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In parameter estimation problems a sequence of observafiofis})_, is used to estimate a
random or deterministic parameter of interesOptimal estimation exploits the statistical corre-
lation betweernx(n) ands that is described either by the joint probability distribution function (pdf)
p(x(n),s) whens is assumed random; or by a family of observation pdfs(n);s) parameterized

by s whens is assumed deterministic. The optimal estimator function producing an esérfate

a given set of observatiorisc(n)}2_, is different for random and deterministic parameters. It also
depends on the joint pgix(n), s) (or family of pdfsp(x(n);s)) and the degree of knowledge about
them; i.e., whether they are known, dependent on some other (nuisance) parameters, or completely
unknown (Kay 1993).

The distributed nature of a wireless sensor network (WSN) implies that observations are col-
lected at different sensors and consequently it dictates that between collection and estimation a
communication is present. If bandwidth and power were unlimitedxth¢ observations could be
conveyed with arbitrary accuracy and, intuitively, no major impact would be expected. However,
bandwidth and poweare limited, and the seemingly innocuous communication stage turns out to
have a significant impact on the design of optimal estimators and their performance assessed by the
estimator variance. On the one hand, if digital communications are to be employed individual obser-
vations have to be quantized, transforming the estimation problem into that of estimatiigy
a set of quantized observations — certainly different from estimatinging the original analog-
amplitude observations. On the other hand, since components of the (vector) obsetyajiane
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2 DISTRIBUTED ESTIMATION UNDER BANDWIDTH AND ENERGY CONSTRAINTS

typically correlated, bandwidth and power constraints can be effected by transmitting we@tors
with smaller dimensionality than that &{n).

As the discussion in the previous paragraph suggests, the distributed nature of observations cou-
ples with stringent bandwidth and power constraints so that estimation in WSNSs requires: i) a means
of combining local sensor observations in order to reduce their dimensionality while keeping the
estimation MSE as small as possible; ii) quantization of the combined observations prior to digi-
tal transmission; and iii) construction of estimators based on the quantized digital messages. While
addressing these issues jointly is challenging, the present chapter describes recent advances pertain-
ing to all these three requirements.

1.1 Distributed Quantization-Estimation

Consider a WSN consisting @f sensors deployed to estimate a scalar deterministic parameter
Then'" sensor observes a noisy versiorsajiven by

z(n) = s+ wn), nel0,N—1], (1.1)

wherew(n) denotes zero-mean noise with pgf(w), that is known possibly up to a finite number
of unknown parameters. We further assume th@t, ) is independent ofv(nz) for ny # no; i.e.,
noise variables are independent across sensors.
Due to bandwidth limitations, the observatiar(s) have to be quantized and estimatiors @gn
only be based on these quantized values. We will henceforth think of quantization as the construction
of a set of indicator variables

be(n) = 1{z(n) € By(n)}, ke[l K], (1.2)

taking the valuel whenz(n) belongs to the regiof3;(n) C R, and0 otherwise. Estimation of
will rely on this set ofbinary random variablegby(n), k € [1, K]})Z}. The latter are Bernoulli
distributed with parameteig.(n) satisfying

gu(n) = Pr{bi(n) = 1} = Pr{a(n) € By(n)}. (13)

In the ensuing sections, we will present the CemRao Lower Bound (CRLB) to benchmark
the variance of all unbiased estimatarsonstructed using the binary observatidig (n), k €

[1, K]}2='. We will further show that it is possible to find maximum likelihood estimators (MLEs)
that (at least asymptotically) can achieve the CRLB. Finally, we will reveal that the CRLB based on
{br(n), k € [1, K]}=} can come surprisingly close to the clairvoyant CRLB base¢ugn)} Y~

n=0
in certain applications of practical interest.

1.2 Maximum Likelihood Estimation

Let us start by assuming that, (w) is known and letF,(u) := fu“ pw(w) dw denote the com-
plementary cumulative distribution function (CCDF) of the noise. With the pdf known it suffices
to rely on a single regioi3; (n) in (1.2) to generate a single lit(n) per sensor, using a thresh-
old 7. common to allN sensorsB; (n) := B. = (7., ), Yn. Based on these binary observations,
b1(n) := 1{x(n) € (1., 00)} received from allV sensors, the fusion center (FC) seeks estimates of
S.

An expression for the MLE of follows readily from the following argument. Using (1.3), we
can express the Bernoulli parameter as

q1 = /OO pw(w)dw = Fy (1. — $). (1.4)

c—S8
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On the other hand, it is well known that the MLE @f is given byg, = N—! Zf:’;ol b1(n) (Kay
1993, p. 200). These two facts combined with the invariance property of MLE (Kay 1993, p. 173),
readily yield the MLE ofs as (Ribeiro and Giannakis 2006a):

) (1 N-1
S=71.—F, i Z bi(n) | . (1.5)
n=0

It can be further shown that the CRLB on the variance of any unbiased estidhdt@sed on
b1 (n))— is (Ribeiro and Giannakis 2006a)

R 1 Fy(te — 8)[1 — Fo(7ec — 8)]
var(§) > N P2 (o —s)

= B(s). (1.6)

If the noise is Gaussian and we define thdistancebetween the threshold. and the (unknown)
parametes asA. := (7. — s) /o, then (1.6) reduces to
2 mQA)1-QA] _ o

B(s) = N oA = ND(Ac)a (1.7

with Q(u) := (1/v/27) [ e=**/? dw denoting the Gaussian tail probability function.
The boundB(s) is the variance of := N1 Zg:_ol x(n), scaled by the factab(A.) — recall
thatvar(z) = 02 /N (Kay 1993, p.31). Optimizing3(s) with respect taA.., yields the optimum at

A, = 0 and the minimum CRLB as

7T0'2

2N’
Eqg. (1.8) reveals something unexpected: relying on a single bit(@gr the estimator in (1.5) incurs
a minimal (just ar /2 factor) increase in its variance relative to the clairvoyanthich relies on
the unquantized data(n). But this minimal loss in performance corresponds to the ideal choice
A. = 0, which impliest, = s and requires perfect knowledge of the unknowfor selecting the
guantization threshold.. How do we select, and how much do we lose when the unknaowlres
anywhere in(—oo, 00), or whens lies in [Sy, Ss], with S, Ss finite and known a priori? Intuition
suggests selecting the threshold as close as possible to the unknown pasaffésaran be realized
with an iterative estimato§(”, which can be formed as in (1.5), using’ = $(—1, the parameter
estimate from the previous — 1)** iteration.

But in the batch formulation considered herein, selectings challenging; and a closer look
at B(s) in (1.6) will confirm that the loss can be hugerif — s > 0. Indeed, ag. — s — oo the
denominator in (1.6) goes to zero faster than its numerator, dihces the integral of the non-
negative pdfp,,; and thus,B(s) — oo ast. — s — oo. The implication of the latter is twofold:
i) since it shows up in the CRLB, the potentially high variance of estimators based on quantized
observations is inherent to the possibly severe bandwidth limitations of the problem itself and is not
unique to a particular estimators; ii) for any choicerpfthe fundamental performance limits in (1.6)
are dictated by the end points— S; andr. — S, whens is confined to the intervdl, S;]. On the
other hand, how successful theselection is depends on the dynamic raffge— S-| which makes
sense because the latter affects the error incurred when quant{zint b; (n). Notice that in such
joint quantization-estimation problems one faces two sources of error: quantization and noise. To
account for both, the proper figure of merit for estimators based on binary observations is what we
will term quantization signal-to-noise ratio (Q-SNR):

Bmin = (18)

_ 1S =92
S

(1.9)

g
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Notice that contrary to common wisdom, the smaller Q-SNR is, the easier it becomes torselect
judiciously. Furthermore, the variance increase in (1.6) relative to the variance of the clairvd@yant
smaller, for a giverr. This is because as the Q-SNR increases the problem becomes more difficult
in general, but the rate at which the variance increases is smaller for the CRLB in (1.6) than for
var(z) = 02 /N.

1.2.1 Known Noise pdf with Unknown Variance

Perhaps more common than a perfectly known pdf is the case when the noise pdf is known except
for its variancel[w?(n)] = o2. Introducing the standardized variablg:) := w(n)/o we write the
signal model as

z(n) = s+ ov(n). (1.10)

Letp, (v) andF, (v) := [ p,(u)du denote the known pdf and CCDF ofn). Note that according
to its definition,u(n) has zero meark[v?(n)] = 1, and the pdfs of andw are related by,, (w) =
(1/0)p,(w/o). Note also that all two parameter pdfs can be standardized likewise.

To estimates wheno is also unknown while keeping the bandwidth constraint to 1 bit per sensor,
we divide the sensors in two groups each using a different region (i.e., threshold) to define the binary
observations: ( ) . (N2

T,00) := By, forn=0,...,(N/2)—1
Bi(n) = { (19,00) := By, forn=(N/2),...,N. (1.11)

That is, the firstV/2 sensors quantize their observations using the threshplghile the remaining
N/2 sensors rely on the threshatel Without loss of generality, we assumg> 7.
The Bernoulli parameters of the resultant binary observations can be expressed as [c.f. (1.4)]:

Fl)
q1(n) := { 7

Given the noise independence across sensors, the ML&S @f can be found, respectively, as

T1—S

=q; forn=0,...,(N/2)—1,

:=¢qo forn=(N/2),...,N. (1.12)

T9—S
o

9 N/2—-1 9 N-1
B=5 Z:% bi(n),  Ge= _Zmzn(n). (1.13)

Mimicking (1.5), we can inverf’, in (1.12) and invoke the invariance property of MLESs to obtain
the MLE § in terms ofg; andgs. This estimator is given in the following proposition along with its
CRLB (Ribeiro and Giannakis 2006b).

Proposition 1.2.1 Consider estimating in (1.10) based on binary observations constructed from
the regions defined ifl.11)

(&) The MLE ofs is
—1/2 _ —1/2
5= o @n - Fy (@) (1.14)
Fy o (G2) — Fo (@)

with F/-1 denoting the inverse function &f,, andg;, g» given by(1.13)

N-1
n=0

202 A1 A, 2 a(l—q) ¢ —q)
Bs) = (A2 - m) [p%mlm% T R (B9)A (1-15)

(b) The variance of any unbiased estimatospfar(s), based on{b; (n) is bounded by
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Independent binary observations Dependent binary observations

Figure 1.1 Per bit CRLB when the binary observations are independent and dependent, respectively. In both cases, the
variance increase with respect to the sample mean estimator is small whedigtances are close 19 being slightly better
for the case of dependent binary observations (Gaussian noise).

whereg, is given by(1.12) and

Api=E75 =19, (1.16)

g

is theos-distance betweenand the threshold;.

Eq. (1.15) is reminiscent of (1.6), suggesting that the variances of the estimators they bound are
related. This implies that even when the known noise pdf contains unknown parameters, the variance
of § can come close to the variance of the clairvoyant estimatprovided that the thresholds,

7o are chosen close to relative to the noise standard deviation (so that Ao, and Ay — Ay

in (1.16) arex 1). For the Gaussian pdf, Fig. 1.1 shows the contour pl@(@f) in (1.15) normalized

by 02/N := var(z). Notice that in the low Q-SNR regimA,, A, ~ 1, and the relative variance
increaseB(s)/var(z) is less thar8. This is illustrated by the simulations shown in Fig. 1.2 for two
different sets ofr-distancesA, A,, corroborating the values predicted by (1.15) and the fact that
the performance loss with respect to the clairvoyant sample mean estimasondeed small.

Dependent binary observations

In the previous subsection, we restricted the sensors to transmitlduityper z:(n) datum, and
divided the sensors in two classes each quantizifg) using a different threshold. A related
approach is to let each sensor use two thresholds:

Bl(n) = Blz (Tl,OO), n:O,l,...,Nfl,
Bg(n) = B2: (7’2700), 7’L:0,1,...,N—1 (117)

wherer, > 7. We define the per sensor vector of binary observafiging := [b;(n), b2(n)]7, and
the vector Bernoulli parametey:= [q1(n), ¢2(n)]”, whose components are as in (1.12).
Note the subtle differences between (1.11) and (1.17). While each df teensors generates
1 binary observation according to (1.11), each sensor cr@ab#sary observations as per (1.17).
The total number of bits from all sensors in the former cas¥ idut in the latterN log, 3, since
our constraint, > 7 implies that the realizatiob = (0, 1) is impossible. In addition, all bits in
the former case are independent, whereas correlation is present in the lattér &icandb, (n)
come from the same(n). Even though one would expect this correlation to complicate matters, a
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Empirical and theoretical variance (IO =-1, = 1)

T
- empirical
— theoretical
— - sample mean

variance

number of sensors
Empirical and theoretical variance (IO =-2, = 0.5)

« empirical
— theoretical
— - sample mean ||

variance

number of sensors

Figure 1.2 Noise of unknown power estimator. The simulation corroborates the close to clairvoyant variance prediction
of (1.15) ¢ = 1, s = 0, Gaussian noise).

property of the binary observations defined as per (1.17), summarized in the next lemma, renders
estimation ofs based on them feasible.

Lemma 1.2.2 The MLE ofq := (q1(n), ¢2(n))” based on the binary observatiofis(n)}" ! con-
structed according t¢1.17)is given by

q= 1 > b(n). (1.18)

Interestingly, (1.18) coincides with (1.13), proving that the corresponding estimatarsiref
identical; i.e., (1.14) yields also the MLE even in the correlated case. However, as the follow-
ing proposition asserts, correlation affects the estimator’s variance and the corresponding CRLB
(Ribeiro and Giannakis 2006b).

Proposition 1.2.3 Consider estimating in (1.10) wheno is unknown, based on binary observa-
tions constructed from the regions definedirl7) The variance of any unbiased estimatorspf
var(§), based or{b; (n), ba(n)} = is bounded by

02( AL A, )2{q1(1—q1) g2 (1 — qo) a2 (1—q)

BD(S) =

b 4 U - (1.19)

p?;(Al)A% p%(A2)A§ Po(A1)p(A2) A1 A ’

where the subscripb in Bp(s) is used as a mnemonic for the dependent binary observations this
estimator relies on [c.f(1.15).

Unexpectedly, (1.19) is similar to (1.15). Actually, a fair comparison between the two requires
compensating for the difference in the total number of bits used in each case. This can be accom-
plished by introducing the per-bit CRLBs for the independent and correlated cases respectively,

C(s) = NB(s), Cp(s)= Nlogy(3)Bp(s), (1.20)
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F(u)

\P\N u

=0 = f T
o 7, 7, T

Figure 1.3 When the noise pdf is unknown numerically integrating the CCDF using the trapezoidal rule yields an approx-
imation of the mean.

which lower bound the corresponding variances achievable by the transmission of a single bit.
Evaluation ofC(s)/o? and Cp(s)/o? follows from (1.15), (1.19) and (1.20) and is depicted

in Fig. 1.1 for Gaussian noise anddistancesA;, A, having amplitude as large @& Some-

what surprisingly, both approaches yield very similar bounds with the one relying on dependent

binary observations being slightly better in the achievable variance; or correspondingly, in requiring

a smaller number of sensors to achieve the same CRLB.

1.3 Unknown noise pdf

In certain applications it may not be reasonable to assume knowledge about the ngigéuypdf
These cases requirdnparametri@pproaches as the one pursued in this section.

We assume that,,(w) has zero mean so thatin (1.1) is identifiable. Lep,(z) and F.(z)
denote the pdf and CCDF of the observatiefis). As s is the mean of(n), we can write

o] o) 1
s:= /+ xpy(z) doe = — /+ xaFw(x) dx = / F () dv, (1.22)
0

oo o Ox

where in establishing the second equality we used the fact that the pdf is the negative derivative of
the CCDF, and in the last equality we introduced the change of variable#, (). But note that

the integral of the inverse CCDF can be written in terms of the integral of the CCDF as (see also
Fig. 1.3)

0 “+o0
s= 7/ [1— F,(u)] du Jr/ F,(u) du, (1.22)
—00 0

allowing one to express the mearof x(n) in terms of its CCDF. To avoid carrying out integrals
with infinite range, let us assume thatn) € (—7T,T) which is always practically satisfied far
sufficiently large, so that we can rewrite (1.22) as

s = /_i Fo(u)du — T. (1.23)

Numerical evaluation of the integral in (1.23) can be performed using a number of known tech-
niques. Let us consider an ordered set of interior pdint$:<_, along with end-points, = —7 and

Trk+1 = T'. Relying on the fact thak, (7o) = F.(—T) =1 andF,(tx+1) = F,.(T) = 0, applica-

tion of the trapezoidal rule for numerical integration yields (see also Fig. 1.3)

K

s=3 ;(TM — o1 Fo(mi) — T + eq, (1.24)
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with e, denoting the approximation error. Certainly, other methods like Simpson’s rule, or the
broader class of Newton-Cotes formulas, can be used to further reguce

Whichever the choice, the key is that binary observations constructed from the egien
(1%, 00) have Bernoulli parameters

qr = Pr{z(n) > 7} = Fp(7%). (1.25)

Inserting the nonparametric estimatd?g(fk) = §i in (1.24), our parameter estimator when the
noise pdf is unknown takes the form:

K
! .
s=35 ;qk(fkﬂ —7p_1) — T. (1.26)

Sincegy’s are unbiased, (1.24) and (1.26) imply th&t) = s + e,. Being biased, the proper per-
formance indicator fog in (1.26) is the mean squared error (MSE), not the variance.

Maintaining the bandwidth constraint dtit per sensor (i.e i = 1), we divide theN sensors
in K subgroups containingy/ K sensors each, and define the regions

Bi(n) := By, = (14,00), n=(k—1)(N/K),...,k(N/K) — 1; (1.27)

Region By (n) will be used by senson to construct and transmit the binary observatigfrn).
Herein, the unbiased estimatorsggfare

1 k(N/K)—1

@FW > bhn), k=1,...K, (1.28)
n=(k—1)(N/K)

and are used in (1.26) to estimatdt is easy to verify thatar(g,) = ¢x(1 — qx)/(N/K), and that
dr, andgy, are independent fat; # ko.
The resultant MSEE|[(s — 8)2], can be bounded as follows (Ribeiro and Giannakis 2006b).

Proposition 1.3.1 Considers given by(1.26) with g, as in(1.28) Assume that fofl” sufficiently
large and knowm,,(z) = 0, for |z| > T, the noise pdf has bounded derivatiyg(u) := Op,, (w)/Ow;
and defineryay := maxp {71 — 7%} ANAPrax = max, 7,1y {Pw(u)}. The MSE is given by

E[(s — 5)%] = |ea|* + var(8), (1.29)

with the approximation erroe, andvar($), satisfying

T .max
|€<l| S p6 Triax’ (130)
K 2
e 1—
(Tk+1 Tk 1) Qk( qx) (1.31)

var(§) = Z
k

‘ 4 N/K

with {75 }X_, a grid of thresholds i{—7, T") and {gx } ¥, as in(1.25)

Note from (1.31) that the larger contributionsster($) occur wheng, =~ 1/2, since this value
maximizes the coefficientg, (1 — gx); for a symmetric noise pdf, this happens when the thresholds
satisfyr, =~ s [c.f. (1.25)]. Thus, as with the case where the noise pdf is known, wibehongs to
an a priori known intervasy, s3], this knowledge must be exploited in selecting thresholds around
the likeliest values of.



DISTRIBUTED ESTIMATION UNDER BANDWIDTH AND ENERGY CONSTRAINTS 9

On the other hand, note that ther(3) term in (1.29) will dominatée, |? becauseée,|? < 7,
as per (1.30). To clarify this point, consider an equispaced grid of thresholdswith- 7, = 7 =
Tmax, Vk, such that,.x = 27/(K + 1) < 2T'/K. Using the (loose) boung, (1 — gx) < 1/4, the
MSE is bounded by [c.f. (1.29) - (1.31)]
AT P, T°

0KA + N (1.32)

The bound in (1.32) is minimized by selectihg= N, which amounts to havingach sensor use a
different regionto construct its binary observation. In this cdsg|? o« N~ and its effect becomes
practically negligible. Moreover, most pdfs have relatively small derivatives; e.g., for the Gaussian
pdf we havep,,., = (2rea*)~1/2. The integration error can be further reduced by resorting to a
more powerful numerical integration method, although its difference with respect to the trapezoidal
rule will not have noticeable impact in practice.

SinceK = N, the selectiony 1 — 7, = 7, Vk, yields

E[(s — §)?] <

N-1 9 N-1
5 = T;bl(n)—T =T M;bl(n)—ll, (1.33)

thatdoes not require knowledge of the threshedgd to construct the binary observations at the FC

of a WSN. This feature allows each sensor to randomly select its threshold without using values

pre-assigned by the FC; see also (Luo 2005a) for related random quantization algorithms which also
yielded universal(in the noise variance) parameter estimators based on severely quantized WSN

data.

Remark 1 While 2 oc T seems to dominatear(8) o 7% in (1.32), this is not true for the oper-
ational low-to-medium Q-SNR range for distributed estimators based on binary observations. This
is because the suppdf’ over which F.(x) in (1.23) is non-zero depends enand the dynamic
range|S; — S| of the parametes. And as the Q-SNR decreasédx o. But SinCe&pyax x 02,

e2 oc o2 /N* which is negligible when compared to the tevar(3) o< o?/N.

Apart from providing useful bounds on the finite-sample performance, egs. (1.30), (1.31), and (1.32)
establish asymptotic optimality of thieestimators in (1.26) and (1.33) as summarized in the fol-
lowing:

Corollary 1.3.2 Under the assumptions of Propositions 1.3.1 and the conditions;.i) oc K~ !;
and i) T2 /N, T /K* — 0 asT, K, N — oo, the estimators in (1.26)and(1.33)are asymptoti-
cally (asK, N — oo) unbiased and consistent in the mean-square sense.

The estimators in (1.26) and (1.33) are consistent even if the support of thelfi&anfinite, as
long as we guarantee a proper rate of convergence relative to the number of sensors and thresholds.

Remark 2 To compare the estimators in (1.5) and (1.33), considerstkatS, Ss] = [0, o], and

that the noise is Gaussian with variancg yielding a Q-SNRy = 4. No estimator can have vari-

ance smaller thamar(z) = o2/N; however, for the (mediumy = 4 Q-SNR value they can come
close. For the known pdf estimator in (1.5), the varianceis) ~ 202 /N. The unknown pdf esti-

mator in (1.33) requires an assumption about the essentially non-zero support of the Gaussian pdf.
If we suppose that the noise pdf is non-zero owelo, 20], the corresponding variance becomes
var(8) ~ 902 /N. The penalties due to the transmission of a single bit per sensor with respect to
Z are approximatel and9. While the increasing penalty is expected as the uncertainty about the
noise pdf increases, the relatively small loss is rather unexpected.



10 DISTRIBUTED ESTIMATION UNDER BANDWIDTH AND ENERGY CONSTRAINTS

Empirical and theoretical variance for first component of v

- empirical (gaussian noise)
x  empirical (uniform noise)
— variance bound

variance

number of sensors

Figure 1.4 The variance of the estimators in (1.5) and (1.33) are close to the sample mean estimator vafiarce (
Ew?(n)] =1,T =3,s € [-1,1]).

Fig. 1.4 depicts theoretical bounds and simulated variances for the estimators (1.5) and (1.33) for
an example Q-SNR = 4. The sample mean estimator varianeg;(7) = 02/N, is also depicted
for comparison purposes. The simulations corroborate the implications of Remark 3, reinforcing the
assertion that for low to medium Q-SNR problems quantization to a single bit per observation leads
to minimal losses in variance performance. Note that for this particular example, the unknown pdf
variance bound, (1.32), overestimates the variance by a factor of roughigr the uniform case
and roughly2.6 for the Gaussian case.

1.3.1 Lower bound on the MSE

In Section 1.2 we derived the CRLB offering the fundameldaler bound on the achievable vari-
ance and the MLE that approaches this bound/aacreases. In contrast, (1.32) is apperbound
on the MSE of the estimator in (1.33). The counterpart of the CRLB for estimation based on binary
observations when the pdf is unknown is a lower bound in the MSE achievable by any estimator.
To obtain this bound we start from the CRLB when the noise pdf is known that we introduced
in (1.6). We then maximize this CRLB with respect to the noise pdf and the local quantization rules
to obtain a lower bound on the MSE performance of any estimator when the pdf is unknown. The
result is summarized in the following proposition (Xiabal. 2005a).

Proposition 1.3.3 Consider the signal model ifi.1), 2(n) observations belonging to the interval
(=T,T);i.e.,xz(n) € [-T,T); and let each sensor communicate one binary observatiohas per

(1.2). Then, for any estimatof of s relying on{b(n)}.'_' there exists a noise pdf such that
T2
_38)2 >
El(s =87 2 1% (1.34)

Proposition 1.3.3 implies that no estimator based on quantizated samples down to a single bit
per sensor can attain an MSE smaller tH&y4N. Comparing (1.32) with (1.34) we deduce that
the estimator in (1.33) is optimal up to a constant factor of 4.



% By (n)
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| | B,(n)
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Figure 1.5(Left): The vector of binary observatiohstakes on the valugy: , y2 } if and only if z(n) belongs to the region
By, 40} (Right): Selecting the regionBy, (n) perpendicular to the covariance matrix eigenvectors results in independent
binary observations.

1.4 Estimation of Vector Parameters

Consider now the case of a physical phenomenon characterized by a patrafmeters that we lump
in to the vectoss := [s1,...,s,]”. As before, we wish to find, by deploying a WSN composed of
N sensorg S, }) -, with each sensor observisghrough a linear transformation

x(n) = Hys + w(n), (1.35)

wherex(n) := [z1(n),...,zx(n)]T € RM is the measurement vector at senSprw(n) € RM
is zero-mean additive noise with pgf, (w) and the matricesl,, € RM*F.

As in (1.2), we define the binary observatity(n) as the indicator function af(n) belonging
to the regionBy(n) C RM:

br(n) = 1{x(n) € Bx(n)}, ke[l,K], (1.36)

We then define the per sensor vector of binary observaton$ := [b1(n), ..., bk (n)]*, and note
that since its entries are binary, realizatignsf b(n) belong to the set

B:={B8cRE |8 €{0,1}, ke [l,K]}, (1.37)

where[3];, denotes thé*" component of3. With each3 € B and each sensor we now associate
the region

Bg(n) := () Be(n) () Bi(n), (1.38)
(Blx=1 [Blx=0

whereBy,(n) denotes the set-complement®jf(n) in R . Note that the definition in (1.38) implies
thatz(n) € Bg(n) if and only if b(n) = 3; see also Fig. 1.5 (Left) for an illustration R? (M =
2). The corresponding probabilities are

gg(n) :==Pr{b(n) = 8} = /B pwlu — H,s| du. (1.39)

Using definitions (1.39) and (1.37), we can write the pertinent log-likelihood function as

N—-1
L(s)= Y Y &(b(n) — B)Ingg(n), (1.40)

n=0 ,BEB
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and the MLE ofs as
§ = argmax L(s) . (1.41)

The nonlinear search needed to obtagould be challenging. Fortunately, as the following proposi-
tion asserts, under certain conditions that are usually met in praffisgis concave which implies

that computationally efficient search algorithms can be invoked to find its global maximum (Ribeiro
and Giannakis 2006b).

Proposition 1.4.1 If the MLE problem in(1.41)satisfies the conditions:

[c1] The noise pdp. (w) is log-concave (Boyd and Vandenberghe 2004, p.104)
[c2] The regionsBy(n) are chosen as half-spaces.

thenL(s) in (1.40)is a concave function af

Note that [c1] is satisfied by common noise pdfs, including the multivariate Gaussian (Boyd and
Vandenberghe 2004, p.104). On the other hand, [c2] places a constraint in the regions defining the
binary observations, which is simply up to the designer’s choice. The merits of having a concave
log-likelihood function are summarized in the following remark.

Remark 3 The numerical search needed to obtaicould be challenged either by the multimodal
nature of L(s) or by numerical ill-conditioning caused by e.g., saddle points. But when the log-
concavity conditions in Proposition 1.4.1 are satisfied, computationally efficient search algorithms
like e.g., Newton’s method are guaranteed to converge to the global maximum (Boyd and Vanden-
berghe 2004, Chap. 2).

1.4.1 Colored Gaussian Noise

Analyzing the performance of the MLE in (1.41) is only possible asymptoticallyMas SNR go
to infinity). Notwithstanding, when the noise is Gaussian, simplifications render variance analysis
tractable and lead to interesting guidelines for constructing the estigator

Restrictp,, (w) to the class of multivariate Gaussian pdfs, and}ét) denote the noise covari-
ance matrix at senser. Assume tha{ C(n) }2 - ! are known and lef(e,,(n), 02,(n))}*_, be the
set of eigenvectors and associated eigenvalues

M
C(n) =Y on.(nen(n)ef,(n). (1.42)

m=1

For each sensor, we define a sefdf= M regionsBy(n) as half-spaces whose borders are hyper-
planes perpendicular to the covariance matrix eigenvectors; i.e.,

Bi(n)={xeRM | el (n)x > n(n)}, k=1,...,K =M, (1.43)

Fig (1.5) (Right) depicts the regioris (n) in (1.43) forM = 2. Note that since each entry &fn)
offers a distinct scalar observation, the selecfior= M amounts to a bandwidth constraintiobit
per sensor per dimension

The rationale behind this selection of regions is that the resultant binary obseniatiohsire
independent, meaning thBt{b, ()b, (n)} = Pr{bk, (n)} Pr{bk,(n)} for ki # ko. As a result,
we have a total o/ N independent binary observations to estinsate
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Herein, the Bernoulli parameteggs(n) take on a particularly simple form in terms of the Gaus-
sian tail function

qr(n) = /pw(u—HnS)du=Q

ef (n)u>7(n)

(T;€ (n) — el (n)H,s
ox(n)

) =) @4

where we introduced the-distancebetweerk,, s and the corresponding threshadlg (n) := [ (n)
—el (n)H,s|/ok(n).

Due to the independence among binary observations we p@ve:)) = HkK:I [qk(n)]bk(n)
[1 — qr(n)]*~t*(™) leading to

N-1 K

= 3> bi(n)Ingi(n) + [1 — b (n)] In[1 — gx(n)], (1.45)

n=0 k=1

whoseN K independensummands replace thé2* dependenterms in (1.40).

Since the region®,(n) are half-spaces, Proposition 1.4.1 applies to the maximization of (1.45)
and guarantees that the numerical search foétestimator in (1.45) is well-conditioned and will
converge to the global maximum. More important, it will turn out that these regions render finite
sample performance analysis of the MLE in (1.41), tractable. In particular, it is possible to derive
a closed-form expression for the Fisher Information Matrix (FIM) (Kay 1993, p.44), as we outline
next; see (Ribeiro and Giannakis 2006b) for detailed derivations.

Proposition 1.4.2 The FIM, I, for estimatings based on the binary observations obtained from the
regions defined if1.43) is given by

Q(Ak(n)[1 — Q(Ak(n))]

Inspection of (1.46) shows that the variance of the MLE in (1.41) depends on the signal function
containing the parameter of interest (\ii,), the noise structure and power (via the eigenvalues
and eigenvectors), and the selection of the regiBp&:) (via theo-distances). Among these three
factors only the last one is inherent to the bandwidth constraint, the other two being common to the
estimator that is based on the originah) observations.

The last point is clarified if we consider the FIM for estimatings given the unquantized vector
x(n). This matrix can be shown to be ((Ribeiro and Giannakis 2006b, Appendix. D)),

I, — Z H? [Z mgz)?i;)(n)] HT. (1.47)

m=1 m

N-1 K —A2 r(n)e (TI) T(n)
1= H? k H,. 1.4
DL P ‘ (149

If we define the equivalent noise powers as

2rQ(Ak(n))[1 — Q(Ak(n))] o

2(0) .
pk(n) T e_Ai(”) Uk(”)? (148)
we can rewrite (1.46) in the form
K T
1= Z Y er(meg ()| gyr. (1.49)
1 Pk(n)

which except for the noise powers has form identical to (1.47). Thus, comparison of (1.49) with (1.47)
reveals that from a performance perspective, use of binary observations is equivalent to an
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Figure 1.6 The vector flowv incises over a certain sensor capable of measuring the normal comporent of

increase in the noise varianésm o7 (n) to p7 (n), while the rest of the problem structure remains
unchanged. Since we certainly want the equivalent noise increase to be as small as possible, mini-
mizing (1.48) over\(n) calls for this distance to be set to zero, or equivalently, to select thresholds
7e(n) = el (n)H,s. In this case, the equivalent noise power is

T 2

P (n) = Zot(n). (1.50)

Surprisingly, even in the vector case a judicious selection of the redipfis) can result in a very

small penalty £/2) in terms of the equivalent noise increase. Similar to Section 1.2, we can thus
claim that while requiring the transmission of 1 bit per sensor per dimension, the variance of the
MLE in (1.41), based ofb(n)}., yields a variance close to the clairvoyant estimator’s variance
—which is based ofix(n) }. = — for low-to-medium Q-SNR problems.

Example 1.4.3 Suppose we wish to estimate a vector flow using incidence observations. With refer-
ence to Fig. 1.6, consider the flow vector= (v, v;)”, and a sensor positioned at an anglén)

with respect to a known reference direction. We will rely on a set of so called incidence observations
{z(n)}N=} measuring the component of the flow normal to the corresponding sensor

z(n) := (v,n) + w(n) = vgsin[p(n)] + vy cos[d(n)] + w(n), (1.51)

where(, ) denotes inner producty(n) is zero-mean AWGN, and= 0,1, ..., N — 1 is the sensor
index. The moddlL.51)applies to the measurement of hydraulic fields, pressure variations induced
by wind and radiation from a distant source (Mainwaring et al. 2002).

Estimatingv fits the framework presented in this section requiring the transmission of a single
binary observation per sens@y, (n) = 1{z(n) > 71 (n)}. The FIM in(1.49)is easily found to be

_ N—lL sin®[(n)] sin[¢p(n)] cos[p(n)]
-2 pi(n) ( sin[¢(n)] cos[¢p(n)] cos?[p(n)] ) : (1.52)

Furthermore, sincec(n) in (1.51)is linear in v and the noise pdf is log-concave (Gaussian) the
log-likelihood function is concave as asserted by Proposition 1.4.1.

Suppose that we are able to place the thresholds optimally as implied by = vy sin[¢(n)]
+uv1 cos[@(n)], so thatp? (n) = (m/2)c?. If we also make the reasonable assumption that the angles
are random and uniformly distributed(n) ~ U[—m, «], then the average FIM turns out to be:

I— Wiz( N({Z N% ) (1.53)

n=0
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Empirical and theoretical variance for first component of v
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Figure 1.7 Average variance for the componentswofThe empirical as well as the bound (1.54) are compared with the
analog observations based MLE & (1,1), 0 = 1).

But according to the law of large numbeks= I, and the estimation variance will be approximately

7'('0'2

var(vg) = var(vy) = N~ (1.54)
Fig. 1.7 depicts the bound..54) as well as the simulated variancesr(v,) and var(?;) in com-

parison with the clairvoyant MLE based dm(n) 2[;01, corroborating our analytical expressions.

1.5 Maximum a Posteriori Probability Estimation

The parameter of interestwas so far assumed deterministic. Consequently, the MLE was con-
sidered as the optimum estimator and the CRLB as the ultimate performance limit. An alternative
formulation is to use available a priori knowledge to mada$ a random vector parameter with a pri-
ory pdfps(s), estimates using a maximum a posteriori (MAP) probability estimator, and regard the
MSE as the performance indicator. We will show in this section that despite the different formulation
we can obtain results similar to those described in Section 1.4.

Let us recall the observation model in (1.35), denote the meanasfE(s) := u, and sup-

pose the noise vector is white and GaussianEpw,(n)w’ (n)] = diag[o?(n),...,o2,(n)]. In this
case, we writé,, := [h,1,...,h,]7 and define the (independent) binary observatios) :=
[b1(n),...,bp(n)] @as

bi(n) = Lag(n) > bl .} | (1.55)

for k € [1, M]. The resemblance with the problem of Section 1.4 is clear and not surprisingly the
following proposition holds true (Shet al. 2005).

Proposition 1.5.1 Consider a vector parametes, with log-concave prior distributiors(s),the
model in(1.35)with p,, (w) white Gaussian witlE[w(n)w? (n)] = diag[o?(n),...,o3,(n)]; and
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binary messagegb(n)}2 -} as in(1.55) Then, if we define the per sensor log-likelihdag(s) as

M

_ bie(n) by (s — s})
Ln(s) = ;; InQ ( o) . (1.56)
(a) The MAP estimator of based on{b(n)}" - is given by
N—-1
SMAp = arg max Z L,(s)| + In[ps(s)] := argmax L(s). (1.57)
n=0

(b) The log-likelihoodL(s) is a concave function &f

Proposition 1.5.1 establishes that at least for white Gaussian noise the comments in Remark 3 carry
over to MAP based parameter estimation. In fact, Proposition 1.5.1 has been established under much
more general assumptions, including the case of colored Gaussian noiss éR12905).

1.5.1 Mean-Squared Error

For estimation of random parameters bounds on the MSE can be obtained by computing the pertinent
Fisher Information Matrix (FIM)J that can be expressed as the sum of two parts (Van Trees 1968,
p. 84):

J=Jp+Jp, (1.58)

wherelJ p represents information obtained from the data, dpatapturesa priori information. The
MSE of thei’” component ok is bounded by thé” diagonal element af; i.e.,

MSE(3;) > [J7] (1.59)

Also, note that for any FIM[J~1];; > 1/[J];; (Kay 1993). This property yields a different bound
on MSE(s;) .
MSE(8;) > —— 1.
which is easier to compute although not tight in general.
The following proposition provides a bound (exact value)Bgi when binary (analog-amplitude)
observations are used (Séal. 2005).

Proposition 1.5.2 Consider the signal model in (1.35) with(n) white Gaussian with covariance
matrixE[w(n)w7 (n)] = diag[o?(n), ..., 03,(n)] and Gaussian prior distribution with covariance
E[ss’] = Cs. Write (1.35) componentwise ag(n) = hZ, s + wx(n). Then, the!” diagonal ele-
ment of the FIMJ in (1.58)satisfies:

(a) when binary observations as in (1.55) are used

N—-1 M

2 h2, .
[(J]i = = Z Z nhL +[C3, (1.61)
T =0 k=1 ok (n) \/a,%(n) +hl, Csh,y,

(b) when analog-amplitude observations are used

Tevli=> > hj‘(’;) + [, (1.62)
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Comparing (1.61) with (1.62) the analogy with the result in Proposition 1.4.2 becomes clear. Indeed,
we can define the equivalent noise powers as

2 T o hl, Csh,,
=— 14 e = 1.63
Pk (n) 9 Ow + 0_]% (’I’L) ( )
so that we can express the bound in (1.61) as
N—-1 M h2 ‘
Jevl, = Tl [ I (1.64)

As in the case of deterministic parameters, the effect of quantization in MSE is equivalent to a
noise power increase fron¥ (n) to pZ(n) [c.f. (1.62) and (1.64)]. In the case of random signals,
the average SNR of the observatiangn) is well defined and given by,,;, := h?, Csh,,; /o2 (n).

Using the latter and (1.64), we infer that the equivalent noise increase is

Li(n) = ”E(”) = /T + von. (1.65)

op(n) 2

Note that asy,, — 0, the information losC,(n) — 7/2 corroborating the results in Section 1.4
for deterministic parameter estimation. In any event, it is worth re-iterating the remarkable fact that
for low to medium SNRy, the equivalent noise increagg is small.

1.6 Dimensionality Reduction for Distributed Estimation

In this section, we consider linear distributed estimation of random signals when the sensors observe
and transmit analog-amplitude data. Consider the WSN depicted in Fig. 1.8, comp¥isiegsors

linked with an FC. Each sensor, say thih one, observes aif,, x 1 vectorx,, that is correlated

with a p x 1 random signal of interest. Through ak,, x M, fat matrix C,,, each sensor trans-

mits a compressed, x 1 vectorC,,x,, using e.g., multicarrier modulation with one entry riding

per subcarrier. Low-power and bandwidth constraints at the sensors encourage transmissions with
kn, < M, while linearity in compression and estimation are well motivated by low-complexity
requirements. Furthermore, we assume that:

(al) No information is exchanged among sensors, and each sensor-FC link comptjseska
full rank fading multiplicative channel matrilo,, along with zero-mean additive FC noise
z,,, which is uncorrelated witk,,, D,,, and across channels; i.e., noise covariance matrices
satisfyX = 0 for ny # no. Matrices{D,,, 3. .. nN;01 are available at the FC.

Znq Zng

(a2) Datax,, and the signal of interestare zero-mean with full rank auto- and cross-covariance
matricesX s, 3s,, andX Y ni,ne € [0, N — 1], all of which are available at the FC.

Ty Trg

In multicarrier links, full rank of the channel matricé®,,}"_' is ensured if sensors do not
transmit over subcarriers with zero channel gain. Matri{dbg}nNz_Ol can be acquired via training,
and likewise the signal and noise covariances in (al) and (a2) can be estimated via sample averaging
as usual. With multicarrier (and generally any orthogonal) sensor access, the noise uncorrelatedness
across channels is also well justified. Notice that unlike (Gastpal: 2004; Luoet al. 2005; Zhang
et al. 2003; Zhuet al. 2005), we neither confine ourselves to a linear signal-plus-noise mqdel
H,s + w,,, nor we invoke any assumption on the distribution (e.g., Gaussianity,of"—; and
s. Equally important, we do not assume ideal channel links.
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Figure 1.8 Distributed setup for estimating a random sigsal

Sensors transmit over orthogonal channels so that the FC separates and concatenates the received
vectors{y,(C,) = D,,C,x, + 2, } =, to obtain they" """ k,, x1 vector

y((jo7 ceey CN—l) = dianOCO’ R 7DN—1CN—1)X + z, (166)

Left multiplying y by ap x (ZnNz_ol k,) matrix B, we form the linear estimate of s. For a
prescribed powelP, per sensor, our problem is to obtain under (al)-(a2) MSE optimal matrices
{C? ,1:/:‘01 andB?; i.e., we seek (tr denotes matrix trace)

(B%, {Co 1)) = argming ¢y Ellls = By(Co, .. Cn-)|I),

s.to MC,%,,.,CY<P,, ne{0,...,N—1}. (1.67)

1.6.1 Decoupled Distributed Estimation-Compression

We consider first the case whéie. ., = 0, Vn # m, which shows up e.g., when matricgd,, } !
in the linear modek,, = H,;s + w,, are mutually uncorrelated and also uncorrelated with
Then, the multi-sensor optimization task in (1.67) reduces to a Sétde#coupled problems. Specif-
ically, it is easy to show that the cost function in (1.67) can be written as (Sahizds2005b)

J(B, {Cn}yj:fgol) = ZN_I Ellls = Bn(DyCrxy + Zn)||2] — (N = Dtr(Zs5) (1.68)

n=0
whereB,, is the p x k,, submatrix of B := [By...By_1]. As thenth non-negative summand
depends only oi8,, andC,,, the MSE optimal matrices are given by
(B;,C;) =argming, c, E[lls — Bn(D,Cpnx, + Zn)||2]7
s.to (C,X%,, . C<P, ne{0,...,N—1}. (1.69)
Since the cost function in (1.69) corresponds to a single-sensor s¥tup1(), we will drop the

subscriptn for notational brevity and writ®8,, = B, C,, = C,x,, = x,z, = z, P, = P andk,, =
k. The Lagrangian for minimizing (1.68) can be easily written as:

J(B,C,u) = J, +tr(BX,.BT) + uftr(Cx,,CT) — P
+tr[(Bs, — BDCX,,) 3, (Zs — .. CTDTBT)), (1.70)

whereJ, :=tr(X,, — ., X, X,,) is the minimum attainable MMSE for linear estimationsof
based orx.

In what follows, we derive a simplified form of (1.70) the minimization of which will provide
closed-form solutions for the MSE optimal matrid@8 andC°. Aiming at this simplification, con-
sider the SVIE,, = U,,S., VL , and the eigen-decompositiols. = Q.A.Q! andD”X_'D
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= QZdAZszdl whereA .4 := diag()\sz e /\zd,k) and/\sz > o> Ak > 0. Notice that)\zd,i
captures the SNR of th&h entry in the received signal vector at the FC. Further, define-
QIV,,ST S,, VL Q, with p, := rank A) = rankZ,, ), andA, := A; /2 AA; */? with corre-
sponding eigen-decompositid, = Q. Az Qqz, WhereA,, = diagMaz,1, - Aaz,pas 0, -+, 0)
andAas1 > ... > Aas, > 0. Moreover, leV, := A '/>Q,, denote the invertible matrix which
simultaneously diagonalizes the matrideandA .. Since matrices@.4, Qu, Va, Usz, Asa, Qq,
D, X, ,) are all invertible, for every matriC (or B) we can clearly find a unique matr& (cor-
respondingly® ) that satisfies:

C=Q.®:VIQl, B=U,®3A_;QL,D'S (1.71)
where® ¢ := [¢. ;] and® g have sizeg x M andp x k, respectively. Using (1.71), the Lagrangian
in (1.70) becomes

J(@c 1) = Jo+tr(Age) + ptr(@c®E) — P) (1.72)
—tr (A} + ®c®L) 1 @cA,,BL).

Applying the well known Karush-Kuhn-Tucker (KKT) conditions (e.g., (Boyd and Vandenberghe
2004, Ch. 5)) that must be satisfied at the minimum of (1.72), it can be shown that the @@trix
minimizing (1.72), is diagonal with diagonal entries (Schietal. 2005b)

)\a,:c,i 1/2 1 .
g_]ii = + (H")\zd,i) T X! l<i<k (2.73)
0, k+1<i<k

wherex is the maximum integer ifil, k] for which {¢2 ,,}/_, are strictly positive, or, rar(kb.)

c,it

= k; andp® is chosen to satisfy the power constraiif_, (¢2,;)* = P as

o _ (Zle(Aaw»i/\z_dl,i)l/z)z
(P+3 A0)?

Whenk > p,, the MMSE remains invariant (Schizas$ al. 2005b); thus, it suffices to consider
k € [1, po). Summarizing, it has been established that:

(1.74)

Proposition 1.6.1 Under (al), (a2), and fok < p,, the matrices minimizing (B, Cxxnm) =
E[HS — Bpxk(DCkX]V[X + Z)H2], SUbjeCt to thkxMi)m C%XM) < P, are:

C’ = QP Va Qs (1.75)
1
B’ = 3,,Q,V,®:" (960" + A7) ALQLDTE

where®?, is given by (1.73), and the corresponding Lagrange multigliers specified by (1.74).
The MMSE is

J (k’) — ]+ pZaA i )\ax,i(qb(c),ii)Q (1 76)
i=1 l' i=1 >‘z_dl,z‘ + (¢gzz)2 .

According to Proposition 1.6.1, the optimal weight matiig, in C° distributes the given power
across the entries of the pre-whitened veddiQ, x at the sensor in a waterfilling-like manner so as
to balance channel strength and additive noise variance at the FC with the degree of dimensionality
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reduction that can be afforded. It is worth mentioning that (1.73) dictates a minimum power per
sensor. Specifically, in order to ensure that (@) = « the power must satisfy

Ziﬁzl()‘awﬂ)‘;dl,i)lm - 3L
\V4 A(LJ,HAZd,H - ; =it

The optimal matrices in Proposition 1.6.1 can be viewed as implementing a two-step scheme, where:
i) s is estimated based onat the sensor using the LMMSE estiméjg,; = 3., 3.l x; and

i) compress and reconstrugt ,, using the optimal matrice€° and B° implied by Proposition

1.6.1 after replacing with §y,,. For this estimate-first compress-afterwards (EC) interpretation,
(Schizaset al. 2005b) have proved that:

P> (1.77)

Corollary 1.6.2 For k € [1, p,], thek x M matrix in (1.75) can be written a€° = C°Z,, 3.1,

whereC? is thek x p optimal matrix obtained by Proposition 1.6.1 when= §;,,;. Thus, the EC
scheme is MSE optimal in the sense of minimizing (1.68).

Another interesting feature of the EC scheme implied by Proposition 1.6.1 is that the MMSE
Jmin (k) is non-increasing with respect to the reduced dimensionaliven a limited power budget
per sensor. Specifically, (Schizesal. 2005b) have shown that that:

Corollary 1.6.3 If C7,_, ,, andC¢, ,, are the optimal matrices determined by Proposition 1.6.1
with k; < ks, under the same channel parametecg ; for i =1,...,k;, and common powepP,
the MMSE in (1.76) is non-increasing; i.&min (k1) > Jmin(k2) for ky < ko.

Notice that Corollary 1.6.3 advocates the efficient power allocation that the EC scheme performs
among the compressed components. To assess the difference in handling noise effects, it is useful
compare the EC scheme with the methods in (2hwl. 2005) and (Zhanget al. 2003), which
we abbreviate as’€ and C'E because they perform compression (C) followed by estimation (E).
Although CE and C'E have been derived under ideal link conditions, they can be modified them
here to account foD,,. The comparisons will further include an option we term CE, which com-
presses first the data and reconstructs them at the FC GSiagdB® found by (1.75) after setting
s = x, and then estimatesbased on the reconstructed data ve&toFor benchmarking purposes,
we also depict/,, achieved when estimatirgbased on uncompressed data transmitted over ideal
links. Fig. 1.9 (Left) depicts the MMSE versusfor .J,, EC, CE, CE and CE for a linear model
x = Hs + w, whereM = 50 andp = 10. The matriceH, 3., andX,,,,, are selected randomly
such that tHX,,HT) /tr(Z,,.,) = 2, while s andw are uncorrelated. We s&t,, = 21}, and
selectP such thatl0log,,(P/c?) = 7dB. As expected/, benchmarks all curves, while the worst
performance is exhibited by E. Albeit suboptimal, CE comes close to the optimal EC. Contrasting
it with the increase CE exhibits in MMSE beyond a certain) we can appreciate the importance of
coping with noise effects. This increase is justifiable since each entry of the compressed d&a in C
is allocated a smaller portion of the given powerkagows. In EC however, the quality of channel
links and the available power determine the number of the compressed components, and allocate
power optimally among them.

1.6.2 Coupled Distributed Estimation-Compression

In this section, we allow the sensor observations to be correlated. BeEause no longer block
diagonal, decoupling of the multi-sensor optimization problem cannot be effected in this case. The
pertinent MSE cost is [c.f. (1.67)]

J({Bn,Cy, 7];[:_01) = E[lls — ZN71 B,.(D,Cpx, + Zn)”Q} (1.78)

n=0
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Minimizing (1.78) does not lead to a closed-form solution and incurs complexity that grows expo-
nentially with V (Luo et al.2005). For this reason, we resort to iterative alternatives which converge
atleast to a stationary point of the costin (1.78). To this end, let us suppose temporarily that matrices
B}, #n and{C;};%, i1+ are fixed and satisfy the power constraint€y,.,, C{") = P,, for
1=0,...,N —1andl # n. Upon defining the vectar,, :=s — Zl]\ig,l#n(Blechz + B;z;) the

costin (1.78) becomes

J(B,,C,) = E[||5, — B,D,,C.x,, — Bpz,|*] , (1.79)

which being a function o€C,, andB,, only, falls under the realm of Proposition 1.6.1. This means
that when{B;},\, O#n and {Cl}f\;}#n are given, the matriceB,, and C,, minimizing (1.79)
under the power constrain{ @, %, ., C}) < P, can be directly obtained from (1.75), after setting
S = 8p, X = Xp, Z = Z, andp, = rank(X;, ., ) in Proposition 1.6.1. The corresponding auto- and
cross- covariance matrices needed must also be modified.as X5, 5, andX,, = X5 .. .The

SnSn

following result can thus be established for coupled sensor observations:

Proposition 1.6.41f (al) and (a2) are satisfied, antl, < rank(X;, .. ), then for given matrices
B}, l;ﬁn and {Cl}{\;&ll#n satisfying t(C,X,,,,C] ) = P, the optimalB? and C¢ matrices
minimizingE[||s — 3" B:(D;Cix; + 2)||?] are provided by Proposition 1.6.1, after setting=
X, 8 = §, and applying the corresponding covariance modifications.

Proposition 1.6.4 suggests Algorithm 1 for distributed estimation in the presence of fading and
FC noise. Notice that Algorithm 1 belongs to the class of block coordinate descent iterative schemes.

Algorithm 1 :

Initialize randomly the matrice6C'”}¥~! and {B{”1V~!, such that tC"'s, , C") =
P,.
1=0
repeat
i =141
for n =0,N —1do . ‘
Given the matrices|”, B, ..., ¢! |
mineC§f>,B§f) via Proposition 1.6.1
end for
until [MSE®) — MSE(~V| < ¢ for given tolerance

B ¢V BUTD L el BT deter-

At every step: during theith iteration, it yields the optimal pair of matric€¥ , B, treating the rest
as given. Thus, the MSE cost per iteration is non-increasing and the algorithm always converges
to a stationary point of (1.78). Beyond its applicability to possibly non-Gaussian and nonlinear data
models, it is the only available algorithm for handling fading channels and generally colored FC
noise effects in distributed estimation.

Next, we illustrate through a numerical example the MMSE performance of Algorithm 1 in a
3-sensor setup using the same linear model as in Section 1.6.1, while gettirgM, = 17 and
My = 16. FC noisez,, is white with varlancer2 The powerP,, and vanancear2 are chosen such
that10log,,(P/02 ) = 13dB, forn = 0, 1,2, ande = 103 . Fig. 1.9 (Right) deplcts the MMSE as
a function of the total numbé,,; = Zn:O k,, of compressed entries across sensors for: i) a central-
ized EC setup for which a single (virtual) sensdr € 1) has available the data vectors of all three
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Figure 1.9 MMSE comparisons versusfor a centralized[. = 1 (Left), and a distributed 3-sensor setup (Right).

sensors; ii) the estimator returned by Algorithm 1; iii) the decoupled EC estimator which ignores
sensor correlations; iv) the’E estimator and v) an iterative estimator developed in (Schizak
2005b), denoted here as EC-d, which similar t& @ccounts for fading but ignores noise. Interest-
ingly, the decentralized Algorithm 1 comes very close to the hypothetical single-sensor bound of the
centralized EC estimator, while outperforming the decoupled EC one.

1.7 Distortion-Rate Analysis

In contrast to the previous section, here we consider digital-amplitude data transmission (bits) from
the sensors to the FC. In such a setup, all the sensors must adhere to a rate constraint. In order to
determine the minimum possible distortion (MSE) between the signal of interest and its estimate at
the FC, under encoding rate constraints, we perform Distortion-Rate (D-R) analysis and determine
bounds for the D-R function.

Fig. 1.10 (Left) depicts a WSN comprising sensors that communicate with an FC. Each sen-
sor, say thenth, observes aff,, x 1 vectorx,,(¢) which is correlated with @ x 1 random signal
(parameter vector) of interes{t), wheret denotes discrete time. Similar to (Oohama 1998; Pandya
et al. 2004; Viswanathan and Berger 1997), we assume that:

(a3) No information is exchanged among sensors and the links with the FC are noise-free.

(a4) The random vectas(t) is generated by a stationary Gaussian vector memoryless source with
s(t) ~ N (0, 2,,); the sensor datgx,, (t) }) - adhere to the linear-Gaussian mogg(t) =
H,s(t) + w,(t), wherew, (¢) denotes additive white Gaussian noise (AWGN); kg, (1) ~
N (0,021); noisew,,(t) is uncorrelated across sensors, time and wjtandH,, as well as
(cross-) covariance matric@s,,, X, andX, ., are knownv n,m € {0,...,N —1}.

Notice that (a3) assumes that sufficiently strong channel codes are used; while whitewg$s) of

and the zero-mean assumptions in (a4) are made without loss of generality. The linear model in (a4)
is commonly encountered in estimation and in a number of cases it even accurately approximates
non-linear mappings; e.g., via a first-order Taylor expansion in target tracking applications. Although
confining ourselves to Gaussian vectsrgt) is of interest on its own, it can be shown, similarly

to (Berger 1971, p. 134), that the D-R functions obtained for Gaussian data bound from above their
counterparts for non-Gaussian sensor datgd).
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Figure 1.10(Left): Distributed setup.; (Right): Test channel foGaussian in a point-to-point link.

Blocksx\" := {x,(t)}L_,, comprisingL consecutive time instantiations of the vectoy(),
are encoded per sensor to yield each encoder’s ouéﬁ&t: fT(LL) (xElL)), n=20,...,N —1. These
outputs are communicated through ideal orthogonal channels to the FC. fiﬂémare decoded to
obtain an estimate af?) := {s(t)}%_, denoted as'”) (u{", ..., ul¥ ) =X =", ... x¥ ),
sinceu%L) is a function ofxﬁf). The rate constraint is imposed through a bound on the cardinality of
the range of the sensor encoding functions, i.e., the cardinality of the raﬂﬁ‘é afust be no greater
than2L%~ whereR,, is the available rate at the encoder of ttih sensor. The sum rate satisfies the
constraintznj\:o1 R, < R,whereR is the total available rate shared by tNesensors. This setup is
precisely the vector Gaussian CEO problem in its most general form without any restrictions in the
number of observations and the number of parameters (Betrge996). Under this rate constraint,
we want to determine the minimum possible MSE distortioAiL) Zle E|||s(t) — 8gr(t)|?] for
estimatings in the limit of infinite block-lengthL. When N = 1, a single-letter information the-
oretic characterization is known for the latter, but no simplification is known for the distributed
multi-sensor scenario.

1.7.1 Distortion-Rate for Centralized Estimation

Let us first specify the D-R function for estimatis) in a single-sensosetup. The single-letter
characterization of the D-R function in this setup allow us to drop the time index. Hefe, 3t} ;'

:= x are available to a single sensor, and= Hs + w. We letp := rankH) denote the rank of
matrix H. The D-R function in such a scenario provides a lower (non-achievable) bound on the
MMSE that can be achieved in a multi-sensor distributed setup, wherexgaishobserved by a
different sensor. Existing works treat the cdge= p (Sakrison 1968; Wolf and Ziv 1970), but here

we look for the D-R function regardless 81, p, in the linear-Gaussian model framework.

D-R Analysis for Reconstruction

The D-R function for encoding a vectear, with pdf p(x), using rateR at an individual sensor, and
reconstructing it (in the MMSE sense)&st the FC, is given by (Cover and Thomas 1991, p. 342):

D.(R) = I(m‘n) Eyzxollx — %[, s.tol(x;x) <R (1.80)
p(x|x

wherex € RM andx € RM, and the minimization is w.r.t. the conditional pafk|x). Let ¥, =
Q.A. QT denote the eigenvalue decomposition®f,, where A, = diag(A, 1+ Az ) and
)\33,1 >z )\a:,]VI > 0.

For x GaussianD,.(R) can be determined by applying rwf to the pre-whitened vegtpr=
QZTx (Cover and Thomas 1991, p. 348). For a prescribed Raté turns out thatd £ such that
the firstk entries{x,,(i)}%_; of x,, are encoded and reconstructed independently from each other
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1/k
using rate{ R; = 0.5log, (A,.:/d(k, R))}*_,, whered(k, R) = (1‘[521 )\m) 9=2R/k with R =

S | Ry; and the lastM — k entries ofx,, are assigned no rate; i.€.R; = 0}, ., The cor-
responding MMSE for encoding,, (i), theith entry ofx,,, under a rate constraik;, is D; =
El||xw (i) — %4 (9)||?] = d(k, R) wheni=1,... k; andD; = A\, ; wheni =k +1,..., M. The
resultant MMSE (D-R function) is

Dy (R) = E[lx — %|°] = Ellxw — %ul’] = kd(k, R) + S35, Awie (1.81)

Especially ford(k, R), it follows thatmax({A\; i }12,,,) < d(k, R) < min{Az 1, ..., Az }. INtU-
itively, d(k, R) is a threshold distortion determining which entriexgf are assigned with nonzero
rate. The first entries ofx,, with variance), ; > d(k, R) are encoded with non-zero rate, but the
last M — k ones are discarded in the encoding procedure (are set to zero).

Associated with the rwf principle is the so called test channel; see e.g., (Cover and Thomas 1991,
p. 345). The encoder's MSE optimal outputis= Qikx + ¢, whereQ, 1, is formed by the firsk
columns ofQ,, and¢ models the distortion noise that results due to the rate-constrained encoding
of x. The zero-mean AWGK is uncorrelated withx and its diagonal covariance mat®.. has
entries[X¢¢lii = A\piDi/(Az,i — D;). The part of the test channel that takes as inpahd outputs
X, models the decoder. The reconstructioof x at the decoder output is

X = Qux0ru = Q,10,QL ;x+ Q. 1Ok, (1.82)
where®y, is a diagonal matrix with non-zero entrig®;);; = (A\z; — Di)/Apsi=1,... k.

D-R Analysis for Estimation

The D-R function for estimating a soureegiven observatiorx (where the source and observa-
tion are probabilistically drawn from the joint pgfx, s)) with rate R at an individual sensor, and
reconstructing it (in the MMSE sense) &gt the FC is given by (Berger 1971, p. 79)
Dy(R) = (rpi‘n : Eysnslls —8rl%), s.tol(x;8r) <R (1.83)
pP(SR|X

wheres € RP andsy € R?, and the minimization is w.r.t. the conditional paf§r|x). In order to
achieve the D-R function, one might be tempted to first comptdsg applying rwf at the sensor,
without taking into account the data model relatingith x, and subsequently use the reconstructed
% to form the MMSE conditional expectation estimate = E[s|x] at the FC. An alternative option
would be to first form the MMSE estimate= E|[s|x|, encode the latter using rwf at the sensor,
and after decoding at the FC, obtain the reconstructed estépatBeferring as before the former
option asCompress-EstimatgCE), and to the latter asstimate-Compres&£C), we are interested
in determining which one vyields the smallest MSE under a rate consfRaiAhother interesting
question is whether any of the CE and EC schemes enjoys MMSE optimality (i.e., achieves (1.83)).
With subscriptsce andec corresponding to these two options, let us also define the efyors-
S — Sce ANAS,. := s — S

For CE, we depict in Fig. 1.11 (Top) the test channel for encodinga rwf, followed by
MMSE estimation ofs based onk. Suppose that when applying rwf towith prescribed ratev,
the first k.. components ofk,, are assigned with non-zero rate and the rest are discarded. The
MMSE optimal encoder’s output for encodingis u.. = Q?kcex + ... The covariance matrix
of ¢.. has diagonal entrie€., ¢, Jii = Ae,iD{¢/(Xs,i — D§¢) fori =1,..., ke, whereD§® :=

1/kee
Bl(xu(i) ~ %u(1))%]. SinceDg* = (T[f2y Ani) - 2728/ wheni = 1,... k., and Dy =
Az,i» wheni = k.. +1,..., M, the reconstructefl in CE is [c.f. (1.82)]:

X = Qr,kcﬂ®ceQ£kcex + Qu ke OceCres (1.84)
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Figure 1.11 (Top): Test channel for the CE scheme.; (Bottom): Test channel for the EC scheme.

where[O..];i = (Mg — D) /Agyis fori=1,... ke Lettingx := QIx = [X] 01y (nr—k.)]",
with X, := ©.. QL x4+ O.(,., we have for the MMSE estimatg, = E[s|x]
$ce = E[s|QT%] = E[s|%1] = 2.5, 254 %1, (1.85)

E1&1

sinceQ? is unitary and the lasM — k.. entries ofx are useless for estimatirg It has been
shown in (Schizagt al. 2005a) that the covariance mat®;_ ;.. := E[(s — 8ce)(s — 8ce)T] =
Yo — B, 25k B, 0f 5. is

E1Z1

whereA,. := diag( DA, 7 - DSEAL 3 )

In Fig. 1.11 (Bottom) we depict the test channel for the EC scheme. The MMSE esfimate
Els|x] is followed by the test channel that results when applying rwf to a pre-whitened version of
8, with rate R. Let 33 = Q:A: QY be the eigenvalue decomposition for the covariance matrix of
§, whereA; =diagXs1---Agp) andrg 1 > - -+ > X; .. Suppose now that the firgt. entries of
3. = QTs are assigned with non-zero rate and the rest are discarded. The MSE optimal encoder’s
output is given byu.. = QsTks + (.., and the estimat&. . is

Sec = Qé,kecgecqgkecé + Qﬁ,k’ECGecCecv (187)

whereQ; .. is formed by the firsk,.. columns ofQ;. For thek.. x k.. diagonal matrices..
and Ececcec we have[sec]”» = ()\g’l — ch>/)\§,i and [ECecCec]’ii = )\g’inc/()\gJ — Diec), where

1/kec —
DE¢ = E(30(1) — 8ecw(i))?], e := QT 8,.. Recall also thaDse = (Hff;q )\) 2Fee
wheni = 1,... ke.andD{® = A ;, fori = ke. + 1,..., p. Upon definingA.. := diag(D5¢ - - - D),
the covariance matrix .. is given by (Schizast al. 2005a)

25 See — Ess - 297'2;3}27‘9 + Q%A(’('Qg (188)

F!(?ge

The MMSE associated with CE and EC is given, respectively, by [c.f. (1.86) and (1.88)]

Dee(R) :=tr(Zs,,5,.) = Jo + €ce(R),

Deo(R) :=tr(X5,.5..) = Jo + €cc(R), (1.89)
whereece(R) := tr(E5; Qe Ace QL E15), €ec(R) = tr(Q: A..QT), and the quantity, := tr(Xs; —
Y. 2.13,) is the MMSE achieved when estimatisgbased onx, without source encoding
(R — o0). SinceJ, is common to both EC and CE it is important to compagg¢ R) with e..(R) in

order to determine which estimation scheme achieves the smallest MSE. The following proposition
provides such an asymptotic comparison:
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Proposition 1.7.1 If R > Ry, := 2 max {logy ((TT7_; Az,i) /0%°) . logy (IT0_1 Asii) / (As,n)”)
then it holds that,.(R) = 7127 2%/ ande,.(R) = 7,221/, wherey, and~, are constants.

An immediate consequence of Proposition 1.7.1 is that the MSE for EC converdes-aso
to J, with rateO(2-2%/7). The MSE of CE converges likewise, but with r&p¢2—21/M). For the
typical caseM > p, EC approaches the lower boudg faster than CE, implying correspondingly
a more efficient usage of the available r&eThis is intuitively reasonable since CE compresses
which contains the noisw. Since the lasfi/ — p eigenvalues ok, equal the noise varianee?,
part of the available rate is consumed to compress the noise. On the contrary, the MMSE estimator
§ in EC suppresses significant part of the noise. For the special case of a scalar dataMhedel (
p = 1) it has been shown (Schizas$ al. 2005a) thatD,..(R) = D..(R), while for the vector and
matrix models {/ > 1 and/orp > 1) we have determined appropriate threshold r&gshave been
determined such thd®..(R) > D..(R) for R > Ryy,.

If the SNR is defined as SNR tr(HX,;H?)/Mo?, itis possible to compare the MMSE when
estimatings using the CE and EC schemes; see Fig. 1.12 (Left). \Mith = ¢2I,,, p = 4 and
M = 40, we observe that beyond a threshold rate, the distortion of EC converggddster than
that of CE, which corroborates Proposition 1.7.1.

The analysis so far raises the question whether EC is MSE optimal. We have seen that this is
the case when estimatisgwith a given rateR without forcing any assumption abo andp. A
related claim has been reported in (Sakrison 1968; Wolf and Ziv 1970)/fer p. The extension to
M # p established in (Schizag al. 2005a) can be summarized as follows:

Proposition 1.7.2 The D-R function when estimatisdpased onx can be expressed as

DR = min  Ells—ssl?) = ESIP+ min  Ells—ssl?,  (1.90)
p(8r|x) p(8r|3)
I(x;8r)<R I(8;8r)<R

wheres = X, 3 x is the MMSE estimator, anglis the corresponding MMSE.

Proposition 1.7.2 reveals that the optimal means of estimatiiggto first form the optimal
MMSE estimates and then apply optimal rate-distortion encoding to this estimate. The lower bound
on this distortion wher? — oo is J, = E[||s||?], which is intuitively appealing. The D-R function
in (1.90) is achievable, because the rightmost term in (1.90) corresponds to the D-R function for
reconstructing the MMSE estimagewhich is known to be achievable using random coding; see
e.g., (Berger 1971, p. 66).

1.7.2 Distortion-Rate for Distributed Estimation

Let us now consider the D-R function for estimatisg a multi-sensor setup, under a total avail-
able rateR which has to be shared among all sensors. Because analytical specification of the D-R
function in this case remains intractable, we will present an alternating algorithm that numerically
determines an achievable upper bound for it. Combining this upper bound with the non-achievable
lower bound corresponding to an equivalent single-sensor setup, and applying the MMSE optimal
EC scheme, will provide a region where the D-R function lies in. For simplicity in exposition, we
confine ourselves to a two-sensor setup, but the results apply to any¥inite.

To this end, consider the following single-letter characterization of the upper bound on the D-R
function:

D(R) = min Eps funyt_ollls =8rl%), s.tol(x;{u,},_o) <R, (1.91)

{p(un ‘xn)};:o SR
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where the minimization is w.r.{p(u,|x,)}1_, andsz := sz (ug, u;). Achievability of D(R) can
be established by readily extending to the vector case the scalar results ire@h&004). To carry
out the minimization in (1.91), we will develop an alternating scheme wheughy treated as side
information that is available at the decoder when optimizing (1.91) w(us|xo) andsg(up, uy).
The side information1; is considered as the output of an optimal rate-distortion encoder applied
to x; for estimatings, without taking into account,. Sincex; is Gaussian, the side information
will have the form (c.f. subsection 1.7.1) = Q;x; + ¢;, WhereQ; € RF*M: andk; < M;,
due to the rate constrained encodingef Recall that(, is uncorrelated witkx; and Gaussian; i.e.,
¢y ~N(0, 3¢, )

Based on) := [x] u{]”, the optimal estimator foris the MMSE ones = E[s|¢)] = .3,
¥ = Loxo + Lyuy, whereLg, L; arep x My andp x k; matrices so thaEsy,Elﬁ =[Lo Lq]. If
§ is the corresponding MSE, then= § + S, wheres is uncorrelated with) due to the orthogonality
principle. Noticing also thair (ug, u;) is uncorrelated witls because it is a function ofy, anduy,
we haveE([|s — sr(uo, w1)[|?] = E[[|8 — 8r(uo, w1)|*] +£[8]%], o,

E[lls — 8r(uo, w1)|*] = E[|[Loxo — (& (uo, w1) — Lyw)|*] + E[|8]%). (1.92)

Clearly, it holds thatf (x; ug, u1) = Ry + I(xo; up) — I(uy;ug), whereR; := I(x;u,) is the rate
consumed to form the side informatien and the rate constraint in (1.91) beconiés; ug, u;) <
R & I(x0;u9) — I(u1;u9) < R — Ry := Ry. The new signal of interest in (1.92) Isyxo; thus,
ugy has to be a function dkgx(. Using also the fact that, — Loxo — ug constitutes a Markov
chain, it is possible to obtain from (1.91) the D-R upper bound (Sclezak2005a):

D(Ry) = E||8]*] + min  B[[[Loxo — 8r,01(uo, w1, (1.93)

p(uo|Loxo),8r
I(Loxo;up)—1I(uo;ur)<Rg
wheresg o1 (ug, u1) := §g(ug, u1;) — Lyuy. Through (1.93) we can determine an achievable D-R
region, having available ratg, at the encoder and side informatian at the decoder. Sincg, and
u; are jointly Gaussian, the Wyner-Ziv result applies (Wyner and Ziv 1976), which allows one to
consider thaiu; is available both at the decoder and the encoder. This, in turn, permits re-writing
the (1.93) as (Schizas al. 2005a)
D(Rg) = min_ EJ[So — 8r 01 (uo, w1)|’] + E[[|3]], (1.94)
P(SR,01\SO)
I(50;8R,01)<Ro

WhereéR,m(uO, u1) = éR(uo, 111) —Lju; — E[L0x0|u1} and§0 = Loxg — E[LQXO|U1].

Notice that (1.94) is the D-R function for reconstructing the M&Bwvith rate Ry. Sinces is
Gaussian, we can readily apply rwf to the pre—white@géo for determiningD(R,) and the corre-
sponding test channel that achieveéR,). Through the latter, and considering the next eigenvalue
decompositior®; s, = Qs, diag(As,.1 - - A5, p) QL . it follows that the first encoder’s output that
minimizes (1.91) has the form:

ug = Q7 1, Loxo + o = Qoxo + ¢, (1.95)
whereQ;, «, denotes the firgt, columns ofQj, , ko is the number oQgT0 8y entries that are assigned
with non-zero rate, an@, := Q! , Ly. Theko x 1 AWGN ¢, ~ N (0, 3¢c,) 1S uncorrelated

50,ko

1/k
with xo. Additionally, we haveX ¢ i = As,.i DY/ (Ns0,: — DY), whereD? = (Hfil )\gw) ’

27 2Ro/ko fori =1,..., ko, andD? = Az, ; Wheni = ko + 1, ..., p. This way, we are able to deter-
mine alsop(ug|xo). The reconstruction function has the form:

Sr(ug,u1) = Qs @00 + LoXz0u, B, us + Liwy
7Q§07k0®0Q§;,k0 Lozflfoul 2;11u1u17 (196)



28 DISTRIBUTED ESTIMATION UNDER BANDWIDTH AND ENERGY CONSTRAINTS

Where[@dii = AgoﬂD?/(Ago,l — D?), and the MMSE |@(Ro) = ﬁ»}:l D;) + E[Hé”Q]

The approach in this subsection can be applied in an alternating fashion from sensor to sensor
in order to determine approprigtéu,, |x,,), forn = 0,1, andsg (uo, u; ) that at best globally mini-
mize (1.93). The conditional pdfs can be determined by finding the appropriate covaages
Furthermore, by specifying the optim@&@, and Q;, characterization of the encoders’ structure is
obtained. In Fig. 1.12 (Right), we plot the non-achievable lower bound which corresponds to one

Algorithm 2 :
Initialize Q(()O)7 ng, Eég)co, 2(&1 by applying optimal D-R encoding to each sensor’s test chan-
nel independently. For a total raf@, generate/ random incrementgr(m)}? _,, such that
0 <r(m) < Rand_M_ r(m) = R. SetRy(0) = Ry (0) = 0.
forj=1Jdo
SetR(j) =Y ]_,r(l)
for n =0,1do
7= |n — 1| %The complementary index
Ro(j) = I(x; )
j—1 j—1 . . . ; ; = )
We useQY Y, Eé{icﬁ), R(j),Ro(j) to determineQ!’, EE&H andD(R,(j))
end for _ _ _
Update matrice®'”’, Egz.l that result the smallest distortidn( R;(5)), with [ € [0, 1]
SetRi(j) = R(j) — I(x;uf’) andRi(j) = I(x: uf’).
end for

sensor having available the entiteand using the optimal EC scheme. Moreover, we plot an achiev-
able D-R upper bound determined by letting th¢h sensor form its local estimagg = Es|x,],

and then apply optimal rate-distortion encoding tolf §r o andsg ; are the reconstructed versions

of 89 ands, respectively, then the decoder at the FC forms the final estiépate E[s|Sr 0, Sr.1]-

We also plot the achievable D-R region determined numerically by Algorithm 2. For each rate, the
smallest distortion is recorded aft&l0 executions of the algorithm simulated wih, = I,,p = 4,
andM, = M; = 20, at SNR= 2. We observe that the algorithm provides a tight upper bound of the
achievable D-R region, which combined with the non-achievable lower bound (solid line) effectively
reduces the ‘uncertainty region’ where the D-R function lies.

1.7.3 D-R Upper Bound via Convex Optimization

In this subsection we outline an alternative approach which relies on convex optimization tech-
nigues to obtain numerically an upper bound of the D-R region (¥ta@l. 2005b). The idea is to
calculate the Berger-Tung achievable D-R region (Berger 1977) for the vector Gaussian CEO prob-
lem, and subsequently determine the minimum sum Rafe= Zf;ol R,, such that the estimation

MSE satisfies (E[(s — $r)(s — 8r)7]) < D, wheresr = E[s|{u, }.-;] and D is the desired

upper bound on the distortion. The Berger-Tung achievable region is calculated after having the
encoders’ output to have in form, = x,, + ¢,,, where¢,, ~ N (0, ., ) are independent of,,,
forn=0,1,..., N — 1. Furthermore, the sum rate can be expressed as a functtdp ahdX. .,

(Xiao et al.2005b)

N—-1 N—-1
Ry = 0.5log <det (Ip + Z HZ(IMn + ECnCn)1H7l> H det(I]wn + 25}0)) .

n=0 n=0
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Figure 1.12 (Left): D-R region for EC and CE at SNR 2; (Right): Distortion-rate bounds for estimatisgn a two-
sensor setup.

The D-R upper bound is obtained as the optimal solution of the following minimization problem (
denotes positive semidefiniteness)

min L Ry, s. t02<n<n =0, tl’(2~ ) <D, (197)

SRSR
N —
{Z¢ncn tnoo

whereX;, s, = El(s —8z)(s — 8r)7] = (I, + Y0 HL (I, + Z¢,c,) "H,) L
Although, the minimization problem in (1.97) is not convex, (X&tal. 2005b) has shown that
(1.97) is equivalent to the following convex formulation:
ming, yvo1 —0.51l0g det(Ts,s,) + 0.5, logdet(Tay, + 2% ), (1.98)

§R§R7{E<n(n

S.to tr(2§R§R) <D, z(nCn = 0, E§R§R = 0, (Ip + 211:[:_01 HZ(IMn + ECnCn)ilHn)il =X

SRSR>

which is solved numerically using the interior point method (Boyd and Vandenberghe 2004).

1.8 Closing Comments

We considered distributed estimation using wireless sensor networks and demonstrated that under
limited resources the seemingly unrelated problems of dimensionality reduction, compression, quan-
tization and estimation are actually intertwined due to the distributed nature of sensor networks.

We started with parameter estimation under severe bandwidth constraints that were adhered to
by quantizingeach sensor’s observation to one or a few bits. By jointly accounting for the unique
guantization-estimation tradeoffs present, these bit(s) per sensor were first used to derive distributed
maximum likelihood estimators (MLES) for scalar mean-location estimation in the presence of gen-
erally non-Gaussian noise when the noise pdf is completely known; subsequently, when the pdf is
known except for a number of unknown parameters; and finally, when the noise pdf is unknown. In
all three cases, the resulting estimators turned out to exhibit comparable variances that can come sur-
prisingly close to the variance of the clairvoyant estimator which relies on unquantized observations.
This happens when the SNR capturing both quantization and noise effects assumes low-to-moderate
values. Analogous claims were established for practical generalizations in the multivariate and col-
ored noise cases for distributed estimation of vector deterministic and random parameters. Therein,
MLE and MAP estimators were formed via numerical search but the log-likelihoods were proved to
be concave thus ensuring fast convergence to the unique global maximum.
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We also pursued a related but distinct approach where the bandwidth constraint is adhered to by
reduced-dimensionality observations. We dealt with non-ideal channel links that are characterized
by multiplicative fading and additive noise. When data across sensors are uncorrelated, we presented
global MSE optimal schemes in closed-form and proved that they implement estimation followed by
compression per sensor. For correlated sensor observations, we outlined a block coordinate descent
algorithm which guarantees convergence at least to a stationary point of the associated mean-square
error cost. The optimal estimators allocate properly the prescribed power following a waterfilling-
like principle. Fundamental MSE limits were finally studied through the D-R function for estimating
a random vector in a single-sensor setup, where an estimate-first compress-afterwards approach was
turns out to be optimal. An alternating algorithm was also outlined for determining numerically a
D-R upper bound in the distributed multi-sensor setup. Using this upper bound in conjunction with
the non-achievable lower bound, determined through the single-sensor D-R function, yielded a tight
region, where the D-R function for distributed estimation lies in.

1.9 Further Reading

The problem of estimation based on quantized observations was studied in early works by (Gubner
1993) and (Lam and Reibman 1993) and revisited in the context of distributed estimation using
WSNs in (Papadopoulast al. 2001). The material on Sections 1.1 — 1.4 is based on results from
(Ribeiro and Giannakis 2006a) and (Ribeiro and Giannakis 2006b), while the material in Section 1.5
has been reported in (Skeé al. 2005). When the noise pdf is unknown, the problem of estimation
based on severely quantized data has been also studied by (Luo 2005a), (Luo 2005b) and (Luo
and Xiao 2005) where the notion of universal estimators was introduced. A recent extension of the
material covered in these sections to state estimation of dynamical stochastic processes can be found
in (Ribeiroet al.2007).

Distributed estimation via dimensionality reduction has been also considered inefZiu
2005), (Gastpaet al. 2004) and (Zhangt al. 2003) for ideal channel links and/or Gaussian data
models. Detailed derivations of what was presented in Section 1.6 can be found in (®thakas
2005b). When it comes to rate constrained distributed estimation D-R bounds for the Gaussian CEO
setup, results are due to (Oohama 1998) and (@hah2004) whenM = p. The results in Section
1.7 are from (Schizast al. 2005a) and (Xia@t al. 2005b).

A different approach to reduce communication costs in distributed estimation is to allow com-
munication between one-hop neighbors only and let the sensors converge to a common estimate. In
(Xiao and Boyd 2004) estimation is considered tantamount to convergence to the steady state distri-
bution of a Markov chain. In (Schizast al. 2006) estimation is shown equivalent to distributed
optimization of a convex argument. A related approach can be found in (Barbarossa and Scut-
tari 2006) where the WSN is modelled as a network of coupled oscillators. A different estimation
approach using hidden Markov fields is reported in (Dog@@n#006).
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