluated at the current location because 42

the propagation model can be adapted to observations. Also 43

notice that the tolerance e simply implies a reduction of the 44

minimum acceptable rate from aki,m to aki,m−e. They are kept 45

separate to emphasize that the distributed controller requires 46

some leeway to increase its range of motion for a given set of 47

communication variables. 48
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The obstacle define by the function βki (x(t)) in (13) is 49

associated with robot i and flow k. For robot i all the QoS1

obstacle functions can be combined into the single network2

integrity obstacle function,3

βi(x(t)) = min
k=1,...,K

βki (x(t)). (14)

Integrity of all flows at robot i is guaranteed within the4

tolerance e if the joint obstacle function is βi(x(t)) > 0. To5

create an attraction to xi,0 we use the goal potential function6

ρi (x(t)) = ‖xi(t) − xi,0‖2. Using this definition of ρi(x(t))7

and the obstacle function in (14) we can define the navigation8

function,9

φi (x(t)) =
ρi (x(t))(

ρi (x(t))
κ

+ βi (x(t))
2
)1/κ , (15)

where the order parameter satisfies κ > 2 and has to be10

chosen sufficiently large. This navigation function has the11

desirable properties of being φi (x(t)) ∈ [0, 1] always, sat-12

isfying φi (x(t)) = 0 when x(t) = xi,0, and being such that13

φi (x(t))→ 1 when a QoS requirement is about to be violated.14

Taking advantage of these properties we can drive robot xi15

towards xi,0 while guaranteeing network integrity with the16

gradient descent controller17

ẋi(t) = −∇xi
φi (x(t)) . (16)

The value of κ is used to control the regions that are affected18

by the obstacles, the larger κ is the more localized the effects19

are to the obstacles. As shown in [20], [21], the controller in20

(16) is able to reach xi,0 while avoiding obstacles that are not21

intersecting and spherical. The obstacle defined by (14) is not22

spherical and it may be that (16) stops at a local optimum.23

This is not a concern because the sampling of waypoints is24

done fine enough to preclude this possibility. Notice that in the25

complex environments considered here it is also necessary to26

avoid physical obstacles. This is standard problem that we can27

solve, e.g., with a modification of (14) to include the distance28

to these physical obstacles.29

Assuming that feasible routing variables α(t) satisfying30

aki (α(t),x(t)) ≥ aki,m are available for all configurations for31

which these variables exist, the controller in (16) coupled with32

proper generation of waypoints would drive the team to a33

configuration that solves (6). What is left, therefore, is the34

design of a distributed mechanism to find these feasible routing35

variables. We do so in the following section.36

1) Adaptation of routing variables: The motion control of37

the robot is predicated on the virtual obstacles created in (13)38

which are computed directly from the routing solution α(t).39

When starting at a waypoint and moving to the next, we have40

available the routing solution α(t) that has been computed41

by the centralized controller. This solution can be used for42

initialization, but an accurate description of the obstacle space43

necessitates the routing solutions α(t) used in the controller44

in (16) to adapt as the robots move. In order to adapt these45

variables we adopt a modified version of (6) in which only46

the network integrity constraints are used.47

Specifically, extract the network integrity constraint48

aki (α(t),x(t)) ≥ aki,m from (6) and rewrite it as49

aki (α(t),x(t)) = aki ≥ aki,m. The idea here is to adapt the50

routing variables so that the rates aki are as large as possible 1

– but not smaller than the minimum requirement aki,m. To 2

do so introduce weights wki > 0 and wkij > 0 and define 3

the weighted proportional fair utility Uki (aki ) = wki log(aki ) 4

as well as the weighted quadratic penalty terms V kij(α
k
ij) = 5

−wkij(αkij)2 that we incorporate into the optimization problem 6

α(t) = argmax
aki ,α

k
ij

K∑
k=i

N∑
i=1

[
Uki (aki ) +

N∑
j=1

V kij(α
k
ij)

]
(17)

s. t. aki (α,x(t)) = aki ≥ aki,m,
∑
j,k

αkij(t) ≤ 1.

Some remarks are in order. To guarantee that a solution 7

to (6) is found we need to find, for any given spatial 8

configuration x(t), a set of routing variables that satisfy 9

aki (α(t),x(t)) = aki ≥ aki,m for all robots i and flows k. 10

However, there are, in general, many variables that satisfy 11

these constraints. The formulation in (17) resolves this inde- 12

terminacy by selecting the variables α(t) that maximize the 13

objective
∑K
k=i

∑N
i=1 U

k
i (aki ) +

∑N
j=1 V

k
ij(α

k
ij). Since these 14

variables are optimal in (17) they are feasible in partic- 15

ular, but the presence of the fair utility term Uki (aki ) = 16

wki log(aki ) also makes the difference between the achieved 17

rate aki (α(t),x(t)) = aki and the minimum rate aki,m large. 18

Assuming that rates Rij(x) change slowly in space, this allows 19

more freedom of movement for fixed routing variables and, 20

consequently, less frequent recomputation of the solution of 21

(17). The quadratic penalty terms V kij(α
k
ij) = −wkij(αkij)2 22

hedges the solution against errors in the estimation of the rates 23

Rij(x) because they ensure that a link is not overly utilized 24

when similar links are available. 25

The problem formulation in (17) answers the question 26

of which routing variables to plug in the definition of the 27

obstacle function in (13) but, as formulated, (17) requires 28

global coordination to compute the optimal routing solution. A 29

distributed method to solve (17) follows from the observation 30

that, for a given spatial configuration x(t), the problem is 31

convex and can therefore be equivalently solved in the dual 32

domain with a gradient descent method. Introduce then a non- 33

negative dual variables λki (tn) associated with each of the 34

aki (α,x) = aki constraints in (17), where tn is used to track the 35

current iteration. These variables can be grouped into a matrix, 36

λ(tn) ∈ RN×K . Using the dual variables and the constraints 37

we can write the Lagrangian, 38

L(λ,α,x) =

K∑
k=i

N∑
i=1

[
Uki (aki ) +

N∑
j=1

V kij(α
k
ij) (18)

+ λki

( N∑
j=1

αijR(xi, xj)−
N∑

j=1, i 6∈D

αjiR(xj , xi)− aki
)]

.

We can rearrange the terms in (18) into a sum of local 39
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Lagrangians, L(λ,α,x) =
∑N
i=1 Li(λ,α,x), where 40

Li(λ,α,x) =

K∑
k=1

Uki (aki )− λki aki

+

N∑
j=1

[
V kij(α

k
ij) + αkijRij(λ

k
i − λkj )

]
. (19)

Notice that Li(λ,α,x) only depends on robot i’s information,
aki , λki , and αkij , as well as only the λkj ’s for which Rij > 0.
This indicates that in order to compute the value of Li(λ,α,x)
robot i is only required to collect the λkj of its immediate
neighbors. This can be achieved by a simple exchange of λki
between all neighboring pairs. Upon receipt of its neighbors’
variables λkj (tn) robot i is able to compute its optimal rates
and its part of the routing solution, at time tn, by solving,

aki (tn),
{
αkij(tn)

}N
j=1

= argmax Li(λ(tn),α(tn),x(tn)).

s. t. aki ≥ aki,m,
∑
j,k

αkij(t) ≤ 1.

(20)

After the optimal rates and routes are determined for time tn1

the next step is to update the value of λki . To maintain the non-2

negative requirement for λki , we use a non-negative projection3

P[y], which returns y is y ≥ 0 and 0 if y < 0. Using this4

projection we update λki (tn) by following ∇λk
i
Li(λ,α,x),5

using the values of aki (tn) and αkij(tn) found in (20),6

λki (tn+1) = P

[
λki (tn)− ε

( N∑
j=1

αkij(tn)Rij

−
N∑
j=1

αkji(tn)Rji − aki (tn)
)]
, (21)

These updated values are then shared with all the robots within7

communication range so they can be used in the next iteration8

of (20). This process is repeated and converges to the optimal9

routing solution when the formation is static. If the formation10

is changing the resulting solutions will be near optimal, and11

the deviation from optimality is dependant on the frequency12

of the iterations and the allowable velocity of the robots.13

IV. EXPERIMENTAL CONFIGURATION14

A. Robotic Platform15

For this paper, we use at team of Scarabs [22], a custom16

built robot designed at the University of Pennsylvania, as our17

robotic platform. The newest version of the Scarab includes18

onboard computing, a Hokuyo UTM-30LX scanning laser19

range finder with a 30 meter range, and two Robo Claw 520

amp Motor Controllers. The motors are used to drive two of21

the three wheels, while the third is a passive omni-directional22

wheel. Since the Scarab is a small differential-drive platform,23

it is straight-forward to apply feedback linearization in order to24

obtain appropriate control inputs given the kinematic control25

laws presented in this paper. The on-board computer contains26

an Intel i5 3.8 GHz processor, 4 GB of RAM, and a 60 GB27

Fig. 2: The newest generation of the Scarabs. The XBees are
mount on top of the platform behind the Hokuyo.

SSD hard drive with a full installation of Ubuntu 12.04 LTS.28

An image of a standard Scarab can be seen in Fig. 2. 1

For wireless communication between Scarabs we use the 2

Digi International XBee transceivers. These modules allow the 3

user to control frequency and power. The XBee radios are 4

capable of transmission on 16 evenly spaced channels in the 5

2.4 GHz spectrum. The XBee radio also allows for 5 discrete 6

power levels, ranging from -10 dBm to 0 dBm. The XBee 7

transmits data via a fixed packet size of 100 bytes, with a 8

preamble the result is an effective payload size of 90 bytes 9

for each transmission. 10

As shown in Fig. 2, each Scarab in these experiments 11

contains 4 XBees. Each Xbee is configured to transmit at 12

the minimum power of −10 dBm to force reliance on the 13

other robots on the team while keeping the size of experiments 14

manageble. Additionally, each XBee is responsible for com- 15

munication on a different frequency. The frequencies chosen 16

are evenly spaced to allow for maximum signal isolation 17

between radios. This allows for the communication between 18

one pair Scarabs to not interfere with communication between 19

another pair of Scarabs, which is important as our routing 20

solution does not consider interference. 21

The hybrid system, as well as all of the software used on 22

the robots, is implemented in the Robotic Operating System 23

(ROS), specifically Hydro. This allows for similar operation in 24

both simulations and experiments. For localization, the AMCL 25

library in ROS is used which leverages an existing map of the 26

environment, the odometery from the robots motors, as well 27

as the laser readings from the Hokuyo to provide an accurate 28

estimate of the robot in the environment. 29

B. Environments 30

In this paper, two distinct environments are used. The first 31

is the Levine building, Fig. 3a, and the second is the Towne 32

building, Fig. 3c, both at the University of Pennsylvania. 33

These two environments were chosen due to their different 34

RF characteristics. These differences are derived from the 35

construction date and materials used in the two buildings. The 36

Levine building was built in 1996 and consists of mostly metal 37
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framing and drywall, while the Towne building was built in 38

early 1900’s and consists of mostly brick and concrete. These1

two environments allow for a better test suite for the hybrid2

system. An image of the Scarabs operating in the Levine3

environment can be seen in Fig. 3b. Due to large differences in4

the RF environments and to demonstrate the flexibility of the5

hybrid system to mismatched channel models, we are using6

a function that is a polynomial fitting of experimental curves7

found in the literature [23] for the local controller channel8

model.9

V. SIMULATIONS10

In this section, we highlight the benefits of our hybrid11

approach over a distributed system, while retaining the benefits12

of such a system. In the first set of simulations, a team of13

4 mobile robots and 1 access point are given the task of14

moving one specific robot to a goal location in a complex15

environment. Two goal locations are used and it is shown that16

purely distributed operation fails while the hybrid system can17

successfully reach the goal. In the second simulation a large18

team is tasked with supporting one robot moving through a19

complex environment. This simulation demonstrates the ability20

of the hybrid system to scale with the number of robots21

in the team. While the physical communication layer is not22

simulated in these scenarios, the systems are operating as23

they would during a deployment; rates are estimated, dual24

variables are exchanged, routes are computed and motion is25

constrained based on the underlying network obstacles. A set26

of experiments with the full system, including the physical27

communication layer, are presented in Section VI.28

A. Local Minima29

In this set of simulations, we demonstrate the limitations of30

a purely local controller. Using only the controller described31

in Section III-B, the team of 4 robots and an access point are32

given the task of driving Scarab40 to a specific goal location.33

For all three simulations in this section, the goal is 19 meters34

away from the access point, only the location of the goal is35

changed. The first location given was straight along the lower36

hallway in the Levine map, Fig. 3a, as indicated by the red37

square. The second was around the lower right corner in the38

same building, which is indicated by the blue square in the39

Fig. 3a. The resulting trajectories for all three simulations are40

plotted in Figs. 4a-4c. In Fig. 4a, it can be seen that the robots41

successfully assemble into a formation that allows the sensing42

robot to reach the goal, as indicated by the final position of43

Scarab40 being inside the red square. In contrast, Fig. 4b44

shows that the local controller alone is not capable of driving45

the team into a valid formation when the goal is around the46

corner. This is due to the local minima that is created by the47

attractive force of the goal being cancelled out by the repulsive48

force from the wall and the attractive force from network49

preservation. The final simulation in this section shows the50

performance of the hybrid system when given the same task51

of turning the corner. As seen in Fig. 4c the team is able52

to successfully turn the corner and assemble into a formation53

that allows the sensing robot to reach the goal, as indicated by54

Scarab40 reaching the blue square. This is achieved because55

each robot is given a series of 3 goals locations that change 1

the location of the local minima and thus allow the team to 2

reach a valid final formation. 3

B. Large Scale Deployment 4

Another scenario that we explore in simulation focused 5

on the ability of the hybrid system to operate in a complex 6

environment when the team size is large, N = 25. The 7

environment used in this scenario is one floor of the Levine 8

and Towne buildings, shown in Fig. 5a, which has over 850 m2
9

of floor space. The access point, i = 25, and the sensing robot, 10

i = 24, are indicated by the thick red and green axes, while 11

the remaining 23 support robots, i = {1, . . . , 23} are indicated 12

by red arrows. The team begins in a formation x((t0) located 13

in the upper left corner of the Levine building. It is tasked 14

with supporting a single QoS requirement with a124,m = 0.3, 15

a1j,m = 0.0 for all j 6= 24, and D1 = 25, while robot 24 moves 16

to the goal location, xg , in the upper right corner of the Towne 17

building. In this environment the shortest path from x24(t0) 18

to xg is over 200 m. Upon receipt of xg the global planner 19

determines trajectories for each robot, which are then passed 20

to the waypoint generator and converted into waypoints for 21

the local controllers. 22

Remark. Due to the size of the environment and the number 23

of robots, the global planner restricted samples for the RRT 24

to points that were within a meter of robot 24’s shortest path. 25

While this restriction limits the set of possible final formations, 26

it allows the system to find feasible trajectories more quickly, 27

as long as there are sufficient number of robots on the team. 28

With the waypoints from the global planner, the local 29

controllers begin executing their trajectories. Snapshots of 30

the team’s formation in the environment at 0, 300, 600, and 31

900 seconds are shown in Figs. 5a, - 5d. As shown in the 32

figures, the team is able to successfully deploy into a formation 33

that allows robot 24 to successfully traverse the environment 34

and reach xg . In this deployment every robot is critical to 35

the data path from robot 24 to the access point due to the 36

complexity of the environment. Note, since each robot is 37

critical to the network, each robot has sufficient back haul 38

to support robot 24’s data back to the access point. Therefore, 39

given the problem formulation in (17) any location, x̂24, where 40

R(x̂24, xj) ≥ a124, is a location at which robot 24 can collect 41

data. With this understanding we see that robot 24 is able to 42

retrace its path back to the access point and network integrity 43

will be maintained for the duration of its travel. Since this 44

environment is more complex than the environment in Section 45

V-A, it can be safely assumed that even with knowledge of 46

their final location, the local controllers would would not 47

be able to successfully reach those locations, due to local 48

minima. This highlights that not only is it necessary to find 49

a final formation that supports xg but intermediate waypoints 50

are needed to ensure proper avoidance of local minima. This 51

simulation was run on a 2.7 Gigahertz Intel i7 laptop with 16 52

Gigabytes of RAM to demonstrate the lightweight nature of 53

the local controller. After the waypoints were determined, all 54

25 local controllers ran in parallel in real time. 55
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(a) Partial map of Levine. (b) Image of the Scarabs in Levine. (c) Partial map of Towne 3rd floor.

Fig. 3: Environments used in simulations and experiments

Local Controller (Straight Line)

Scarab 40
Scarab 45
Scarab 42
Scarab 43
Access Point

(a) Waypoint is straight ahead, no obsta-
cles. Local controller is able to achieve the
goal.

Local Controller (Around the Corner)

Scarab 40
Scarab 45
Scarab 42
Scarab 43
Access Point

(b) Waypoint is around a corner. Local
controller fails to achieve the goal.

Hybrid System

Scarab 40
Scarab 45
Scarab 42
Scarab 43
Access Point

(c) Waypoint is around a corner. Hybrid
system is able to achieve the goal.

Fig. 4: Simulation results for local and hybrid systems. For all tests the goal location is 19 meters away.

VI. EXPERIMENTAL EVALUATION 56

Our work is motivated by the uncertainty and difficulty1

in modeling real-world wireless communication. Since our2

primary objective is to maintain a reliable wireless commu-3

nication network, it is important that we evaluate the system4

under the realistic RF conditions described in Section IV. As5

noted previously, for these experiments we used the Scarab6

platform, [22], with XBee transceivers.7

The first set of experiments we ran, Section VI-A, compared8

the hybrid system to the full system developed by Fink et9

al in [16]. This system consists of two centralized parts, the10

path planner and the motion controller. The path planner is11

the same as the one used in our hybrid system. The motion12

controller executes the plans determined by the path planner13

in a synchronous closed loop manner. This means that each14

robot is given a location to drive to and then wait till given15

the next location. The next location is not published until after16

all of the robots have reached their goal. This is implemented17

in order to preserve the guarantee that at each intermediate18

formation network integrity is preserved. While this approach19

does provide more control over the evolution of the formation20

and underlying wireless network, it is rigid and susceptible to21

breakage. An example of a scenario that would cause such a22

breakage is shown in Section VI-B. In that set of experiments23

one of the support robots incurs a temporary motor failure in-24

between two formations and the results causes the centralized 1

system to lose network integrity, while the hybrid system 2

preserves network integrity. 3

A. System Comparison 4

In the initial set of experiments, we compare the successful 5

packet transmission of our hybrid system to the centralized 6

system developed by Fink et al. There were three sets of 7

experiments run for this section, each set consisted of ten runs, 8

with only one data flow, a11,m = 0.5. The first two sets provide 9

the comparison between the hybrid and centralized systems in 10

the Levine building, while the third highlights the performance 11

of the hybrid system in a different environment, the Towne 12

building. For the first two sets, the centralized planner was 13

used to find the trajectories that allowed the team to complete 14

the goal, which was reach the blue square from the initial for- 15

mation shown in Fig. 3a. With these trajectories the waypoint 16

generator was used to reduce the number of waypoints to three 17

as shown in Fig. 6a. These sets of waypoints were then used by 18

both the centralized motion controller and the local controllers, 19

to remove any bias incurred by different input waypoints. The 20

results of the ten runs are plotted in Fig. 7a, where the solid 21

line represents the average over all the runs and the dotted 22
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(a) Initial formation of 25 robot team prior to deployment. (b) Formation of 25 robot team 300 seconds after deployment.

(c) Formation of 25 robot team 600 seconds after deployment. (d) Formation of 25 robot team 900 seconds after deployment.

Fig. 5: Evolution of a 25 robot team that is supporting one robot, indicated by red and green axis, from the initial starting
formation in the upper left corner to the goal location in the upper right corner, indicated by the red circle.

envelope shows the one σ bounds. There are a few items to 23

note, first there is a portion of the data in which the average1

success rate for the centralized system falls below 0.5, this is2

mostly due to a mismatch between the channel model and the3

actual environment. The second item to notice is how well the4

hybrid system performs. Even the one σ bound stays above5

the required data rate. This is mostly due to the robots locally6

optimizing their trajectory and not moving in straight lines.7

Another item to note is the spread on the one σ bounds. Since8

the centralized system is including variance of the channel the9

spread is much less than the hybrid system which is only using10

expected value of the channel. Also since the hybrid system11

allows for deviations to locally optimize, the trajectories taken12

by the robots is not always the same compared to the tightly13

controlled trajectories executed by the centralized system. The14

final item to note is the divergence of the results for the two15

systems at 12 meters. While the hybrid system continues to16

exceed the required data rates the centralized system drops17

off dramatically to marginally meeting the requirements. The18

reason for this is at 12 meters the sensing robot turns the19

corner and must rely on the support robots to relay data back to20

the access point. Since the centralized system is attempting to 1

increase robustness and maximize performance it must balance 2

link diversity with throughput. This conservative approach is 3

useful when planning but it does not leverage the current state 4

of the environment and team formation. In contrast the local 5

controller in the hybrid system is constantly optimizing for 6

performance based on the environment and team’s formation. 7

Therefore it can achieve a higher level of performance when 8

compared to the centralized systems due to better utilization 9

of current information. An example of this is seen in Fig. 6 10

where the location and routing probabilities are plotted for 11

one run of the experiment. For both systems, two snapshots in 12

time are taken, t = 120 and at the completion of the task. In 13

the first time instance, the formations are not identical. This 14

is due to the local deviations performed by the hybrid system, 15

but the final formations match. 16

In the third set of experiments for this section the same 17

task, drive around a corner, was completed but in the Towne 18

building shown in Fig. 3c. Again the hybrid system was given 19
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(a) The waypoints used in Sec-
tion VI-A.
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Fig. 6: These figures show a series of formations and the
resulting routing probabilities experienced during the exper-
iments in Section VI-A. Figures (b)-(c) correspond to the
centralized system experiments and figures (d)-(e) correspond
to the hybrid system experiments. The darkness of the lines
connecting the robots indicate the routing probabilities used
for that link.

the blue square as a goal location for the sensing robot, and 20

the initial formation is indicated by the red circles. Again1

ten experiments were run with a11,m = 0.5, and the results2

are plotted in Fig. 7b. The system performs remarkably well,3

with the one σ bounds well above the desired results. This is4

most likely due to the Towne building having wider hallways5

compared to Levine and therefore the amount of multi-path6

interference being reduced when the robots are in the center7

of the hallway. Also, the same model parameters were used8

as in the Levine building, thus the superior performance could9

indicate that the channel model is conservative with respect to10

the RF environment in Towne when compared to Levine.11
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(a) Experimental results for centralized and hybrid systems in
the Levine building. The solid line is the average performance
and the dashed colored lines are +/- 1 σ bounds. The black
dashed line is the minimum input data rate for the lead robot.
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(b) Experimental results for the hybrid system in the Towne
building. The solid line is the average performance and the
shaded region is the +/- 1 σ bounds. The red dashed line is
the minimum input data rate for the lead robot.

Fig. 7: Experimental results for the Levine and Towne build-
ings.

B. Dynamic Response12

In this section of tests, we highlight a major benefits of 1

using a local controller, as opposed a centralized waypoint 2

system, namely dynamic response to unexpected events. In 3

these experiments, as with those in the previous section, the 4

goal was to drive around the corner in the Levine building to 5

a goal location, but during deployment one of the robots has 6

a temporary restriction to its motion. A temporary restriction 7

in motion could be caused by events such as an actual failure 8

of the physical motor or an obstacle or person blocking the 9

path of the robot. Similar to the previous section, feasible 10

trajectories were found and passed to the waypoint generator. 11

The resulting waypoints are shown in Fig. 8a, as in the 12

previous section each robot has three waypoints. This set of 13

experiments were run just as the previous section was but 14

when Scarab43 reaches the red star in Fig. 8a its motor is 15
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(a) The waypoints used in Sec-
tion VI-B.

(b) (c)

(d) (e)

Fig. 8: These figures show a series of formations and the
resulting routing probabilities experienced during the exper-
iments in Section VI-B. Figures (b)-(c) correspond to the
centralized system experiments and figures (d)-(e) correspond
to the hybrid system experiments. Figures (b) and (d) show
a snapshot of the formation when Scarab43 has stalled. The
darkness of the lines connecting the robots indicate the routing
probabilities used for that link.

disabled for 120 seconds, to simulate a temporary restriction 16

in motion. In Figs. 8b and 8d we plot the team’s formation for1

the centralized and hybrid systems during the stall period, and2

in Figs. 8c and 8e we plot the formations at the completion of3

the experiment. In these plots the sensing robot is a red circle,4

the support robots are black circles, the final team formation is5

shown as blue squares, and Scarab43 is highlighted by a red6

square. Notice that since Scarab43 stalls after the second set of7

waypoints in Fig. 8a the centralized system attempts to reach8

the final formation. This is seen in Fig. 8b by all the robot9

except Scarab43 reaching their goal location. After Scarab4310

recovers from the stall it moves to it’s final location and the11

team is in the correct final formation. This does not occur12

when the hybrid system is used due to the team dynamically13
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(a) The centralized system fails to adjust to the motor failure
and the network suffers greatly.
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(b) The hybrid system is able to adjust the motion of the robots
to overcome the motor failure.

Fig. 9: Experimental results highlighting the hybrid systems
ability to dynamically adjust to motor failures. In both figures
two separate experiments are plotted. The blue line is from an
experiment under normal conditions and the red line is from an
experiment where there is a motor failure. The shaded region
indicates the time the motor failed for the stalled experiment.

reacting to the stall and preventing the sensing robot from14

advancing farther. As shown in Fig. 8d by the red circle not 1

reaching its blue square. 2

To analyze the network performance of these tests we ran 3

two more experiments where Scarab43 does not stall using the 4

same configuration as the prior tests. The results of the two 5

experiments for the centralized and hybrid systems are plotted 6

in Figs. 9a and 9b. In these plots the red and blue lines are 7

the data rate of system with and without the stall, which is 8

indicated by the shaded region. It can be seen that prior to 9

the stall the two lines are in agreement for both systems as 10

is expected since there has not been an unexpected event yet. 11
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Fig. 10

When the stall occurs we see that the two lines in Fig. 9a 12

diverge, while the they do not in Fig. 9b. The divergence in1

Fig. 9a is due to the formation deviating greatly from the2

one that was verified by the centralized planner. After the3

stall is recovered from we see that the network performance4

returns to the desired value. In contrast in Fig. 9b we see5

that the network performance never suffers from the robots6

being out of position. This is because when the stall occurs7

the other members of the team react accordingly, specifically8

the sensing robot halting its motion. These experiments show9

how the hybrid system is more robust to dynamic changes10

in the environment and other obstacles that may arise during11

the execution of a task when compared to the more brittle12

waypoint synchronization of the centralized approach.13

VII. APPLICATION14

The previous sections demonstrated, through simulations15

and experiments, that the hybrid system is able to control16

the motion of the team so that the sensing robot is able to17

reach a specific location. In this section we demonstrate that18

by building upon this ability, we can extend the system to19

complete complex tasks with minimal user input. One such20

task is long duration monitoring or patrolling a series of21

hallways. For this task the sensing robot is not moving to 1

a specific location, but instead the requirement is to visit 2

multiple sensing locations, all the time maintaining the desired 3

QoS. 4

We begin by decomposing the task of patrolling a hallway 5

into a series of operations. First, the system determines a 6

path for the patrol robot that visits all the sensing locations 7

and returns to its current location to create a loop. This loop 8

allows for repeated execution of the generated path without 9

compromising the QoS. Next, the global planner uses this 10

path to determine a goal formation for the support robots 11

that maintains the QoS for the majority, if not entirety, of 12

the patrolling robot’s motion. This goal formation, including 13

the first sensing location, is then used as the desired formation 14

for the RRT in global planner. With this desired formation the 15

system operates just as it does in the single location scenario. 16

After finding the trajectories and disseminating the waypoints, 17

the local controllers drive the robot to their goal locations. 18

Upon reaching their goals, the robots are able to adjust their 19

location to optimize the communication network in response to 20

the rest of the team. This allows the team to react to locations 21

along the patrolling robot’s path that are not supported by the 22

goal formation, but are still feasible for patrolling. 23

For this experiment we use a team of 3 robots supporting 24

a patrol robot as it moves through a figure eight hallway. The 25

location of this experiment is the Levine building and the 26

desired QoS is set to a14,m = 0.3. The team of 4 robots and 27

an access point begin in the lower left corner near location 28

F in Fig. 10a with sensing location (A, B, C, D, E, B, 29

C). The global planner uses this order of sensing locations 30

to determine an optimal formation for the support robots. 31

The resulting formation covers the entire path by placing 32

the support robots at locations B, C, and D. With the path 33

covered, every location along the patrol robot’s path will have 34

sufficient network connectivity to support the required QoS. 35

Thus, the local controllers are not required to deviate from 36

the formation. In this experiment the robot executes the figure 37

eight path a total of 20 times. The resulting data rates for each 38

lap are overlaid in Fig. 10. In Fig. 10a we plot the average 39

data rate, signified by the color, at each location along the 40

path. In Fig. 10b, we plot the average and one σ bounds as a 41

function of distance traveled. The vertical dotted line indicate 42

the waypoints. As with the previous experiments, even the 43

one σ bound is above the required rate, a14,m = 0.3, for the 44

majority of the experiment. Note that other than right after 45

location A, the system maintains the required QoS. This drop 46

off is consistent across laps, as evidenced by the σ bounds 47

not spreading out. We attribute this result to the delay in 48

the convergence of the routing algorithm to the new optimal 49

solution. This is due to the dramatic change in the solution 50

from a direct path to the access point to a multi-hop path 51

through two support robots. 52

VIII. DISCUSSION 53

In this paper a hybrid architecture, composed of a cen- 54

tralized planner and local controller, that provides motion 55
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control and network routing in order to complete a task for a 56

multi-robot team in known environments was proposed. The1

centralized planner is used to successfully generate trajectories2

that allow the team to move through the environment while3

avoiding local minima. While the local controller is used4

to determine the network routing, as well as execute the5

trajectories generated by the centralized planner. Deviations6

from the trajectories are allowed if they are determined to7

enhance the performance of the network. This system is8

distributed on the execution side in the sense that each robot9

is controlling both their network routing and motion, based10

solely on its own and its neighbor’s information.11

It is worth noting that even though this hybrid system relies12

on a centralized path planner, the amount of time spent in13

the panning phase can be made to be a small fraction of the14

execution time. This can be achieved by reducing the size of15

the configuration space, which can be achieved in a few ways.16

One way is to break the task up into smaller steps. This can17

be achieved by finding a path from the current location to the18

goal location for the sensing robot and creating a series of sub-19

goals along that path. After the first sub-goal is reached then20

the next sub-goal is provided and so on till the ultimate goal21

is reached. Another way to achieve a smaller configuration22

space is to allow the robots that are purely in a support role23

be unlabeled. This can be achieved by modifying the RRT24

process, such that after a candidate formation is determined to25

maintain the network we do not require a specific association26

between a location in the formation and a support robot.27

Allowing any support robot to go to any of the locations, so28

long as every location is covered, effectively reduces the size29

of the configuration space. Additionally, for the experiments30

in this paper the rates were measured over a connectionless31

protocol, which represent the minimum level of achievable32

performance. Including a confirmation based protocol, such33

as Multi-Confirmation Transmission Protocol (MCTP) from34

[24], can greatly increase the successful transmission rate with35

minimal overhead.36

Our ongoing work and future plans focus on extending the37

hybrid system to the third dimension. Currently the system38

operates on the assumption of ground robots operating on a39

single floor of a building. In future experiments we plan to40

augment the team with flying platforms, one of which will41

be the sensing robot. This extension will greatly increase the42

value of the system by freeing the team from the ground plane.43

This will allow for operation in more complex environments44

while providing a new vantage point for the sensing robot.45

Another area of interest in the ability of the team to operate46

in unknown environments. This requires that a map of the47

environment be constructed online and then disseminated to48

the team, while still preserving the network. This is area is49

under active of research [25], [26] but the inclusion of the50

network constraint complicates the motion of the mapping51

robots greatly since trajectories must be followed that prevent52

loss of network integrity. With the ability of the team to53

operate in unknown environments in 3-D the hybrid system54

will provide a robust and reliable platform on which even more55

complex tasks can be completed.56
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