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Abstract. The distributed nature of observations collected by inexpensive wireless
sensors necessitates transmission of the individual sensor data under stringent band-
width and power constraints. These constraints motivate: i) a means of reducing the
dimensionality of local sensor observations; ii) quantization of sensor observations prior
to digital transmission; and iii) estimators based on the quantized digital messages.
These three problems are addressed in the present paper. We start deriving linear esti-
mators of stationary random signals based on reduced-dimensionality observations. For
uncorrelated sensor data, we develop mean-square error (MSE) optimal estimators in
closed-form; while for correlated sensor data, we derive sub-optimal iterative estima-
tors which guarantee convergence at least to a stationary point. We then determine
lower and upper bounds for the Distortion-Rate (D-R) function and a novel alternating
scheme that numerically determines an achievable upper bound of the D-R function for
general distributed estimation using multiple sensors. We finally derive distributed esti-
mators based on binary observations along with their fundamental error-variance limits
for pragmatic signal models including: i) known univariate but generally non-Gaussian
noise probability density functions (pdfs); ii) known noise pdfs with a finite number
of unknown parameters; and iii) practical generalizations to multivariate and possibly
correlated pdfs. Estimators utilizing either independent or colored binary observations
are developed, analyzed and tested with numerical examples.
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1. Introduction. Wireless sensor networks (WSNs) consist of low-
cost energy limited transceiver nodes spatially deployed in large numbers
to accomplish monitoring, surveillance and control tasks through coopera-
tive actions [14]. The potential of WSNs for surveillance has by now been
well appreciated especially in the context of data fusion and distributed
detection; e.g., [32, 33] and references therein. However, except for recent
works where spatial correlation is exploited to reduce the amount of infor-
mation exchanged among nodes [2, 5, 9, 11, 15, 21, 25, 26], use of WSNs for
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the equally important problem of distributed parameter estimation remains
a largely uncharted territory.

While a number of statistical and information theoretic tools have
been developed over the years, the unique characteristics of WSNs require
rethinking of many algorithms traditionally designed for centralized es-
timation. Indeed, the distributed nature of the observations necessitates
transmission of the individual sensor data; moreover, the power/bandwidth
available for transmission and signal processing is severely limited. To com-
plicate matters even more the parametric data models used and the knowl-
edge of sensor noise distributions are not easy to characterize; observations
taken by (small and inexpensive) sensors are very noisy; and the WSN size
and topology may change dynamically.

To appreciate the challenges implied by these constraints, consider a
mean-location parameter estimation problem with sensors collecting ob-
servations in order to estimate a parameter in additive zero-mean noise.
The distributed nature of the observations necessitates transmission of the
individual sensor data under stringent bandwidth and power constraints
thus requiring: i) a means of combining local sensor observations in order
to reduce their dimensionality while keeping the estimation MSE as small
as possible; ii) quantization of the combined observations prior to digital
transmission; and iii) estimators based on the quantized digital messages,
certainly different from estimators based on the original analog-amplitude
observations.

Overcoming the limitations of nonlinear/nonGaussian data models
and non-ideal channel links, one of the major goals in this paper is to
form estimates at the fusion center (FC) of a random stationary vector
based on analog-amplitude multi-sensor observations. To enable estima-
tion under the stringent power and computing limitations of WSNs, we
seek linear dimensionality reducing operators (data compressing matrices)
per sensor along with linear operators at the FC, in order to minimize
the mean-square error (MSE) in estimation. If sufficiently strong error-
control codes are used, we can treat links as ideal and formulate this in-
tertwined compression-estimation task as a canonical correlation analysis
problem [31]. Here, we explicitly account for non-ideal links and develop
distributed estimators generally applicable to nonlinear and non-Gaussian
setups (Section 2). We start by deriving in closed-form the MSE optimal
matrices for compression and estimation when the sensor data are uncor-
related (Section 2.1), and we prove that the optimal solution amounts to
optimally compressing the linear minimum mean-square error (LMMSE)
signal estimate formed at each sensor. With correlated (coupled) sensor
observations, globally optimal distributed estimation has been shown to
be NP-hard when reduced-dimensionality sensor data are concatenated at
the FC [18]. For this case, we develop a block coordinate descent iterative
estimator (Section 2.2) which always converges to a stationary point and
subsumes a recent distributed reconstruction algorithm in [10].
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When the sensors are allowed to transmit only digital-amplitude data
(due to encoding rate constraints), an issue of paramount importance is to
determine bounds on the minimum achievable distortion between the signal
of interest and its estimate formed at the FC using the encoded informa-
tion transmitted by the sensors subject to rate constraints (Distortion-Rate
function). In the reconstruction scenario, the FC wishes to accurately es-
timate the sensor observations. In the estimation scenario, the FC is in-
terested in accurately estimating an underlying random vector which is
correlated with, but not equal to, the sensor observations. In the single
sensor setting, single-letter characterizations of the Distortion-Rate (D-R)
function for both scenarios are known [8, p. 336], and the estimation prob-
lem, which is also referred to as rate-distortion with a remote source, has
also been determined [3, p. 78]. In the distributed scenario, where there
are multiple sensors with correlated observations, neither problem is well
understood. The best analytical inner and outer bounds for the D-R func-
tion for reconstruction can be found in [4]. An iterative scheme has been
developed in [10], which numerically determines an achievable upper bound
for distributed reconstruction but not for signal estimation.

We present this D-R analysis in Section 3. We first determine the D-R
function for estimating a vector parameter when applying rate-constrained
encoding to the observation data, in closed form for the single-sensor case
(Section 3.1). Without assuming that the number of parameters equals the
number of observations, we prove that the optimal scheme achieving the
D-R function amounts to first computing the minimum mean square error
(MMSE) estimate at the sensor, and then optimally compressing the esti-
mate via reverse water-filling (rwf). The D-R function for the single-sensor
setup serves as a non-achievable lower D-R bound for rate constrained esti-
mation in the multi-sensor setup. Next, we develop an alternating scheme
that numerically determines an achievable D-R upper bound for the multi-
sensor scenario (Section 3.2). Different from [10], which deals with WSN-
based distributed reconstruction, our approach aims for general estimation
problems.

Returning to the issue of estimation once the actual observations have
been collected at the FC, we study the intertwining between quantization
and estimation (Section IV). We begin with mean-location parameter es-
timation in the presence of known univariate but generally non-Gaussian
noise pdfs (Section 4.1.1). We next develop mean-location parameter es-
timators based on binary observations and benchmark their performance
when the noise variance is unknown; however, the same approach in prin-
ciple applies to any noise pdf that is known except for a finite number of
unknown parameters (Section 4.1.2). Subsequently, we move to the most
challenging case where the noise pdf is completely unknown (Section 4.2).
Finally, we consider vector generalizations where each sensor observes a
given (possibly nonlinear) function of the unknown parameter vector in
the presence of multivariate and possibly colored noise (Section 4.3). While
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Fig. 1. Distributed setup for estimating a random signal s.

challenging in general, it will turn out that under relaxed conditions, the
resultant Maximum Likelihood Estimator (MLE) is the maximum of a
concave function, thus ensuring convergence of Newton-type iterative algo-
rithms. Moreover, in the presence of colored Gaussian noise, we show that
judiciously quantizing each sensor’s data renders the estimators’ variance
stunningly close to the variance of the clairvoyant estimator that is based
on the unquantized observations; thus, nicely generalizing the results of
Sections 4.1.1, 4.1.2, and [27] to the more realistic vector parameter esti-
mation problem (Section 4.3.1).

Numerical examples corroborate our theoretical findings in Section 5,
where we also test them on a motivating application involving distributed
parameter estimation with a WSN for measuring a vector flow (Section 5.4).
We conclude the paper in Section 6.

2. Dimensionality reduction for distributed estimation. In this
section we develop linear distributed estimators in a setup where the sensors
observe and transmit analog-amplitude data.

Consider the WSN depicted in Fig. 1, comprising L sensors linked with
an FC. Each sensor, say the ith one, observes an Ni × 1 vector xi that is
correlated with a p× 1 random signal of interest s. Through a ki × Ni fat
matrix Ci each sensor transmits a compressed ki×1 vector Cixi, using e.g.,
multicarrier modulation with one entry riding per subcarrier. Low-power
and bandwidth constraints at the sensors encourage transmissions with
ki � Ni, while linearity in compression and estimation are well motivated
by low-complexity requirements. Furthermore, we assume that:

(a1) No information is exchanged among sensors, and each sensor-FC
link comprises a ki × ki full rank fading multiplicative channel
matrix Di along with zero-mean additive FC noise zi, which is
uncorrelated with xi, Di, and across channels; i.e., noise covariance
matrices satisfy Σzizj

= 0 for i 6= j. Matrices {Di,Σzizi
}Li=1 are

available at the FC.
(a2) Data xi and the signal of interest s are zero-mean with full rank

auto- and cross-covariance matrices Σss, Σsxi
and Σxixj

∀ i, j ∈
[1, L], all of which are available at the FC.

In multicarrier links, full rank of the channel matrices {Di}Li=1 is en-
sured if sensors do not transmit over subcarriers with zero channel gain.
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Matrices {Di}Li=1 can be acquired via training, and likewise the signal and
noise covariances in (a1) and (a2) can be estimated via sample averaging as
usual. With multicarrier (and generally any orthogonal) sensor access, the
noise uncorrelatedness across channels is also well justified. Notice that un-
like [10,18,37,38], we neither confine ourselves to a linear signal-plus-noise
model xi = Hs + ni, nor we invoke any assumption on the distribution
(e.g., Gaussianity) of {xi}Li=1 and s. Equally important, we do not assume
ideal channel links.

Sensors transmit over orthogonal channels so that the FC separates
and concatenates the received vectors {yi(Ci) = DiCixi+zi}Li=1, to obtain

the
∑L

i=1 ki ×1 vector:

y(C1, . . . ,CL) = diag(D1C1, . . . ,DLCL)x + z, (2.1)

Left multiplying y by a p×(
∑L

i=1 ki) matrix B, we form the linear estimate
ŝ of s. For a prescribed power Pi per sensor, our problem is to obtain under
(a1)-(a2) MSE optimal matrices {Co

i }Li=1 and Bo; i.e., we seek:

(Bo, {Co
i }Li=1) = arg min

B,{Ci}
L
i=1

E[‖s−By(C1, . . . ,CL)‖2],

(2.2)
s. to tr(CiΣxixi

CT
i ) ≤ Pi, i ∈ {1, . . . , L}.

2.1. Decoupled distributed estimation. We consider first the case
where Σxixj

≡ 0, ∀i 6= j, which shows up e.g., when matrices {Hi}Li=1 in the
linear model xi = His+ni are mutually uncorrelated and also uncorrelated
with the noise vectors ni. Then, the multi-sensor optimization task in (2.2)
reduces to a set of L decoupled problems. Specifically, it is easy to show
that the cost function in (2.2) can be written as [31]:

J(B, {Ci}Li=1) =
∑L
i=1 E[‖s−Bi(DiCixi+zi)‖2]−(L−1)tr(Σss), (2.3)

where Bi is the p × ki submatrix of B := [B1 . . .BL]. As the ith non-
negative summand depends only on Bi,Ci the MSE optimal matrices are
given by

(Bo
i ,C

o
i ) = arg min

Bi,Ci

E[‖s−Bi(DiCixi + zi)‖2],

(2.4)
s. to tr(CiΣxixi

CT
i ) ≤ Pi, i ∈ {1, . . . , L}.

Since the cost function in (2.4) corresponds to a single-sensor setup (L = 1),
we will drop the subscript i for notational brevity and write Bi = B,Ci =
C,xi = x, zi = z, P = Pi and k = ki. The Lagrangian for minimizing (2.3)
can be easily written as:

J(B,C, µ) = Jo + tr(BΣzzB
T ) + µ[tr(CΣxxC

T ) − P ]
(2.5)

+ tr[(Σsx −BDCΣxx)Σ
−1
xx (Σxs −ΣxxC

TDTBT )],
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where Jo := tr(Σss − ΣsxΣ
−1
xxΣxs) is the minimum attainable MMSE for

linear estimation of s based on x. Continuing, we derive a simplified form
of (2.5) the minimization of which will provide closed-form solutions for
the MSE optimal matrices Bo and Co.

Aiming at this simplification, consider the SVD Σsx = UsxSsx
VT
sx, and the eigen-decompositions Σzz = QzΛzQ

T
z and DTΣ−1

zz D =
QzdΛzdQ

T
zd, where Λzd := diag(λzd,1 · · · λzd,k) and λzd,1 ≥ · · · ≥ λzd,k >

0. Notice, that λzd,i captures the SNR of the ith entry in the received signal
vector at the FC. Further, define A := QT

xVsxS
T
sx SsxV

T
sxQx with ρa :=

rank(A) = rank(Σsx), and Ax := Λ
−1/2
x AΛ

−1/2
x with corresponding eigen-

decomposition Ax = QaxΛaxQax, where Λax = diag(λax,1, · · · , λax,ρa
,

0, · · · , 0) and λax,1 ≥ . . . ≥ λax,ρa
> 0. Moreover, let Va := Λ

−1/2
x Qax

denote the invertible matrix which simultaneously diagonalizes the matri-
ces A and Λx. Since matrices (Qzd,Qx,Va,Usx, Λzd,Qzd,D,Σzz) are all
invertible, for every matrix C (or B) we can clearly find a unique matrix
ΦC (correspondingly ΦB) that satisfies:

C = QzdΦCVT
aQT

x , B = UsxΦBΛ−1
zd QT

zdD
TΣ−1

zz , (2.6)

where ΦC := [φc,ij ] and ΦB have sizes k×N and p×k, respectively. Using
(2.6), the Lagrangian in (2.5) becomes:

J(ΦC , µ) = Jo + tr(Λax) + µ(tr(ΦCΦT
C) − P )

(2.7)
−tr

(

(Λ−1
zd + ΦCΦT

C)−1ΦCΛaxΦ
T
C

)

.

Applying the well known Karush-Kuhn-Tucker (KKT) conditions (e.g., [6,
Ch. 5]) that must be satisfied at the minimum of (2.7), we prove in [31]
that the matrix Φo

C minimizing (2.7), is diagonal with diagonal entries:

φoc,ii =







±
√

(

λax,i

µoλzd,i

)1/2

− 1
λzd,i

, 1 ≤ i ≤ κ

0, κ + 1 ≤ i ≤ k
, (2.8)

where κ is the maximum integer in [1, k] for which {φoc,ii}κi=1 are strictly
positive, or, rank(Φo

C) = κ; and µo is chosen to satisfy the power constraint
∑κ

i=1(φ
o
c,ii)

2 = P as:

µo =
(
∑κ

i=1(λax,iλ
−1
zd,i)

1/2)2

(P +
∑κ

i=1 λ−1
zd,i)

2
. (2.9)

When k > ρa, the MMSE remains invariant [31]; thus, it suffices to consider
k ∈ [1, ρa]. Summarizing, we have established that:

Proposition 2.1. Under (a1), (a2), and for k ≤ ρa, the matrices
minimizing J(Bp×k,Ck×N ) = E[‖s − Bp×k(DCk×Nx + z)‖2], subject to
tr(Ck×NΣxx CT

k×N ) ≤ P , are:
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Co = QzdΦ
o
CVT

aQT
x ,

(2.10)

Bo = ΣsxQxVaΦ
o
C
T
(

Φo
CΦo

C
T + Λ−1

zd

)−1

Λ−1
zd QT

zdD
TΣ−1

zz ,

where Φo
C is given by (2.8), and the corresponding Lagrange multiplier µo

is specified by (2.9). The MMSE is

Jmin(k) = Jo +

ρa
∑

i=1

λax,i −
k
∑

i=1

λax,i(φ
o
c,ii)

2

λ−1
zd,i + (φoc,ii)

2 . (2.11)

According to Proposition 1, the optimal weight matrix Φo
C in Co

distributes the given power across the entries of the pre-whitened vector
VT
aQxx at the sensor in a waterfilling-like manner so as to balance channel

strength and additive noise variance at the FC with the degree of dimen-
sionality reduction that can be afforded. It is worth mentioning that (2.8)
dictates a minimum power per sensor. Specifically, in order to ensure that
rank(Φo

C) = κ the power must satisfy:

P >

∑κ
i=1(λax,iλ

−1
zd,i)

1/2

√

λax,κλzd,κ
−

κ
∑

i=1

λ−1
zd,i . (2.12)

The optimal matrices in Proposition 1 can be viewed as implementing a
two-step scheme, where: i) we estimate s based on x at the sensor using
the LMMSE estimate ŝLM = ΣsxΣ

−1
xxx; and ii) compress and reconstruct

ŝLM using the optimal matrices Co and Bo implied by Proposition 1 after
replacing x with ŝLM . For this estimate-first compress-afterwards (EC)
interpretation, we prove in [31] that:

Corollary 2.1. For k ∈ [1, ρa], the k × N matrix in (2.10) can be

written as Co = ĈoΣsxΣ
−1
xx , where Ĉo is the k×p optimal matrix obtained

by Proposition 1 when x = ŝLM . Thus, the EC scheme is MSE optimal in
the sense of minimizing (2.3).

Another interesting feature of the EC scheme implied by Proposition
1 is that the MMSE Jmin(k) is non-increasing with respect to the reduced
dimensionality k, given a limited power budget per sensor. Specifically, we
establish in [31] that:

Corollary 2.2. If Co
k1×N

and Co
k2×N

are the optimal matrices de-
termined by Proposition 1 with k1 < k2, under the same channel parame-
ters λzd,i for i = 1, . . . , k1, and common power P , the MMSE in (2.11) is
non-increasing; i.e., Jmin(k1) ≥ Jmin(k2) for k1 < k2.

Notice that Corollary 2 advocates the efficient power allocation that
the EC-n scheme performs among the compressed components.

2.2. Coupled distributed estimation. In this section, we allow
the sensor observations to be correlated. Because Σxx is no longer block
diagonal, decoupling of the multi-sensor optimization problem cannot be
effected in this case. The pertinent MSE cost is [c.f. (2.2)]:
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J({Bi,Ci}Li=1) = E[‖s−∑L
i=1 Bi(DiCixi + zi)‖2]. (2.13)

Minimizing (2.13) does not lead to a closed-form solution and incurs com-
plexity that grows exponentially with L [18]. For this reason, we resort
to iterative alternatives which converge at least to a stationary point of
the cost in (2.13). To this end, let us suppose temporarily that matri-
ces {Bl}Ll=1,l6=i and {Cl}Ll=1,l6=i are fixed and satisfy the power constraints

tr(ClΣxlxl
CT
l ) = Pl, for l = 1, . . . , L and l 6= i. Upon defining the vector

s̄i := s−∑L
l=1,l6=i(BlDlClxl + Blzl) the cost in (2.13) becomes:

J(Bi,Ci) = E[‖s̄i −BiDiCixi −Bizi‖2] , (2.14)

which being a function of Ci and Bi only, falls under the realm of Propo-
sition 1. This means that when {Bl}Ll=1,l6=i and {Cl}Ll=1,l6=i are given,
the matrices Bi and Ci minimizing (2.14) under the power constraint
tr(CiΣxixi

CT
i ) ≤ Pi can be directly obtained from (2.10), after setting

s = s̄i, x = xi, z = zi and ρa = rank(Σs̄ixi
) in Proposition 1. The

corresponding auto- and cross- covariance matrices needed must also be
modified appropriately, namely Σss = Σs̄i s̄i

and Σsxi
= Σs̄ixi

. We have
thus established the following result for coupled sensor observations:

Proposition 2.2. If (a1) and (a2) are satisfied, and ki ≤
rank(Σs̄ixi

), then for given matrices {Bl}Ll=1,l6=i and {Cl}Ll=1,l6=i satisfy-

ing tr(ClΣxlxl
CT
l ) = Pl, the optimal Bo

i and Co
i matrices minimizing

E[‖s−∑L
l=1 Bl(DlClxl+zl)‖2] are provided by Proposition 1, after setting

x = xi, s = s̄i and applying the corresponding covariance modifications.
Proposition 2 suggests the following alternating algorithm for dis-

tributed estimation in the presence of fading and FC noise:

Algorithm 1 :

Initialize randomly the matrices {C(0)
i }Li=1 and {B(0)

i }Li=1, such that

tr(C
(0)
i Σxixi

C
(0)T

i ) = Pi.
n = 0
repeat

n = n + 1
for i = 1,L do

Given the matrices C
(n)
1 ,B

(n)
1 , . . . ,C

(n)
i−1,B

(n)
i−1,C

(n−1)
i+1 ,B

(n−1)
i+1 ,

. . . ,C
(n−1)
L ,B

(n−1)
L , determine C

(n)
i ,B

(n)
i via Th. 2

end for
until |MSE(n) − MSE(n−1)| < ε for given tolerance ε

Notice that Algorithm 1 belongs to the class of block coordinate descent
iterative schemes. At every step i during the nth iteration, it yields the op-
timal pair of matrices Co

i ,B
o
i , treating the rest as given. Thus, the MSE(n)

cost per iteration is non-increasing and the algorithm always converges
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Fig. 2. (Left): Distributed setup.; (Right): Test channel for x Gaussian in a
point-to-point link.

to a stationary point of (2.13). Beyond its applicability to possibly non-
Gaussian and nonlinear model settings, it is the only available algorithm
for handling fading and generally colored FC noise effects in distributed
estimation.

3. Distortion-rate analysis for distributed estimation. In con-
trast to the previous section, here we consider digital-amplitude data trans-
mission (bits) from the sensors to the FC. In such a setup, all the sensors
are characterized by a rate constraint. In order to determine the minimum
possible distortion (MSE) between the signal of interest and the estimate
at the FC, under encoding rate constraints, we perform D-R analysis and
determine bounds for the D-R function.

With reference to Fig. 2 (Left), consider a WSN comprising L sensors
that communicate with an FC. Each sensor, say the ith, observes an Ni×1
vector xi(t) which is correlated with a p × 1 random signal (parameter
vector) of interest s(t), where t denotes discrete time. Similar to [22,23,34],
we assume that:

(a3) No information is exchanged among sensors and the links with the
FC are noise-free.

(a4) The random vector s(t) is generated by a stationary Gaussian vec-
tor memoryless source with s(t) ∼ N (0,Σss); the sensor data
{xi(t)}Li=1 adhere to the linear-Gaussian model xi(t) = His(t) +
ni(t), where ni(t) denotes additive white Gaussian noise (AWGN);
i.e., ni(t) ∼ N (0, σ2I); noise ni(t) is uncorrelated across sensors,
time and with s; and Hi as well as (cross-) covariance matrices
Σss, Σsxi

and Σxixj
are known ∀i, j ∈ {1, . . . , L}.

Notice that (a3) assumes that sufficiently strong channel codes are used;
while whiteness of ni(t) and the zero-mean assumptions in (a4) are made
without loss of generality. The linear model in (a4) is commonly encoun-
tered in estimation and in a number of cases it even accurately approxi-
mates non-linear mappings; e.g., via a first-order Taylor expansion in tar-
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get tracking applications. Although confining ourselves to Gaussian vectors
xi(t) is of interest on its own, following arguments similar to those in [3, p.
134] we can show that the D-R functions obtained in this paper bound
from above their counterparts for non-Gaussian sensor data xi(t).

Blocks x
(n)
i := {xi(t)}nt=1, comprising n consecutive time instantia-

tions of the vector xi(t), are encoded per sensor to yield each encoder’s

output u
(n)
i = f

(n)
i (x

(n)
i ), i = 1, . . . , L. These outputs are communicated

through ideal orthogonal channels to the FC. There, u
(n)
i ’s are decoded to

obtain an estimate of s(n) := {s(t)}nt=1 denoted as ŝ
(n)
R (u

(n)
1 , . . . ,u

(n)
L ) =

g
(n)
R (x

(n)
1 , . . . ,x

(n)
L ), since u

(n)
i is a function of x

(n)
i . The rate constraint

is imposed through a bound on the cardinality of the range of the sen-

sor encoding functions, i.e., the cardinality of the range of f
(n)
i must be

no larger than 2nRi , where Ri is the available rate at the encoder of the
ith sensor. The sum rate satisfies the constraint

∑L
i=1 Ri ≤ R, where

R is the total available rate shared by the L sensors. Under this rate
constraint, we want to determine the minimum possible MSE distortion
(1/n)

∑n
t=1 E[‖s(t)− ŝR(t)‖2] for estimating s in the limit of infinite block-

length n. When L = 1, a single-letter information theoretic characteri-
zation is known for the latter, but no simplification is known for the dis-
tributed multi-sensor scenario.

3.1. Distortion-rate for centralized estimation. We will first de-
termine the D-R function for estimating s(t) in a single-sensor setup. The
single-letter characterization of the D-R function in this setup allow us to
drop the time index. Here, all {xi}Li=1 := x are available to a single sensor,
and x = Hs + n. We let ρ := rank(H) denote the rank of matrix H. The
D-R function in such a scenario provides a lower (non-achievable) bound
on the MMSE that can be achieved in a multi-sensor distributed setup,
where each xi is observed by a different sensor. Existing works treat the
case N = p [29, 35], but here we look for the D-R function regardless of
N, p, in the linear-Gaussian model framework.

3.1.1. Background on D-R analysis for reconstruction. The
D-R function for encoding x, which has probability density function (pdf)
p(x), with rate R at an individual sensor, and reconstructing it (in the
MMSE sense) as x̂ at the FC, is given by [8, p. 342]:

Dx(R) = min
p(x̂|x)

I(x;x̂)≤R

Ep(x̂,x)[‖x − x̂‖2], (3.1)

where x ∈ R
N and x̂ ∈ R

N , and the minimization is w.r.t. the conditional
pdf p(x̂|x). Let Σxx = QxΛxQ

T
x denote the eigenvalue decomposition of

Σxx, where Λx = diag(λx,1 · · ·λx,N) and λx,1 ≥ · · · ≥ λx,N > 0.
For x Gaussian, Dx(R) can be determined by applying rwf to the

pre-whitened vector xw := QT
xx [8, p. 348]. For a prescribed rate R,
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it turns out that ∃ k such that the first k entries {xw(i)}ki=1 of xw,
are encoded and reconstructed independently from each other using rate

{Ri = 0.5 log2 (λx,i/d(k, R))}ki=1, where d(k, R) =
(

∏k
i=1 λx,i

)1/k

2−2R/k

with R =
∑k

i=1 Ri; and the last N−k entries of xw are assigned no rate; i.e.,
{Ri = 0}Ni=k+1. The corresponding MMSE for encoding xw(i), the ith entry
of xw, under a rate constraint Ri, is Di = E[‖xw(i) − x̂w(i)‖2] = d(k, R)
when i = 1, . . . , k and Di = λx,i when i = k + 1 . . . , N . The resultant
MMSE (D-R function) is:

Dx(R) = E[‖x− x̂‖2] = E[‖xw − x̂w‖2] = kd(k, R) +
∑N
i=k+1 λx,i. (3.2)

Especially for d(k, R), it follows that max({λx,i}Ni=k+1) ≤ d(k, R) <
min{λx,1, . . . , λx,k}. Intuitively, d(k, R) is a threshold distortion deter-
mining which entries of xw are assigned with nonzero rate. The first k
entries of xw with variance λx,i > d(k, R) are encoded with non-zero rate,
but the last N − k ones are discarded in the encoding procedure (are set
to zero).

Associated with the rwf principle is the so called test channel; see
e.g., [8, p. 345]. The encoder’s MSE optimal output is u = QT

x,kx+ζ, where
Qx,k is formed by the first k columns of Qx, and ζ models the distortion
noise that results due to the rate-constrained encoding of x. The zero-mean
AWGN ζ is uncorrelated with x and its diagonal covariance matrix Σζζ

has entries [Σζζ ]ii = λx,iDi/(λx,i −Di). The part of the test channel that
takes as input u and outputs x̂, models the decoder. The reconstruction x̂
of x at the decoder output is:

x̂ = Qx,kΘku = Qx,kΘkQ
T
x,kx + Qx,kΘkζ, (3.3)

where Θk is a diagonal matrix with non-zero entries [Θk]ii =
(λx,i − Di)/λx,i, i = 1, . . . , k.

3.1.2. D-R analysis for estimation. The D-R function for estimat-
ing a source s given observation x (where the source and observation are
probabilistically drawn from the joint pdf p(x, s)) with rate R at an indi-
vidual sensor, and reconstructing it (in the MMSE sense) as x̂ at the FC
is given by [3, p. 79]:

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

Ep(ŝR,s)[‖s− ŝR‖2], (3.4)

where s ∈ R
N and ŝR ∈ R

N , and the minimization is w.r.t. the condi-
tional pdf p(ŝR|x). In order to achieve the D-R function, one might be
tempted to first compress x by applying rwf at the sensor, without taking
into account the data model relating s with x, and subsequently use the
reconstructed x̂ to form the MMSE estimate ŝce = E[s|x̂] at the FC. An
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Fig. 3. (Top): Test channel for the CE scheme.; (Bottom): Test channel for the
EC scheme.

alternative option would be to first form the MMSE estimate ŝ = E[s|x],
encode the latter using rwf at the sensor, and after decoding at the FC,
obtain the reconstructed estimate ŝec. Referring to the former option as
Compress-Estimate (CE), and to the latter as Estimate-Compress (EC),
we are interested in determining which one yields the smallest MSE under
a rate constraint R. Another interesting question is whether any of the
CE and EC schemes enjoys MMSE optimality (i.e., achieves (3.4)). With
subscripts ce and ec corresponding to these two options, let us also define
the errors s̃ce := s− ŝce and s̃ec := s− ŝec.

For CE, we depict in Fig. 3 (Top) the test channel for encoding x
via rwf, followed by MMSE estimation of s based on x̂. Suppose that
when applying rwf to x with prescribed rate R, the first kce components
of xw are assigned with non-zero rate and the rest are discarded. The
MMSE optimal encoder’s output for encoding x is given, as in subsection
III-A.1, by uce = QT

x,kce
x+ζce. The covariance matrix of ζce has diagonal

entries [Σζceζce
]ii = λx,iD

ce
i /(λx,i − Dce

i ) for i = 1, . . . , kce, where Dce
i :=

E[(xw(i)− x̂w(i))2]. Recalling that Dce
i =

(

∏kce

i=1 λx,i

)1/kce

2−2R/kce when

i = 1, . . . , kce and Dce
i = λx,i, when i = kce + 1, . . . , N , the reconstructed

x̂ in CE is [c.f. (3.3)]:

x̂ = Qx,kce
ΘceQ

T
x,kce

x + Qx,kce
Θceζce, (3.5)

where [Θce]ii = (λx,i − Dce
i )/λx,i, for i = 1, . . . , kce. Letting x̌ := QT

x x̂ =
[x̌T1 01×(N−kce)]

T , with x̌1 := ΘceQ
T
x,kce

x+Θceζce, we have for the MMSE
estimate ŝce = E[s|x̂]:

ŝce = E[s|QT
x x̂] = E[s|x̌1] = Σsx̌1

Σ−1
x̌1x̌1

x̌1, (3.6)

since QT
x is unitary and the last N − kce entries of x̌ are useless for es-

timating s. We have shown in [30] that the covariance matrix Σs̃ces̃ce
:=

E[(s − ŝce)(s− ŝce)
T ] = Σss −Σsx̌1

Σ−1
x̌1x̌1

Σx̌1s of s̃ce is:

Σs̃ce s̃ce
= Σss −ΣsxΣ

−1
xxΣxs + ΣsxQx∆ceQ

T
xΣxs, (3.7)
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where ∆ce := diag
(

Dce
1 λ−2

x,1 · · ·Dce
N λ−2

x,N

)

.

In Fig. 3 (Bottom) we depict the test channel for the EC scheme. The
MMSE estimate ŝ = E[s|x] is followed by the test channel that results
when applying rwf to a pre-whitened version of ŝ, with rate R. Let Σŝŝ =
QŝΛŝQ

T
ŝ be the eigenvalue decomposition for the covariance matrix of ŝ,

where Λŝ = diag(λŝ,1 · · ·λŝ,p) and λŝ,1 ≥ · · · ≥ λŝ,p. Suppose now that
the first kec entries of ŝw = QT

ŝ ŝ are assigned with non-zero rate and
the rest are discarded. The MSE optimal encoder’s output is given by
uec = QT

ŝ,kec
ŝ + ζec, and the estimate ŝec is:

ŝec = Qŝ,kec
ΘecQ

T
ŝ,kec

ŝ + Qŝ,kec
Θecζec, (3.8)

where Qŝ,kec
is formed by the first kec columns of Qŝ. For the kec × kec

diagonal matrices Θec and Σζecζec
we have [Θec]ii = (λŝ,i − Dec

i )/λŝ,i and
[Σζecζec

]ii = λŝ,iD
ec
i /(λŝ,i −Dec

i ), where Dec
i := E[(ŝw(i)− ŝec,w(i))2], and

ŝec,w := QT
ŝ ŝec. Recall also that Dec

i =
(

∏kec

i=1 λŝ,i

)1/kec

2−2R/kec when

i = 1, . . . , kec and Dec
i = λŝ,i, for i = kec + 1, . . . , p. Upon defining ∆ec :=

diag
(

Dec
1 · · ·Dec

p

)

, the covariance matrix of s̃ec is given by [30]:

Σs̃ec s̃ec
= Σss −ΣsxΣ−1

xxΣxs + Qŝ∆ecQT
ŝ . (3.9)

The MMSE associated with CE and EC is given, respectively, by [c.f. (3.7)
and (3.9)]:

Dce(R) : = trace(Σs̃ces̃ce
) = Jo + εce(R),

(3.10)
Dec(R) : = trace(Σs̃ecs̃ec

) = Jo + εec(R),

where εce(R) := trace(ΣsxQx∆ceQ
T
xΣxs), εec(R) := trace(Qŝ∆ecQ

T
ŝ ),

and Jo := trace(Σss−ΣsxΣ
−1
xxΣxs) is the MMSE achieved when estimating

s based on x, without source encoding (R → ∞). Since Jo is common to
both EC and CE it is important to compare εce(R) with εec(R) in order
to determine which estimation scheme achieves the smallest MSE. The
following proposition provides such an asymptotic comparison:

Proposition 3.1. If R > Rth := 0.5 max {log2 ((
∏ρ
i=1 λx,i) /σ2ρ

)

,

log2 ((
∏ρ
i=1 λŝ,i) /(λŝ,ρ)

ρ)}, then it holds that εce(R) = γ12
−2R/N and

εec(R) = γ22
−2R/ρ, where γ1 and γ2 are constants.

An immediate consequence of Proposition 3 is that the MSE for EC
converges as R → ∞ to Jo with rate O(2−2R/ρ). The MSE of CE con-
verges likewise, but with rate O(2−2R/N ). For the typical case N > ρ, EC
approaches the lower bound Jo faster than CE, implying correspondingly
a more efficient usage of the available rate R. This is intuitively reasonable
since CE compresses x, which contains the noise n. Since the last N − ρ
eigenvalues of Σxx equal the noise variance σ2, part of the available rate is
consumed to compress the noise. On the contrary, the MMSE estimator ŝ
in EC suppresses significant part of the noise.
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Fig. 4. (Left): D-R region for EC and CE at SNR = 2; (Right): Distortion-rate
bounds for estimating s in a two-sensor setup.

Let us examine now some special cases to gain more insight about
Proposition 3.
Scalar model (p = 1, N = 1): Let x = hs + n, where h is fixed, while s, n
are uncorrelated with s ∼ N (0, σ2

s), n ∼ N (0, σ2
n), and σ2

x = h2σ2
s + σ2

n.
With σ2

s̃ce
and σ2

s̃ec
denoting the variances of s̃ce and s̃ec, respectively, we

have shown in [30] that:
Proposition 3.2. For N = p = 1, it holds that σ2

s̃ce
= σ2

s̃ec
and hence

the D-R functions for EC and CE are identical; i.e., Dec(R) = Dce(R).
Vector model (p = 1, N > 1): With x = hs + n and after setting Rth :=
0.5 log2 (1+ σ2

s‖h‖2/σ2
)

, we have established that [30]:
Proposition 3.3. For R ≤ Rth it holds that εce(R) = εec(R) and

thus Dec(R) = Dce(R). For R > Rth, we have εce(R) > εec(R) and thus
EC uses more efficiently the available rate.

We define the signal-to-noise ratio (SNR) as SNR =
trace(HΣssH

T )/Nσ2, and compare in Fig. 4 (Left) the MMSE when
estimating s using the CE and EC schemes. With Σss = σ2

sIp, p = 4 and
N = 40, we observe that beyond a threshold rate, the distortion of EC
converges to Jo faster than that of CE, which corroborates Proposition 3.

Our analysis so far raises the question whether EC is MSE optimal.
We have shown that this is the case when estimating s with a given rate
R and without forcing any assumption about N and p. A related claim
has been reported in [29, 35] for N = p, but the extension to N 6= p is not
obvious. We have established that [30]:

Proposition 3.4. The D-R function when estimating s based on x
can be expressed as

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

E[‖s− ŝR‖2] = E[‖s̃‖2] + min
p(ŝR|ŝ)

I(ŝ;ŝR)≤R

E[‖ŝ− ŝR‖2], (3.11)

where ŝ = ΣsxΣ
−1
xxx is the MMSE estimator, and s̃ is the corresponding

MMSE.
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Proposition 6 reveals that the optimal means of estimating s is to
first form the optimal MMSE estimate ŝ and then apply optimal rate-
distortion encoding to this estimate. The lower bound on this distortion
when R → ∞, is Jo = E[‖s̃‖2], which is intuitively appealing. The D-
R function in (3.11) is achievable, because the rightmost term in (3.11)
corresponds to the D-R function for reconstructing the MMSE estimate ŝ
which is known to be achievable using random coding; see e.g., [3, p. 66].

3.2. Distortion-rate for distributed estimation. Let us now con-
sider the D-R function for estimating s in a multi-sensor setup, under a total
available rate R which has to be shared among all sensors. Because an-
alytical specification of the D-R function in this case remains intractable,
we will develop an alternating algorithm that numerically determines an
achievable upper bound for it. Combining this upper bound with the non-
achievable lower bound corresponding to an equivalent single-sensor setup,
and applying the MMSE optimal EC scheme, will provide a (hopefully
tight) region where the D-R function lies in. For simplicity in exposition,
we confine ourselves to a two-sensor setup, but our results apply to any
finite L > 2.

To this end, we consider the following single-letter characterization of
the upper bound on the D-R function:

D̄(R) = min
p(u1|x1),p(u2|x2),ŝR

I(x;u1,u2)≤R

Ep(s,u1,u2)[‖s− ŝR(u1,u2)‖2], (3.12)

where the minimization is w.r.t. {p(ui|xi)}2
i=1 and ŝR := ŝR(u1,u2).

Achievability of D̄(R) can be established by readily extending to the vector
case the scalar results in [7]. To carry out the minimization in (3.12), we
develop an alternating scheme whereby u2 is treated as side information
that is available at the decoder when optimizing (3.12) w.r.t. p(u1|x1) and
ŝR(u1,u2). The side information u2 is considered as the output of an opti-
mal rate-distortion encoder applied to x2 for estimating s, without taking
into account x1. Since x2 is Gaussian, the side information will have the
form (c.f. subsection III-A.2) u2 = Q2x2 + ζ2, where Q2 ∈ R

k2×N2 and
k2 ≤ N2, due to the rate constrained encoding of x2. Recall that the k2×1
vector ζ2 is uncorrelated with x2 and Gaussian; i.e., ζ2 ∼ N (0,Σζ2ζ2).

Based on ψ := [xT1 uT2 ]T , the optimal estimator for s is the MMSE
one: ŝ = E[s|x1,u2] = ΣsψΣ

−1
ψψψ = L1x1 + L2u2, where L1, L2 are

p × N1 and p × k2 matrices such that ΣsψΣ
−1
ψψ = [L1 L2]. If s̃ is the

corresponding MSE, then s = ŝ + s̃, where s̃ is uncorrelated with ψ due to
the orthogonality principle. Noticing also that ŝR(u1,u2) is uncorrelated
with s̃ because it is a function of x1 and u2, we have E[‖s− ŝR(u1,u2)‖2] =
E[‖ŝ− ŝR(u1,u2)‖2] + E[‖s̃‖2], or,

E[‖s−ŝR(u1,u2)‖2] = E[‖L1x1−(ŝR(u1,u2)−L2u2)‖2]+E[‖s̃‖2]. (3.13)
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Clearly, it holds that I(x;u1,u2) = R2 +I(x1;u1)−I(u2;u1), where R2 :=
I(x;u2) is the rate consumed to form the side information u2 and the rate
constraint in (3.12) becomes I(x;u1,u2) ≤ R ⇔ I(x1;u1) − I(u2;u1) ≤
R−R2 := R1. The new signal of interest in (3.13) is L1x1; thus, u1 has to
be a function of L1x1. Using the fact that x1 → L1x1 → u1, constitutes
a Markov chain, we show in [30] that I(x1;u1) = I(L1x1;u1). Using the
latter, we obtain:

I(x1;u1) − I(u2;u1) = I(L1x1;u1) − I(u2;u1). (3.14)

From the RHS of (3.14), we deduce the equivalent constraint I(L1x1;u1)−
I(u2;u1) ≤ R1. Combining the latter with (3.13) and (3.12), we arrive at
the D-R upper bound:

¯̄D(R1) = E[‖s̃‖2] + min
p(u1|L1x1),ŝR

I(L1x1;u1)−I(u1;u2)≤R1

E[‖L1x1 − s̃R,12(u1,u2)‖2], (3.15)

where s̃R,12(u1,u2) := ŝR(u1,u2)−L2u2. Through (3.15) we can determine
an achievable D-R region, having available rate R1 at the encoder and side
information u2 at the decoder. Since x1 and u2 are jointly Gaussian, we
can apply the Wyner-Ziv result [36], which allows us to consider that u2

is available both at the decoder and the encoder. This, in turn, permits
re-writing the first term in (3.15) as:

min
p(ŝR|L1x1,u2)

I(L1x1;ŝR|u2)≤R1

E[‖L1x1 − [ŝR(u1,u2) − L2u2]‖2]. (3.16)

If ŝ1 := E[L1x1|u2] = L1Σx1u2
Σ−1
u2u2

u2 and s̃1 is the corresponding MSE,
then we can write L1x1 = ŝ1+s̃1. For the rate constraint in (3.16), we have:

I(L1x1; ŝR|u2) = I(L1x1 − ŝ1; ŝR − L2u2 − ŝ1|u2)
(3.17)

= I(s̃1; ŝR − L2u2 − ŝ1),

where the first equality is true because u2 is known; while the second one
holds since u2 is uncorrelated with s̃1, due to the orthogonality principle,
and likewise u2 is uncorrelated with ŝR,12(u1,u2) := ŝR(u1,u2)−L2u2−ŝ1.
Utilizing (3.16) and (3.17), we arrive at:

¯̄D(R1) = min
p(ŝR,12|s̃1)

I(s̃1;ŝR,12)≤R1

E[‖s̃1 − ŝR,12(u1,u2)‖2] + E[‖s̃‖2]. (3.18)

Notice that (3.18) is the D-R function for reconstructing the MSE s̃1 with
rate R1. Since s̃1 is Gaussian, we can readily apply rwf to the pre-whitened
QT
s̃1

s̃1 for determining ¯̄D(R1) and the corresponding test channel that

achieves ¯̄D(R1). Through the latter, and considering the next eigenvalue
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decomposition Σs̃1s̃1 = Qs̃1 diag(λs̃1 ,1 · · ·λs̃1,p)QT
s̃1

, we find that the first
encoder’s output that minimizes (3.12) has the form:

u1 = QT
s̃1,k1L1x1 + ζ1 = Q1x1 + ζ1, (3.19)

where Qs̃1,k1 denotes the first k1 columns of Qs̃1 , k1 is the number of QT
s̃1

s̃1

entries that are assigned with non-zero rate, and Q1 := QT
s̃1,k1

L1. The k1×
1 AWGN ζ1 ∼ N (0,Σζ1ζ1) is uncorrelated with x1. Additionally, we have

[Σζ1ζ1 ]ii = λs̃1 ,iD
1
i /(λs̃1,i − D1

i ), where D1
i =

(

∏k1
i=1 λs̃1,i

)1/k1
2−2R1/k1 ,

for i = 1, . . . , k1, and D1
i = λs̃1,i when i = k1 + 1, . . . , p. This way, we are

able to determine also p(u1|x1). The reconstruction function has the form:

ŝR(u1,u2) =Qs̃1,k1Θ1u1 + L1Σx1u2
Σ−1
u2u2

u2 + L2u2
(3.20)

−Qs̃1,k1Θ1Q
T
s̃1,k1L1Σx1u2

Σ−1
u2u2

u2,

where [Θ1]ii = λs̃1,iD
1
i /(λs̃1,i−D1

i ), and the MMSE is ¯̄D(R1) =
∑p
j=1 D1

j+

E[‖s̃‖2].
The approach in this subsection can be applied in an alternating fash-

ion from sensor to sensor in order to determine appropriate p(ui|xi), for
i = 1, 2, and ŝR(u1,u2) that at best globally minimize (3.15). The con-
ditional pdfs can be determined by finding the appropriate covariances
Σζiζi

. Furthermore, by specifying the optimal Q1 and Q2, we have a com-
plete characterization of the encoders’ structure. The resultant algorithm
is summarized next:

Algorithm 2 :

Initialize Q
(0)
1 ,Q

(0)
2 ,Σ

(0)
ζ1ζ1

,Σ
(0)
ζ2ζ2

by applying optimal D-R encoding to
each sensor’s test channel independently. For a total rate R, gener-
ate M random increments {r(m)}Mm=0, such that 0 ≤ r(m) ≤ R and
∑M

m=0 r(m) = R. Set R1(0) = R2(0) = 0.
for j = 1,M do

Set R(j) =
∑j

l=0 r(l)
for i = 1,2 do

ī = mod (i, 2) + 1 %The complementary index

R0(j) = I(x;u
(j)

ī
)

We use Q
(j−1)

ī
,Σ

(j−1)
ζīζī

, R(j), R0(j) to determine Q
(j)
i , Σ

(j)
ζiζi

and dis-

tortion ¯̄D(Ri(j))
end for
Update matrices Q

(j)
l ,Σ

(j)
ζlζl

that result the smallest distortion
¯̄D(Rl(j)), with l ∈ [1, 2]

Set Rl(j) = R(j) − I(x;u
(j)

l̄
) and Rl̄(j) = I(x;u

(j)

l̄
).

end for
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In Fig. 4 (Right), we plot the non-achievable lower bound which cor-
responds to one sensor having available the entire x and using the optimal
EC scheme. Moreover, we plot an achievable D-R upper bound deter-
mined by letting the i-th sensor form its local estimate ŝi = E[s|xi], and
then apply optimal rate-distortion encoding to ŝi. If ŝR,1 and ŝR,2 are the
reconstructed versions of ŝ1 and ŝ2, respectively, then the decoder at the
FC forms the final estimate ŝR = E[s|ŝR,1, ŝR,2]. We also plot the achiev-
able D-R region determined numerically by the alternating algorithm. For
each rate, we keep the smallest distortion returned after 500 executions of
the algorithm simulated with Σss = Ip, p = 4, and N1 = N2 = 20, at
SNR = 2. We observe that the algorithm provides a tight upper bound
for the achievable D-R region. Using also the non-achievable lower bound
(solid line), we have effectively reduced the ‘uncertainty region’ where the
D-R function lies.

4. Distributed quantization-estimation. Consider a WSN con-
sisting of N sensors deployed to estimate a deterministic p × 1 vector pa-
rameter θ. The nth sensor observes an M × 1 vector of noisy observations

x(n) = fn(θ) + w(n), n = 0, 1, . . . , N − 1 , (4.1)

where fn : Rp → RM is a known (generally nonlinear) function and w(n)
denotes zero-mean noise with pdf pw(w), that is known possibly up to a
finite number of unknown parameters. We further assume that w(n1) is
independent of w(n2) for n1 6= n2; i.e., noise variables are independent
across sensors. We will use Jn to denote the Jacobian of the differentiable
function fn whose (i, j)th entry is given by [Jn]ij = ∂[fn]i/∂[θ]j .

Due to bandwidth limitations, the observations x(n) have to be quan-
tized and estimation of θ can only be based on these quantized values.
We will henceforth think of quantization as the construction of a set of
indicator variables

bk(n) = 1{x(n) ∈ Bk(n)}, k = 1, . . . , K , (4.2)

taking the value 1 when x(n) belongs to the region Bk(n) ⊂ RM , and
0 otherwise. Estimation of θ will rely on this set of binary variables
{bk(n), k = 1, . . . , K}N−1

n=0 . The latter are Bernoulli distributed with pa-
rameters qk(n) satisfying

qk(n) := Pr{bk(n) = 1} = Pr{x(n) ∈ Bk(n)}. (4.3)

In the ensuing sections, we will derive the Cramér-Rao Lower Bound
(CRLB) to benchmark the variance of all unbiased estimators θ̂ constructed
using the binary observations {bk(n), k = 1, . . . , K}N−1

n=0 . We will further
show that it is possible to find Maximum Likelihood Estimators (MLEs)
that (at least asymptotically) are known to achieve the CRLB. Finally, we
will reveal that the CRLB based on {bk(n), k = 1, . . . , K}N−1

n=0 can come
surprisingly close to the clairvoyant CRLB based on {x(n)}N−1

n=0 in certain
applications of practical interest.
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4.1. Scalar parameter estimation – Parametric approach.
Consider the case where θ ↔ θ is a scalar (p = 1), x(n) = θ + w(n),
and pw(w) ↔ pw(w, σ) is known, with σ denoting the noise standard de-

viation. Seeking first estimators θ̂ when the possibly non-Gaussian noise
pdf is known, we move on to the case where σ is unknown, and prove that
in both cases the variance of θ̂ based on a single bit per sensor can come
close to the variance of the sample mean estimator, x̄ := N−1

∑N−1
n=0 x(n).

4.1.1. Known noise pdf. When the noise pdf is known, we will rely
on a single region B1(n) in (4.2) to generate a single bit b1(n) per sensor,
using a threshold τc common to all N sensors: B1(n) := Bc = (τc,∞), ∀n.
Based on these binary observations, b1(n) := 1{x(n) ∈ (τc,∞)} received
from all N sensors, the fusion center seeks estimates of θ.

Let Fw(u) :=
∫∞

u
pw(w) dw denote the Complementary Cumulative

Distribution Function (CCDF) of the noise. Using (4.3), we can express
the Bernoulli parameter as, q1 =

∫∞

τc−θ
pw(w)dw = Fw(τc−θ); and its MLE

as q̂1 = N−1
∑N−1

n=0 b1(n). Invoking now the invariance property of MLE,
it follows readily that the MLE of θ is given by [27]1:

θ̂ = τc − F−1
w

(

1

N

N−1
∑

n=0

b1(n)

)

. (4.4)

Furthermore, it can be shown that the CRLB, that bounds the variance of
any unbiased estimator θ̂ based on b1(n)

N−1
n=0 is [27]

var(θ̂) ≥ 1

N

Fw(τc − θ)[1 − Fw(τc − θ)]

p2
w(τc − θ)

:= B(θ) . (4.5)

If the noise is Gaussian, and we define the σ-distance between the threshold
τc and the (unknown) parameter θ as ∆c := (τc − θ)/σ, then (4.5) reduces
to

B(θ) =
σ2

N

2πQ(∆c)[1 − Q(∆c]

e−∆c
:=

σ2

N
D(∆c), (4.6)

with Q(u) := (1/
√

2π)
∫∞

u
e−w

2/2 dw denoting the Gaussian tail probability
function.

The bound B(θ) is the variance of x̄, scaled by the factor D(∆c); recall
that var(x̄) = σ2/N [13, p.31]. Optimizing B(θ) with respect to ∆c, yields
the optimum at ∆c = 0 and

Bmin =
π

2

σ2

N
, (4.7)

1Although related results are derived in [27, Prop.1] for Gaussian noise, it is straight-
forward to generalize the referred proof to cover also non-Gaussian noise pdfs.
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the minimum CRLB. Eq. (4.7) reveals something unexpected: relying on
a single bit per x(n), the estimator in (4.4) incurs a minimal (just a π/2
factor) increase in its variance relative to the clairvoyant x̄ which relies on
the unquantized data x(n). But this minimal loss in performance corre-
sponds to the ideal choice ∆c = 0, which implies τc = θ and requires perfect
knowledge of the unknown θ for selecting the quantization threshold τc.

A closer look at B(θ) in (4.5) will confirm that the loss can be huge if
τc − θ � 0. Indeed, as τc − θ → ∞ the denominator in (4.5) goes to zero
faster than its numerator, since Fw is the integral of the non-negative pdf
pw; and thus, B(θ) → ∞ as τc − θ → ∞. The implication of the latter is
twofold: i) since it shows up in the CRLB, the potentially high variance
of estimators based on quantized observations is inherent to the possibly
severe bandwidth limitations of the problem itself and is not unique to a
particular estimator; ii) for any choice of τc, the fundamental performance
limits in (4.5) are dictated by the end points τc − Θ1 and τc − Θ2 when θ
is confined to the interval [Θ1, Θ2]. On the other hand, how successful the
τc selection is depends on the dynamic range |Θ1 −Θ2| which makes sense
because the latter affects the error incurred when quantizing x(n) to b1(n).
Notice that in such joint quantization-estimation problems one faces two
sources of error: quantization and noise. To account for both, the proper
figure of merit for estimators based on binary observations is what we will
term quantization signal-to-noise ratio (Q-SNR):

γ :=
|Θ1 − Θ2|2

σ2
; (4.8)

Notice that contrary to common wisdom, the smaller Q-SNR is, the easier
it becomes to select τc judiciously. Furthermore, the variance increase
in (4.5) relative to the variance of the clairvoyant x̄ is smaller, for a given
σ. This is because as the Q-SNR increases the problem becomes more
difficult in general, but the rate at which the variance increases is smaller
for the CRLB in (4.5) than for var(x̄) = σ2/N .

4.1.2. Known noise pdf with unknown variance. No matter how
small the variance in (4.5) can be made by properly selecting τc, the esti-

mator θ̂ in (4.4) requires perfect knowledge of the noise pdf which may not
be always justifiable. A more realistic approach is to assume that the noise
pdf is known (e.g., Gaussian) but some of its parameters are unknown. A
case frequently encountered in practice is when the noise pdf is known ex-
cept for its variance E[w2(n)] = σ2. Introducing the standardized variable
v(n) := w(n)/σ we write the signal model as

x(n) = θ + σv(n). (4.9)

Let pv(v) and Fv(v) :=
∫∞

v pv(u)du denote the known pdf and CCDF of
v(n). Note that according to its definition, v(n) has zero mean, E[v2(n)] =
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1, and the pdfs of v and w are related by pw(w) = (1/σ)pv(w/σ). Note
also that all two parameter pdfs can be standardized likewise.

To estimate θ when σ is also unknown while keeping the bandwidth
constraint to 1 bit per sensor, we divide the sensors in two groups each
using a different region (i.e., threshold) to define the binary observations:

B1(n) :=

{

(τ1,∞) := B1, for n = 0, . . . , (N/2) − 1
(τ2,∞) := B2, for n = (N/2), . . . , N.

(4.10)

That is, the first N/2 sensors quantize their observations using the thresh-
old τ1, while the remaining N/2 sensors rely on the threshold τ2. Without
loss of generality, we assume τ2 > τ1.

The Bernoulli parameters of the resultant binary observations can be
expressed in terms of the CCDF of v(n) as:

q1(n) :=















Fv

[

τ1 − θ

σ

]

:= q1 for n = 0, . . . , (N/2)− 1,

Fv

[

τ2 − θ

σ

]

:= q2 for n = (N/2), . . . , N.

(4.11)

Given the noise independence across sensors, the MLEs of q1, q2 can be
found, respectively, as

q̂1 =
2

N

N/2−1
∑

n=0

b1(n), q̂2 =
2

N

N−1
∑

n=N/2

b1(n). (4.12)

Mimicking (4.4), we can invert Fv in (4.11) and invoke the invariance prop-

erty of MLEs, to obtain the MLE θ̂ in terms of q̂1 and q̂2. This result is
stated in the following proposition that also derives the CRLB for this
estimation problem2.

Proposition 4.1. Consider estimating θ in (4.9), based on binary
observations constructed from the regions defined in (4.10).
(a) The MLE of θ is

θ̂ =
F−1
v (q̂2)τ1 − F−1

v (q̂1)τ2

F−1
v (q̂2) − F−1

v (q̂1)
, (4.13)

with F−1
v denoting the inverse function of Fv, and q̂1, q̂2 given by (4.12).

(b) The variance of any unbiased estimator of θ, var(θ̂), based on
{b1(n)}N−1

n=0 is bounded by

B(θ) :=
2σ2

N

(

∆1∆2

∆2 − ∆1

)2 [
q1 (1 − q1)

p2
v(∆1)∆2

1

+
q2 (1 − q2)

p2
v(∆2)∆2

2

]

(4.14)

2Omitted due to space considerations, proofs pertaining to claims in this section can
be found in [28].
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Fig. 5. Per bit CRLB when the binary observations are independent (Section 4.1.2)
and dependent (Section 4.1.3), respectively. In both cases, the variance increase with
respect to the sample mean estimator is small when the σ-distances are close to 1, being
slightly better for the case of dependent binary observations (Gaussian noise).

where qk is given by (4.11), and

∆k :=
τk − θ

σ
, k = 1, 2, (4.15)

is the σ-distance between θ and the threshold τk.
Eq. (4.14) is reminiscent of (4.5), suggesting that the variances of the

estimators they bound are related. This implies that even when the known
noise pdf contains unknown parameters the variance of θ̂ can come close to
the variance of the clairvoyant estimator x̄, provided that the thresholds
τ1, τ2 are chosen close to θ relative to the noise standard deviation (so that
∆1, ∆2, and ∆2 − ∆1 in (4.15) are ≈ 1). For the Gaussian pdf, Fig. 5
shows the contour plot of B(θ) in (4.14) normalized by σ2/N := var(x̄).
Notice that in the low Q-SNR regime ∆1, ∆2 ≈ 1, and the relative variance
increase B(θ)/var(x̄) is less than 3.

4.1.3. Dependent binary observations. In the previous subsec-
tion, we restricted the sensors to transmit only 1 bit per x(n) datum, and
divided the sensors in two classes each quantizing x(n) using a different
threshold. A related approach is to let each sensor use two thresholds:

B1(n) := B1 = (τ1,∞), n = 0, 1, . . . , N − 1,
(4.16)

B2(n) := B2 = (τ2,∞), n = 0, 1, . . . , N − 1

where τ2 > τ1. We define the per sensor vector of binary observa-
tions b(n) := [b1(n), b2(n)]T , and the vector Bernoulli parameter q :=
[q1(n), q2(n)]T , whose components are as in (4.11).

Note the subtle differences between (4.10) and (4.16). While each
of the N sensors generates 1 binary observation according to (4.10), each
sensor creates 2 binary observations as per (4.16). The total number of bits
from all sensors in the former case is N , but in the latter N log2 3, since our
constraint τ2 > τ1 implies that the realization b = (0, 1) is impossible. In
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addition, all bits in the former case are independent, whereas correlation is
present in the latter since b1(n) and b2(n) come from the same x(n). Even
though one would expect this correlation to complicate matters, a property
of the binary observations defined as per (4.16), summarized in the next
lemma, renders estimation of θ based on them feasible.

Lemma 4.1. The MLE of q := (q1(n), q2(n))T based on the binary
observations {b(n)}N−1

n=0 constructed according to (4.16) is given by

q̂ =
1

N

N−1
∑

n=0

b(n). (4.17)

Interestingly, (4.17) coincides with (4.12), proving that the correspond-

ing estimators of θ are identical; i.e., (4.13) yields also the MLE θ̂ even in
the correlated case. However, as the following proposition asserts, correla-
tion affects the estimator’s variance and the corresponding CRLB.

Proposition 4.2. Consider estimating θ in (4.9), when σ is un-
known, based on binary observations constructed from the regions defined
in (4.16). The variance of any unbiased estimator of θ, var(θ̂), based on
{b1(n), b2(n)}N−1

n=0 is bounded by

BD(θ) :=
σ2

N

(

∆1∆2

∆2 − ∆1

)2

(4.18)
[

q1 (1 − q1)

p2
v(∆1)∆2

1

+
q2 (1 − q2)

p2
v(∆2)∆2

2

− q2 (1 − q1)

pv(∆1)p(∆2)∆1∆2

]

,

where the subscript D in BD(θ) is used as a mnemonic for the dependent
binary observations this estimator relies on [c.f. (4.14)].

Unexpectedly, (4.18) is similar to (4.14). Actually, a fair comparison
between the two requires compensating for the difference in the total num-
ber of bits used in each case. This can be accomplished by introducing the
per-bit CRLBs for the independent and correlated cases respectively,

C(θ) = NB(θ), CD(θ) = N log2(3)BD(θ) , (4.19)

which lower bound the corresponding variances achievable by the transmis-
sion of 1 bit.

Evaluation of C(θ)/σ2 and CD(θ)/σ2 follows from (4.14), (4.18)
and (4.19) and is depicted in Fig. 5 for Gaussian noise and σ-distances ∆1,
∆2 having amplitude as large as 5. Somewhat surprisingly, both approaches
yield very similar bounds with the one relying on dependent binary obser-
vations being slightly better in the achievable variance; or correspondingly,
in requiring a smaller number of sensors to achieve the same CRLB.

4.2. Unknown noise pdf. In certain applications it may not be rea-
sonable to assume knowledge about the noise pdf pw(w). These cases
require non - parametric approaches as the one pursued in this section.
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Fig. 6. When the noise pdf is unknown numerically integrating the CCDF using
the trapezoidal rule yields an approximation of the mean.

We assume that pw(w) has zero mean so that θ in (4.1) is identifiable.
Let px(x) and Fx(x) denote the pdf and CCDF of the observations x(n).
As θ is the mean of x(n), we can write

θ :=

∫ +∞

−∞

xpx(x) dx = −
∫ +∞

−∞

x
∂Fx(x)

∂x
dx =

∫ 1

0

F−1
x (v) dv , (4.20)

where in establishing the second equality we used the fact that the pdf is
the negative derivative of the CCDF, and in the last equality we introduced
the change of variables v = Fx(x). But note that the integral of the inverse
CCDF can be written in terms of the integral of the CCDF as (see also
Fig. 6)

θ = −
∫ 0

−∞

[1 − Fx(u)] du +

∫ +∞

0

Fx(u) du, (4.21)

allowing one to express the mean θ of x(n) in terms of its CCDF. To avoid
carrying out integrals with infinite range, let us assume that x(n) ∈ (−T, T )
which is always practically satisfied for T sufficiently large, so that we can
rewrite (4.21) as

θ =

∫ T

−T

Fx(u) du − T. (4.22)

Numerical evaluation of the integral in (4.22) can be performed using a
number of known techniques. Let us consider an ordered set of interior
points {τk}Kk=1 along with end-points τ0 = −T and τK+1 = T . Relying on
the fact that Fx(τ0) = Fx(−T ) = 1 and Fx(τK+1) = Fx(T ) = 0, application
of the trapezoidal rule for numerical integration yields (see also Fig. 6),

θ =
1

2

K
∑

k=1

(τk+1 − τk−1)Fx(τk) − T + ea, (4.23)

with ea denoting the approximation error. Certainly, other methods like
Simpson’s rule, or the broader class of Newton-Cotes formulas, can be used
to further reduce ea.
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Whichever the choice, the key is that binary observations constructed
from the region Bk := (τk ,∞) have Bernoulli parameters

qk := Pr{x(n) > τk} = Fx(τk). (4.24)

Inserting the non-parametric estimators F̂x(τk) = q̂k in (4.23), our param-
eter estimator when the noise pdf is unknown takes the form:

θ̂ =
1

2

K
∑

k=1

q̂k(τk+1 − τk−1) − T. (4.25)

Since q̂k’s are unbiased, (4.23) and (4.25) imply that E(θ̂) = θ + ea. Being

biased, the proper performance indicator for θ̂ in (4.25) is the Mean Squared
Error (MSE), not the variance.

Maintaining the bandwidth constraint of 1 bit per sensor (i.e. K = 1),
let us divide the N sensors in K subgroups containing N/K sensors each,
and define the regions

B1(n) := Bk = (τk,∞), n = (k − 1)(N/K), . . . , k(N/K)− 1; (4.26)

the region B1(n) will be used by sensor n to construct and transmit the
binary observation b1(n). Herein, the unbiased estimators of the Bernoulli
parameters qk are

q̂k =
1

(N/K)

k(N/K)−1
∑

n=(k−1)(N/K)

b1(n), k = 1, . . . , K, (4.27)

and are used in (4.25) to estimate θ. It is easy to verify that var(q̂k) =
qk(1 − qk)/(N/K), and that q̂k1 and q̂k2 are independent for k1 6= k2.

The resultant MSE, E[(θ − θ̂)2], will be bounded as follows3.

Proposition 4.3. Consider the estimator θ̂ given in (4.25), with q̂k
as in (4.27). Assume that for T sufficiently large and known px(x) = 0, for
|x| ≥ T ; the noise pdf has bounded derivative ṗw(u) := ∂pw(w)/∂w; and
define τmax := maxk{τk+1 − τk} and ṗmax := maxu∈(−T,T ){ṗw(u)}. The
MSE is given by,

E[(θ − θ̂)2] = |ea|2 + var(θ̂), (4.28)

with the approximation error ea and var(θ̂), satisfying

|ea| ≤
T ṗmax

6
τ2
max, (4.29)

var(θ̂) =

K
∑

k=1

(τk+1 − τk−1)
2

4

qk(1 − qk)

N/K
, (4.30)

3Omitted due to space considerations, proofs pertaining to claims in this work can
be found in [28].
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with {τk}Kk=1 a grid of thresholds in (−T, T ) and {qk}Kk=1 as in (4.24).

Note from (4.30) that the larger contributions to var(θ̂) occur when
qk ≈ 1/2, since this value maximizes the coefficients qk(1−qk); equivalently,
this happens when the thresholds satisfy τk ≈ θ [c.f. (4.24)]. Thus, as with
the case where the noise pdf is known, when θ belongs to an a priori known
interval [Θ1, Θ2], this knowledge must be exploited in selecting thresholds
around the likeliest values of θ.

On the other hand, note that the var(θ̂) term in (4.28) will dominate
|ea|2, because |ea|2 ∝ τ4

max as per (4.29). To clarify this point, consider an
equispaced grid of thresholds with τk+1 − τk = τ = τmax, ∀k, such that
τmax = 2T/(K + 1) < 2T/K. Using the (loose) bound qk(1 − qk) ≤ 1/4,
the MSE is bounded by [c.f. (4.28) - (4.30)]

E[(θ − θ̂)2] <
4T 6ṗ2

max

9K4
+

T 2

N
. (4.31)

The bound in (4.31) is minimized by selecting K = N , which amounts to
having each sensor use a different region to construct its binary observation.
In this case, |ea|2 ∝ N−4 and its effect becomes practically negligible.
Moreover, most pdfs have relatively small derivatives; e.g., for the Gaussian
pdf we have ṗmax = (2πeσ4)−1/2. The integration error can be further
reduced by resorting to a more powerful numerical integration method,
although its difference with respect to the trapezoidal rule will not have
any impact in practice.

Since K = N , the selection τk+1 − τk = τ , ∀k, yields

θ̂ = τ

N−1
∑

n=0

b1(n) − T = T

[

2

N + 1

N−1
∑

n=0

b1(n) − 1

]

, (4.32)

that does not require knowledge of the threshold used to construct the binary
observation at the fusion center of a WSN. This feature allows for each
sensor to randomly select its threshold without using values pre-assigned by
the fusion center; see also [16] for related random quantization algorithms.

Remark 4.1. While e2
a ∝ T 6 seems to dominate var(θ̂) ∝ T 2 in (4.31),

this is not true for the operational low-to-medium Q-SNR range for dis-
tributed estimators based on binary observations. This is because the sup-
port 2T over which Fx(x) in (4.22) is non-zero depends on σ and the
dynamic range |Θ1−Θ2| of the parameter θ. And as the Q-SNR decreases,
T ∝ σ. But since ṗmax ∝ σ−2, e2

a ∝ σ2/N4 which is negligible when

compared to the term var(θ̂) ∝ σ2/N .
Remark 4.2. Pdf-unaware bandwidth-constrained distributed esti-

mation was introduced in [16], where it was referred to as universal. At
the (relatively minor) restriction of deterministically-assigned thresholds,
the estimator in (4.32) achieves a four times smaller variance than the uni-
versal estimator in [16] which can afford randomly assigned thresholds –
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though it is true that θ̂ in (4.32) can also be implemented with randomly as-
signed thresholds, its MSE in (4.31) has been derived for deterministically
assigned ones. The reason behind this noticeable performance improve-
ment is that the approach here implicitly utilizes the data pdf (through
the numerical approximation of the CCDF) in constructing the asymptotic
MLE of (4.25). The only extra condition required over [16] is for the pdf
to be differentiable, which is typically satisfied in practice. Also, the ap-
proach herein is readily generalizable to estimation of vector parameters –
a practical scenario where universal estimators like those in [16] are yet to
be found.

Apart from providing useful bounds on the finite-sample performance,
Eqs. (4.29), (4.30), and (4.31) establish asymptotic optimality of the θ̂
estimators in (4.25) and (4.32) as summarized in the following:

Corollary 4.1. Under the assumptions of Propositions 4.3 and the
conditions: i) τmax ∝ K−1; and ii) T 2/N, T 6/K4 → 0 as T, K, N → ∞,

the estimators θ̂ in (4.25) and (4.32) are asymptotically (as K, N → ∞)
unbiased and consistent in the mean-square sense.

The estimators in (4.25) and (4.32) are consistent even if the support of
the data pdf is infinite, as long as we guarantee a proper rate of convergence
relative to the number of sensors and thresholds.

Remark 4.3. To compare the estimators in (4.4) and (4.32), consider
that θ ∈ [Θ1, Θ2] = [−σ, σ], and that the noise is Gaussian with variance
σ2, yielding a Q-SNR γ = 4. No estimator can have variance smaller
than var(x̄) = σ2/N ; however, for the (medium) γ = 4 Q-SNR value
they can come close. For the known pdf estimator in (4.4), the variance

is var(θ̂) ≈ 2σ2/N . The unknown pdf estimator in (4.32) requires an
assumption about the essentially non-zero support of the Gaussian pdf. If
we suppose that the noise pdf is non-zero over [−2σ, 2σ], the corresponding

variance becomes var(θ̂) ≈ 9σ2/N . The penalties due to the transmission
of a single bit per sensor with respect to x̄ are approximately 2 and 9. While
the increasing penalty is expected as the uncertainty about the noise pdf
increases, the relatively small loss is rather unexpected.

4.3. Vector parameter generalization. Let us now return to the
general problem we started with in Section 2. We begin by defining the per
sensor vector of binary observations b(n) := (b1(n), . . . , bK(n))T , and note
that since its entries are binary, realizations β of b(n) belong to the set

B := {β ∈ RK | [β]k ∈ {0, 1}, k = 1, . . . , K}, (4.33)

where [β]k denotes the kth component of β. With each β ∈ B and each
sensor we now associate the region

Bβ(n) :=
⋂

[β]k=1

Bk(n)
⋂

[β]k=0

B̄k(n), (4.34)
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Fig. 7. (Left): The vector of binary observations b takes on the value {y1, y2} if
and only if x(n) belongs to the region B{y1,y2}; (Right): Selecting the regions Bk(n)
perpendicular to the covariance matrix eigenvectors results in independent binary ob-
servations.

where B̄k(n) denotes the set-complement of Bk(n) in RM . Note that the
definition in (4.34) implies that x(n) ∈ Bβ(n) if and only if b(n) = β; see
also Fig. 7 (Left) for an illustration in R2 (M = 2). The corresponding
probabilities are:

qβ(n) := Pr{b(n) = β} =

∫

Bβ(n)

pw[u − fn(θ);ψ] du, (4.35)

with fn as in (4.1), and ψ containing the unknown parameters of the known
noise pdf. Using definitions (4.35) and (4.33), we can write the pertinent
log-likelihood function as

L(θ,ψ) =

N−1
∑

n=0

∑

y∈B

δ(b(n) − β) ln qβ(n), (4.36)

and the MLE of θ as

θ̂ = arg max(θ,ψ)L(θ,ψ) . (4.37)

The nonlinear search needed to obtain θ̂ could be challenging. Fortunately,
as the following proposition asserts, under certain conditions that are usu-
ally met in practice, L(θ,ψ) is concave which implies that computationally
efficient search algorithms can be invoked to find its global maximum.

Proposition 4.4. If the MLE problem in (4.37) satisfies the
conditions:

[c1] The noise pdf pw(w;ψ) ↔ pw(w) is log-concave [6, p.104], and ψ is
known.

[c2] The functions fn(θ) are linear; i.e., fn(θ) = Hnθ, with Hn ∈ R(M×p).
[c3] The regions Bk(n) are chosen as half-spaces.

then L(θ) in (4.36) is a concave function of θ.
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Note that [c1] is satisfied by common noise pdfs, including the mul-
tivariate Gaussian [6, p.104]; and also that [c2] is typical in parameter
estimation. Moreover, even when [c2] is not satisfied, linearizing fn(θ)
using Taylor’s expansion is a common first step, typical in e.g., parame-
ter tracking applications. On the other hand, [c3] places a constraint in
the regions defining the binary observations, which is simply up to the
designer’s choice.

4.3.1. Colored Gaussian noise. Analyzing the performance of the
MLE in (4.37) is only possible asymptotically (as N or SNR go to infinity).
Notwithstanding, when the noise is Gaussian, simplifications render vari-
ance analysis tractable and lead to interesting guidelines for constructing
the estimator θ̂.

Restrict pw(w;ψ) ↔ pw(w) to the class of multivariate Gaussian pdfs,
and let C(n) denote the noise covariance matrix at sensor n. Assume
that {C(n)}N−1

n=0 are known and let {(em(n), σ2
m(n))}Mm=1 be the set of

eigenvectors and associated eigenvalues:

C(n) =

M
∑

m=1

σ2
m(n)em(n)eTm(n). (4.38)

For each sensor, we define a set of K = M regions Bk(n) as half-spaces
whose borders are hyper-planes perpendicular to the covariance matrix
eigenvectors; i.e.,

Bk(n) = {x ∈ RM | eTk (n)x ≥ τk(n)}, k = 1, . . . , K = M, (4.39)

Fig. 7 (Right) depicts the regions Bk(n) in (4.39) for M = 2. Note that
since each entry of x(n) offers a distinct scalar observation, the selection
K = M amounts to a bandwidth constraint of 1 bit per sensor per dimen-
sion.

The rationale behind this selection of regions is that the resultant bi-
nary observations bk(n) are independent, meaning that Pr{bk1(n)bk2(n)} =
Pr{bk1(n)} Pr{bk2(n)} for k1 6= k2. As a result, we have a total of MN
independent binary observations to estimate θ.

Herein, the Bernoulli parameters qk(n) take on a particularly simple
form in terms of the Gaussian tail function,

qk(n) =

∫

e
T
k (n)u≥τk(n)

pw(u − fn(θ)) du = Q

(

τk(n) − eTk (n)fn(θ)

σk(n)

)

, (4.40)

where we introduced the σ-distance between fn(θ) and the corresponding
threshold ∆k(n) := [τk(n) − eTk (n)fn(θ)]/σk(n). Moreover, for simplicity
we denote the Q function in (4.40) as Q(∆k(n)).
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Due to the independence among binary observations we have
p(b(n)) =

∏K
k=1 [qk(n)]bk(n)[1 − qk(n)]1−bk(n), leading to

L(θ) =
N−1
∑

n=0

K
∑

k=1

bk(n) ln qk(n) + [1 − bk(n)] ln[1 − qk(n)], (4.41)

whose NK independent summands replace the N2K dependent terms
in (4.36).

Since the regions Bk(n) are half-spaces, Proposition 4.4 applies to the
maximization of (4.41) and guarantees that the numerical search for the
θ̂ estimator in (4.41) is well-conditioned and will converge to the global
maximum, at least when the functions fn are linear. More important, it
will turn out that these regions render finite sample performance analysis
of the MLE in (4.37), tractable. In particular, it is possible to derive a
closed-form expression for the Fisher Information Matrix (FIM) [13, p.44],
as we establish next.

Proposition 4.5. The FIM, I, for estimating θ based on the binary
observations obtained from the regions defined in (4.39), is given by

I =
N−1
∑

n=0

JTn

[

K
∑

k=1

e−∆2

k(n)ek(n)eTk (n)

2πσ2
k(n)Q(∆k(n))[1 − Q(∆k(n))]

]

Jn, (4.42)

where Jn denotes the Jacobian of fn(θ).
Inspection of (4.42) shows that the variance of the MLE in (4.37)

depends on the signal function containing the parameter of interest (via
the Jacobians), the noise structure and power (via the eigenvalues and
eigenvectors), and the selection of the regions Bk(n) (via the σ-distances).
Among these three factors only the last one is inherent to the bandwidth
constraint, the other two being common to the estimator that is based on
the original x(n) observations.

The last point is clarified if we consider the FIM Ix for estimating θ
given the unquantized vector observations x(n). This matrix can be shown
to be (see [28, Apx. D]),

Ix =
N−1
∑

n=0

JTn

[

M
∑

m=1

em(n)eTm(n)

σ2
m(n)

]

JTn . (4.43)

If we define the equivalent noise powers as

ρ2
k(n) :=

2πQ(∆k(n))[1 − Q(∆k(n))]

e−∆2

k
(n)

σ2
k(n), (4.44)

we can rewrite (4.42) in the form

I =
N−1
∑

n=0

JTn

[

K
∑

k=1

ek(n)eTk (n)

ρ2
k(n)

]

JTn , (4.45)
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which except for the noise powers has form identical to (4.43). Thus, com-
parison of (4.45) with (4.43) reveals that from a performance perspective,
the use of binary observations is equivalent to an increase in the noise vari-
ance from σ2

k(n) to ρ2
k(n), while the rest of the problem structure remains

unchanged.
Since we certainly want the equivalent noise increase to be as small as

possible, minimizing (4.44) over ∆k(n) calls for this distance to be set to
zero, or equivalently, to select thresholds τk(n) = eTk (n)fn(θ). In this case,
the equivalent noise power is

ρ2
k(n) =

π

2
σ2
k(n). (4.46)

Surprisingly, even in the vector case a judicious selection of the regions
Bk(n) results in a very small penalty (π/2) in terms of the equivalent noise
increase. Similar to Sections 4.1.1 and 4.1.2, we can thus claim that while
requiring the transmission of 1 bit per sensor per dimension, the variance
of the MLE in (4.37), based on {b(n)}N−1

n=0 , yields a variance close to the
clairvoyant estimator’s variance –based on {x(n)}N−1

n=0 – for low-to-medium
Q-SNR problems.

5. Simulations. In this section we provide numerical results for the
distributed estimation schemes developed in Sections I and III.

5.1. Distributed dimensionality reduction. We first test the
MMSE performance versus k for the EC scheme and the estimator re-
turned by Algorithm 1. To assess the difference in handling noise effects,
we also compare EC and Algorithm 1 with the schemes in [38] and [37],
which we abbreviate as C′E and C′′E because they perform compression
(C) followed by estimation (E). Although C′E and C′′E have been derived
under ideal link conditions, we modify them here to account for Di. Our
comparisons will further include an option we term CE, which compresses
first the data and reconstructs them at the FC using Co and Bo found by
(2.10) after setting s = x, and then estimates s based on the reconstructed
data vector x̂. For benchmarking purposes, we also plot Jo, achieved when
estimating s based on uncompressed data transmitted over ideal links.
Test Case 1 (EC with uncorrelated sensor data): We consider first the
decoupled case of Section 3, where MMSE performance is characterized by
the single sensor (L = 1) setup. Fig. 8 (Left) depicts the MMSE versus k
for Jo, EC, CE, C′E and C′′E for a linear model x = Hs+n, where N = 50
and p = 10. The matrices H,Σss and Σnn, are selected randomly such
that tr(HΣssH

T )/tr(Σnn) = 2, while s and n are uncorrelated. We set
Σzz = σ2

zIk, and select P such that 10 log10(P/σ2
z) = 7dB. As expected Jo

benchmarks all curves, while the worst performance is exhibited by C′E.
Albeit suboptimal, CE comes close to the optimal EC. The monotonic
decrease of MMSE with k for EC corroborates Corollary 2. Contrasting
it with the increase C′′E exhibits in MMSE beyond a certain k, we can
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Fig. 8. MMSE comparisons versus k for a centralized, L = 1 (Left), and a dis-
tributed 3-sensor setup (Right).

appreciate the importance of coping with noise effects. This increase is
justifiable since each entry of the compressed data in C′′E is allocated a
smaller portion of the given power as k grows. In EC however, the quality
of channel links and the available power determine the number of the com-
pressed components (which might lie in a vector space of dimensionality
κ ≤ k), and allocate power optimally among them.
Test Case 2 (Algorithm 1 with correlated sensor data): Here we consider
a 3-sensor setup using the same linear model as in Test Case 1, while setting
N1 = N2 = 17 and N3 = 16. FC noise zi is white with variance σ2

zi
. The

power Pi and variance σ2
zi

are chosen such that 10 log10(P/σ2
zi

) = 13dB,
for i = 1, 2, 3, and the tolerance quantity for the Algorithm 1 is set to
ε = 10−3. Fig. 8 (Right) depicts the MMSE as a function of the total

number ktot =
∑3
i=1 ki of compressed entries across sensors for: i) a cen-

tralized EC setup for which a single (virtual) sensor (L = 1) has available
the data vectors of all three sensors; ii) the estimator returned by Algo-
rithm 1; iii) the decoupled EC estimator which ignores sensor correlations;
iv) the C′E and v) an iterative estimator developed in [31], denoted here as
EC-d, which similar to C′E accounts for fading but ignores noise. Interest-
ingly, our decentralized Algorithm 1 comes very close to the hypothetical
single-sensor bound of the centralized EC estimator, while outperforming
the decoupled EC one. Also worth noting is that EC-d performs close to
Algorithm 1 for small values of ktot, but as ktot increases it behaves as bad
as C′E.

5.2. Scalar parameter estimation – parametric approach. We
begin by simulating the estimator in (4.13) for scalar parameter estimation
in the presence of AWGN with unknown variance. Results are shown in
Fig. 9 for two different sets of σ-distances, ∆1, ∆2, corroborating the values
predicted by (4.14) and the fact that the performance loss with respect to
the clairvoyant sample mean estimator, x̄, is indeed small.
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Fig. 9. Noise of unknown power estimator. The simulation corroborates the close
to clairvoyant variance prediction of (4.14) (σ = 1, θ = 0, Gaussian noise).
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Fig. 10. The variance of the estimators in (4.4) and (4.32) are close to the sample
mean estimator variance (σ2 := E[w2(n)] = 1, T = 3, θ ∈ [−1, 1]).

5.3. Scalar parameter estimation - unknown noise pdf. Fig. 10
depicts theoretical bounds and simulated variances for the estimators (4.4)
and (4.32) for an example Q-SNR γ = 4. The sample mean estimator
variance, var(x̄) = σ2/N , is also depicted for comparison purposes. The
simulations corroborate the implications of Remark 3, reinforcing the idea
that for low to medium Q-SNR problems quantization to a single bit per
observation leads to minimal losses in variance performance. Note that for
this particular example the unknown pdf variance bound, (4.31), overes-
timates the variance by a factor of roughly 1.2 for the uniform case and
roughly 2.6 for the Gaussian case.
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Fig. 11. The vector flow v incises over a certain sensor capable of measuring the
normal component of v.

5.4. Vector parameter estimation – A motivating application.
In this section, we illustrate how a problem involving vector parameters
can be solved using the estimators of Section 4.3.1. Suppose we wish to
estimate a vector flow using incidence observations. With reference to
Fig. 11, consider the flow vector v := (v0, v1)

T , and a sensor positioned
at an angle φ(n) with respect to a known reference direction. We will
rely on a set of so called incidence observations {x(n)}N−1

n=0 measuring the
component of the flow normal to the corresponding sensor

x(n) := 〈v,n〉 + w(n) = v0 sin[φ(n)] + v1 cos[φ(n)] + w(n), (5.1)

where 〈, 〉 denotes inner product, w(n) is zero-mean AWGN, and n =
0, 1, . . . , N −1 is the sensor index. The model (5.1) applies to the measure-
ment of hydraulic fields, pressure variations induced by wind and radiation
from a distant source [20].

Estimating v fits the framework of Section 4.3.1 requiring the trans-
mission of a single binary observation per sensor, b1(n) = 1{x(n) ≥ τ1(n)}.
The FIM in (4.45) is easily found to be

I =

N−1
∑

n=0

1

ρ2
1(n)

(

sin2[φ(n)] sin[φ(n)] cos[φ(n)]
sin[φ(n)] cos[φ(n)] cos2[φ(n)]

)

. (5.2)

Furthermore, since x(n) in (5.1) is linear in v and the noise pdf is log-
concave (Gaussian) the log-likelihood function is concave as asserted by
Proposition 4.4.

Suppose that we are able to place the thresholds optimally as implied
by τ1(n) = v0 sin[φ(n)] + v1 cos[φ(n)], so that ρ2

1(n) = (π/2)σ2. If we also
make the reasonable assumption that the angles are random and uniformly
distributed, φ(n) ∼ U [−π, π], then the average FIM turns out to be:

Ī =
2

πσ2

(

N/2 0
0 N/2

)

. (5.3)
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Fig. 12. Average variance for the components of v. The empirical as well as the
bound (5.4) are compared with the analog observations based MLE (v = (1, 1), σ = 1).

But according to the law of large numbers I ≈ Ī, and the estimation vari-
ance will be approximately given by

var(v0) = var(v1) =
πσ2

N
. (5.4)

Fig. 12 depicts the bound (5.4), as well as the simulated variances var(v̂0)
and var(v̂1) in comparison with the clairvoyant MLE based on {x(n)}N−1

n=0 ,
corroborating our analytical expressions.

6. Conclusions. We considered the problem of estimation in wireless
sensor networks showing that the seemingly unrelated problems of dimen-
sionality reduction, compression, quantization and estimation are actually
intertwined due to the distributed nature of the WSN.

We started by deriving algorithms for estimating stationary random
signals based on reduced-dimensionality observations collected by power-
limited wireless sensors linked with a fusion center. We dealt with non-ideal
channel links that are characterized by multiplicative fading and additive
noise. When data across sensors are uncorrelated, we established global
mean-square error optimal schemes in closed-form and proved that they
implement estimation followed by compression per sensor. Besides dis-
tributed estimation with reduced dimensionality decoupled observations,
such closed-form solutions are valuable for all applications principal com-
ponents and canonical correlation analysis are sought in the presence of
multiplicative and additive noise. For correlated sensor observations, we
developed an algorithm that relies on block coordinate descent iterations
which are guaranteed to converge at least to a local stationary point of the
associate mean-square error cost. The optimal estimators allocate prop-
erly the prescribed power following a waterfilling-like principle to balance
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judiciously channel effects and additive noise at the fusion center with the
degree of dimensionality reduction that can be afforded.

Continuing, with digital-amplitude data transmission we determined
the distortion −rate (D-R) function for estimating a random vector in
a single-sensor setup and established the optimality of the estimate-first
compress-afterwards (EC) approach along with the suboptimality of a
compress-first estimate afterwards (CE) alternative. When it comes to
estimation using multiple sensors, the corresponding D-R function can be
bounded from below using the single-sensor D-R function achieved using
the EC scheme. An alternating algorithm was also derived for determining
numerically an achievable D-R upper bound in the distributed multi-sensor
setup. Using this upper bound in combination with the non-achievable
lower bound we obtained a tight region, where the D-R function for dis-
tributed estimation lies in.

We finally developed parameter estimators for realistic signal models
and derived their fundamental variance limits under severe bandwidth con-
straints. The latter were adhered to by quantizing each sensor’s observation
to one or a few bits. By jointly accounting for the unique quantization-
estimation tradeoffs present, these bit(s) per sensor were first used to de-
rive distributed maximum likelihood estimators (MLEs) for scalar mean-
location parameters in the presence of generally non-Gaussian noise when
the noise pdf is completely known; subsequently, when the pdf is known ex-
cept for a number of unknown parameters; and finally, when the noise pdf
is unknown. The unknown pdf case was tackled through a non-parametric
estimator of the unknown complementary cumulative distribution function
based on quantized (binary) observations. In all three cases, the result-
ing estimators turned out to exhibit comparable variances that can come
surprisingly close to the variance of the clairvoyant estimator which relies
on unquantized observations. This happens when the SNR capturing both
quantization and noise effects assumes low-to-moderate values. Analogous
claims were established for practical generalizations that were pursued in
the multivariate and colored noise cases for distributed estimation of vector
parameters under bandwidth constraints. Therein, MLEs were formed via
numerical search but the log-likelihoods were proved to be concave thus
ensuring fast convergence to the unique global maximum.
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transform, IEEE Transactions on Information Theory, submitted Nov. 2004
(available at http://www.eecs.berkeley.edu/∼gastpar/).

[11] J. Gubner, Distributed Estimation and Quantization, IEEE Transactions on In-
formation Theory, 39: 1456–1459, 1993.

[12] P. Ishwar, R. Puri, K. Ramchadran, and S. Pradhan, On Rate-Constrained

Distributed Estimation in Unreliable Sensor Networks, IEEE Journal on Se-
lected Areas in Communications, pp. 765–775, April 2005.

[13] S.M. Kay, Fundamentals of Statistical Signal Processing - Estimation Theory.
Prentice Hall, 1993.

[14] S. Kumar, F. Zao, and D. Shepherd, eds., Special issue on collaborative infor-

mation processing, Vol. 19 of IEEE Signal Proc. Magazine, March 2002.
[15] W. Lam and A. Reibman, Quantizer design for decentralized systems with commu-

nication constraints, IEEE Transactions on Communications, 41: 1602–1605,
Aug. 1993.

[16] Z.-Q. Luo, An isotropic universal decentralized estimation scheme for a band-

width constrained ad hoc sensor network, IEEE Journal on Selected Areas in
Communications, 23: 735–744, April 2005.

[17] Z.-Q. Luo, Universal Decentralized Estimation in a Bandwidth Constrained Sen-

sor Network, IEEE Transactions on Information Theory, 51: 2210–2219,
June 2005.

[18] Z.-Q. Luo, G.B. Giannakis, and S. Zhang, Optimal linear decentralized estima-

tion in a bandwidth constrained sensor network, in Proc. of the Intl. Symp.
on Info. Theory, pp. 1441–1445, Adelaide, Australia, Sept. 4–9 2005.

[19] Z.-Q. Luo and J.-J. Xiao, Decentralized estimation in an inhomogeneous sens-

ing environment, IEEE Transactions on Information Theory, 51: 3564 –3575,
October 2005.

[20] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
Wireless sensor networks for habitat monitoring, in Proc. of the 1st ACM
International Workshop on Wireless Sensor Networks and Applications, 3:
88–97, Atlanta, Georgia, 2002.

[21] R.D. Nowak, Distributed EM algorithms for density estimation and clustering

in sensor networks, IEEE Transactions on Signal Processing, 51: 2245–2253,
August 2002.

[22] Y. Oohama, The Rate-Distortion Function for the Quadratic Gaussian CEO Prob-

lem, IEEE Transactions On Information Theory, pp. 1057–1070, May 1998.



38 IOANNIS D. SCHIZAS ET AL.

[23] A. Pandya, A. Kansal, G. Pottie, and M. Srivastava, Fidelity and Resource

Sensitive Data Gathering, in Proc. of the 42nd Allerton Conference, Allerton,
IL, September 2004.

[24] H. Papadopoulos, G. Wornell, and A. Oppenheim, Sequential signal encoding

from noisy measurements using quantizers with dynamic bias control, IEEE
Transactions on Information Theory, 47: 978–1002, 2001.

[25] S.S. Pradhan, J. Kusuma, and K. Ramchandran, Distributed compression in

a dense microsensor network, IEEE Signal Processing Magazine, 19: 51–60,
March 2002.

[26] M.G. Rabbat and R.D. Nowak, Decentralized source localization and tracking,

in Proc. of the 2004 IEEE Intnl. Conference on Acoustics, Speech, and Signal
Processing, 3: 921–924, Montreal, Canada, May 2004.

[27] A. Ribeiro and G.B. Giannakis, Bandwidth-Constrained Distributed Estimation

for Wireless Sensor Networks, Part I: Gaussian Case, IEEE Transactions on
Signal Processing, 54: 1131–1143, March 2006.

[28] A. Ribeiro and G.B. Giannakis, Bandwidth-Constrained Distributed Estimation

for Wireless Sensor Networks, Part II: Unknown pdf, IEEE Transactions on
Signal Processing, 2006, to appear.

[29] D.J. Sakrison, Source encoding in the presence of random disturbance, IEEE
Transactions on Information Theory, pp. 165–167, January 1968.

[30] I.D. Schizas, G.B. Giannakis, and N. Jindal, Distortion-Rate Analysis for

Distributed Estimation with Wireless Sensor Networks, IEEE Transac-
tions On Information Theory, submitted December 2005 (available at
http://spincom.ece.umn.edu/).

[31] I.D. Schizas, G.B. Giannakis, and Z.-Q. Luo, Distributed estimation using re-

duced dimensionality sensor observations, IEEE Transactions on Signal Pro-
cessing, submitted November 2005 (available at http://spincom.ece.umn.edu/).

[32] Y. Sung, L. Tong, and A. Swami, Asymptotic locally optimal detector for large-

scale sensor networks under the Poisson regime, in Proc. of the International
Conference on Acoustics, Speech, and Signal Processing, 2: 1077–1080, Mon-
treal, Canada, May 2004.

[33] P.K. Varshney, Distributed Detection and Data Fusion. Springer-Verlag, 1997.
[34] H. Viswanathan and T. Berger, The Quadratic Gaussian CEO Problem, IEEE

Transactions on Information Theory, pp. 1549–1559, September 1997.
[35] J. Wolf and J. Ziv, Transmission of noisy information to a noisy receiver with

minimum distortion, IEEE Transactions on Information Theory, pp. 406–411,
July 1970.

[36] A. Wyner and J. Ziv, The Rate-Distortion Function for Source Coding with

Side Information at the Decoder, IEEE Trans. on Info. Theory, pp. 1–10,
January 1976.

[37] K. Zhang, X.R. Li, P. Zhang, and H. Li, Optimal linear estimation fusion–

Part VI: Sensor data compression, in Proc. of the Intl. Conf. on Info. Fusion,
pp. 221–228, Queensland, Australia 2003.

[38] Y. Zhu, E. Song, J. Zhou, and Z. You, Optimal dimensionality reduction of

sensor data in multisensor estimation fusion, IEEE Transactions on Signal
Processing, 53: 1631–1639, May 2005.


