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In parameter estimation problems a sequence of observations{x(n)}N
n=1 is used to estimate a

random or deterministic parameter of interests. Optimal estimation exploits the statistical corre-
lation betweenx(n) ands that is described either by the joint probability distribution function (pdf)
p(x(n), s) whens is assumed random; or by a family of observation pdfsp(x(n); s) parameterized
by s whens is assumed deterministic. The optimal estimator function producing an estimateŝ for
a given set of observations{x(n)}N

n=1 is different for random and deterministic parameters. It also
depends on the joint pdfp(x(n), s) (or family of pdfsp(x(n); s)) and the degree of knowledge about
them; i.e., whether they are known, dependent on some other (nuisance) parameters, or completely
unknown (Kay 1993).

The distributed nature of a wireless sensor network (WSN) implies that observations are col-
lected at different sensors and consequently it dictates that between collection and estimation a
communication is present. If bandwidth and power were unlimited, thex(n) observations could be
conveyed with arbitrary accuracy and, intuitively, no major impact would be expected. However,
bandwidth and powerare limited, and the seemingly innocuous communication stage turns out to
have a significant impact on the design of optimal estimators and their performance assessed by the
estimator variance. On the one hand, if digital communications are to be employed individual obser-
vations have to be quantized, transforming the estimation problem into that of estimatings using
a set of quantized observations – certainly different from estimatings using the original analog-
amplitude observations. On the other hand, since components of the (vector) observationx(n) are
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typically correlated, bandwidth and power constraints can be effected by transmitting vectorsy(n)
with smaller dimensionality than that ofx(n).

As the discussion in the previous paragraph suggests, the distributed nature of observations cou-
ples with stringent bandwidth and power constraints so that estimation in WSNs requires: i) a means
of combining local sensor observations in order to reduce their dimensionality while keeping the
estimation MSE as small as possible; ii) quantization of the combined observations prior to digi-
tal transmission; and iii) construction of estimators based on the quantized digital messages. While
addressing these issues jointly is challenging, the present chapter describes recent advances pertain-
ing to all these three requirements.

1.1 Distributed Quantization-Estimation

Consider a WSN consisting ofN sensors deployed to estimate a scalar deterministic parameters.
Thenth sensor observes a noisy version ofs given by

x(n) = s + w(n), n ∈ [0, N − 1] , (1.1)

wherew(n) denotes zero-mean noise with pdfpw(w), that is known possibly up to a finite number
of unknown parameters. We further assume thatw(n1) is independent ofw(n2) for n1 6= n2; i.e.,
noise variables are independent across sensors.

Due to bandwidth limitations, the observationsx(n) have to be quantized and estimation ofs can
only be based on these quantized values. We will henceforth think of quantization as the construction
of a set of indicator variables

bk(n) = 1{x(n) ∈ Bk(n)}, k ∈ [1,K] , (1.2)

taking the value1 whenx(n) belongs to the regionBk(n) ⊂ R, and0 otherwise. Estimation ofs
will rely on this set ofbinary random variables{bk(n), k ∈ [1,K]}N−1

n=0 . The latter are Bernoulli
distributed with parametersqk(n) satisfying

qk(n) := Pr{bk(n) = 1} = Pr{x(n) ∈ Bk(n)}. (1.3)

In the ensuing sections, we will present the Cramér-Rao Lower Bound (CRLB) to benchmark
the variance of all unbiased estimatorsŝ constructed using the binary observations{bk(n), k ∈
[1,K]}N−1

n=0 . We will further show that it is possible to find maximum likelihood estimators (MLEs)
that (at least asymptotically) can achieve the CRLB. Finally, we will reveal that the CRLB based on
{bk(n), k ∈ [1,K]}N−1

n=0 can come surprisingly close to the clairvoyant CRLB based on{x(n)}N−1
n=0

in certain applications of practical interest.

1.2 Maximum Likelihood Estimation

Let us start by assuming thatpw(w) is known and letFw(u) :=
∫∞

u
pw(w) dw denote the com-

plementary cumulative distribution function (CCDF) of the noise. With the pdf known it suffices
to rely on a single regionB1(n) in (1.2) to generate a single bitb1(n) per sensor, using a thresh-
old τc common to allN sensors:B1(n) := Bc = (τc,∞), ∀n. Based on these binary observations,
b1(n) := 1{x(n) ∈ (τc,∞)} received from allN sensors, the fusion center (FC) seeks estimates of
s.

An expression for the MLE ofs follows readily from the following argument. Using (1.3), we
can express the Bernoulli parameter as

q1 =
∫ ∞

τc−s

pw(w)dw = Fw(τc − s). (1.4)
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On the other hand, it is well known that the MLE ofq1 is given byq̂1 = N−1
∑N−1

n=0 b1(n) (Kay
1993, p. 200). These two facts combined with the invariance property of MLE (Kay 1993, p. 173),
readily yield the MLE ofs as (Ribeiro and Giannakis 2006a):

ŝ = τc − F−1
w

(
1
N

N−1∑
n=0

b1(n)

)
. (1.5)

It can be further shown that the CRLB on the variance of any unbiased estimatorŝ based on
b1(n)N−1

n=0 is (Ribeiro and Giannakis 2006a)

var(ŝ) ≥ 1
N

Fw(τc − s)[1− Fw(τc − s)]
p2

w(τc − s)
:= B(s) . (1.6)

If the noise is Gaussian and we define theσ-distancebetween the thresholdτc and the (unknown)
parameters as∆c := (τc − s)/σ, then (1.6) reduces to

B(s) =
σ2

N

2πQ(∆c)[1−Q(∆c]
e−∆c

:=
σ2

N
D(∆c), (1.7)

with Q(u) := (1/
√

2π)
∫∞

u
e−w2/2 dw denoting the Gaussian tail probability function.

The boundB(s) is the variance of̄x := N−1
∑N−1

n=0 x(n), scaled by the factorD(∆c) – recall
thatvar(x̄) = σ2/N (Kay 1993, p.31). OptimizingB(s) with respect to∆c, yields the optimum at
∆c = 0 and the minimum CRLB as

Bmin =
π

2
σ2

N
. (1.8)

Eq. (1.8) reveals something unexpected: relying on a single bit perx(n), the estimator in (1.5) incurs
a minimal (just aπ/2 factor) increase in its variance relative to the clairvoyantx̄ which relies on
the unquantized datax(n). But this minimal loss in performance corresponds to the ideal choice
∆c = 0, which impliesτc = s and requires perfect knowledge of the unknowns for selecting the
quantization thresholdτc. How do we selectτc and how much do we lose when the unknowns lies
anywhere in(−∞,∞), or whens lies in [S1, S2], with S1, S2 finite and known a priori? Intuition
suggests selecting the threshold as close as possible to the unknown parameters. This can be realized
with an iterative estimator̂s(i), which can be formed as in (1.5), usingτ

(i)
c = ŝ(i−1), the parameter

estimate from the previous(i− 1)st iteration.
But in the batch formulation considered herein, selectingτc is challenging; and a closer look

at B(s) in (1.6) will confirm that the loss can be huge ifτc − s À 0. Indeed, asτc − s →∞ the
denominator in (1.6) goes to zero faster than its numerator, sinceFw is the integral of the non-
negative pdfpw; and thus,B(s) →∞ as τc − s →∞. The implication of the latter is twofold:
i) since it shows up in the CRLB, the potentially high variance of estimators based on quantized
observations is inherent to the possibly severe bandwidth limitations of the problem itself and is not
unique to a particular estimator; ii) for any choice ofτc, the fundamental performance limits in (1.6)
are dictated by the end pointsτc − S1 andτc − S2 whens is confined to the interval[S1, S2]. On the
other hand, how successful theτc selection is depends on the dynamic range|S1 − S2| which makes
sense because the latter affects the error incurred when quantizingx(n) to b1(n). Notice that in such
joint quantization-estimation problems one faces two sources of error: quantization and noise. To
account for both, the proper figure of merit for estimators based on binary observations is what we
will term quantization signal-to-noise ratio (Q-SNR):

γ :=
|S1 − S2|2

σ2
; (1.9)
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Notice that contrary to common wisdom, the smaller Q-SNR is, the easier it becomes to selectτc

judiciously. Furthermore, the variance increase in (1.6) relative to the variance of the clairvoyantx̄ is
smaller, for a givenσ. This is because as the Q-SNR increases the problem becomes more difficult
in general, but the rate at which the variance increases is smaller for the CRLB in (1.6) than for
var(x̄) = σ2/N .

1.2.1 Known Noise pdf with Unknown Variance

Perhaps more common than a perfectly known pdf is the case when the noise pdf is known except
for its varianceE[w2(n)] = σ2. Introducing the standardized variablev(n) := w(n)/σ we write the
signal model as

x(n) = s + σv(n). (1.10)

Let pv(v) andFv(v) :=
∫∞

v
pv(u)du denote the known pdf and CCDF ofv(n). Note that according

to its definition,v(n) has zero mean,E[v2(n)] = 1, and the pdfs ofv andw are related bypw(w) =
(1/σ)pv(w/σ). Note also that all two parameter pdfs can be standardized likewise.

To estimates whenσ is also unknown while keeping the bandwidth constraint to 1 bit per sensor,
we divide the sensors in two groups each using a different region (i.e., threshold) to define the binary
observations:

B1(n) :=
{

(τ1,∞) := B1, for n = 0, . . . , (N/2)− 1
(τ2,∞) := B2, for n = (N/2), . . . , N.

(1.11)

That is, the firstN/2 sensors quantize their observations using the thresholdτ1, while the remaining
N/2 sensors rely on the thresholdτ2. Without loss of generality, we assumeτ2 > τ1.

The Bernoulli parameters of the resultant binary observations can be expressed as [c.f. (1.4)]:

q1(n) :=
{

Fv

[
τ1−s

σ

]
:= q1 for n = 0, . . . , (N/2)− 1,

Fv

[
τ2−s

σ

]
:= q2 for n = (N/2), . . . , N.

(1.12)

Given the noise independence across sensors, the MLEs ofq1, q2 can be found, respectively, as

q̂1 =
2
N

N/2−1∑
n=0

b1(n), q̂2 =
2
N

N−1∑

n=N/2

b1(n). (1.13)

Mimicking (1.5), we can invertFv in (1.12) and invoke the invariance property of MLEs to obtain
the MLE ŝ in terms ofq̂1 andq̂2. This estimator is given in the following proposition along with its
CRLB (Ribeiro and Giannakis 2006b).

Proposition 1.2.1 Consider estimatings in (1.10), based on binary observations constructed from
the regions defined in(1.11).

(a) The MLE ofs is

ŝ =
F−1

v (q̂2)τ1 − F−1
v (q̂1)τ2

F−1
v (q̂2)− F−1

v (q̂1)
, (1.14)

with F−1
v denoting the inverse function ofFv, andq̂1, q̂2 given by(1.13).

(b) The variance of any unbiased estimator ofs, var(ŝ), based on{b1(n)}N−1
n=0 is bounded by

B(s) :=
2σ2

N

(
∆1∆2

∆2 −∆1

)2 [
q1 (1− q1)
p2

v(∆1)∆2
1

+
q2 (1− q2)
p2

v(∆2)∆2
2

]
(1.15)
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Figure 1.1 Per bit CRLB when the binary observations are independent and dependent, respectively. In both cases, the
variance increase with respect to the sample mean estimator is small when theσ-distances are close to1, being slightly better
for the case of dependent binary observations (Gaussian noise).

whereqk is given by(1.12), and

∆k :=
τk − s

σ
, k = 1, 2, (1.16)

is theσ-distance betweens and the thresholdτk.

Eq. (1.15) is reminiscent of (1.6), suggesting that the variances of the estimators they bound are
related. This implies that even when the known noise pdf contains unknown parameters, the variance
of ŝ can come close to the variance of the clairvoyant estimatorx̄, provided that the thresholdsτ1,
τ2 are chosen close tos relative to the noise standard deviation (so that∆1, ∆2, and∆2 −∆1

in (1.16) are≈ 1). For the Gaussian pdf, Fig. 1.1 shows the contour plot ofB(s) in (1.15) normalized
by σ2/N := var(x̄). Notice that in the low Q-SNR regime∆1,∆2 ≈ 1, and the relative variance
increaseB(s)/var(x̄) is less than3. This is illustrated by the simulations shown in Fig. 1.2 for two
different sets ofσ-distances,∆1, ∆2, corroborating the values predicted by (1.15) and the fact that
the performance loss with respect to the clairvoyant sample mean estimator,x̄, is indeed small.

Dependent binary observations

In the previous subsection, we restricted the sensors to transmit only1 bit per x(n) datum, and
divided the sensors in two classes each quantizingx(n) using a different threshold. A related
approach is to let each sensor use two thresholds:

B1(n) := B1 = (τ1,∞), n = 0, 1, . . . , N − 1,

B2(n) := B2 = (τ2,∞), n = 0, 1, . . . , N − 1 (1.17)

whereτ2 > τ1. We define the per sensor vector of binary observationsb(n) := [b1(n), b2(n)]T , and
the vector Bernoulli parameterq := [q1(n), q2(n)]T , whose components are as in (1.12).

Note the subtle differences between (1.11) and (1.17). While each of theN sensors generates
1 binary observation according to (1.11), each sensor creates2 binary observations as per (1.17).
The total number of bits from all sensors in the former case isN , but in the latterN log2 3, since
our constraintτ2 > τ1 implies that the realizationb = (0, 1) is impossible. In addition, all bits in
the former case are independent, whereas correlation is present in the latter sinceb1(n) andb2(n)
come from the samex(n). Even though one would expect this correlation to complicate matters, a
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Figure 1.2 Noise of unknown power estimator. The simulation corroborates the close to clairvoyant variance prediction
of (1.15) (σ = 1, s = 0, Gaussian noise).

property of the binary observations defined as per (1.17), summarized in the next lemma, renders
estimation ofs based on them feasible.

Lemma 1.2.2 The MLE ofq := (q1(n), q2(n))T based on the binary observations{b(n)}N−1
n=0 con-

structed according to(1.17)is given by

q̂ =
1
N

N−1∑
n=0

b(n). (1.18)

Interestingly, (1.18) coincides with (1.13), proving that the corresponding estimators ofs are
identical; i.e., (1.14) yields also the MLÊs even in the correlated case. However, as the follow-
ing proposition asserts, correlation affects the estimator’s variance and the corresponding CRLB
(Ribeiro and Giannakis 2006b).

Proposition 1.2.3 Consider estimatings in (1.10), whenσ is unknown, based on binary observa-
tions constructed from the regions defined in(1.17). The variance of any unbiased estimator ofs,
var(ŝ), based on{b1(n), b2(n)}N−1

n=0 is bounded by

BD(s) :=
σ2

N

(
∆1∆2

∆2 −∆1

)2 [
q1 (1− q1)
p2

v(∆1)∆2
1

+
q2 (1− q2)
p2

v(∆2)∆2
2

− q2 (1− q1)
pv(∆1)p(∆2)∆1∆2

]
, (1.19)

where the subscriptD in BD(s) is used as a mnemonic for the dependent binary observations this
estimator relies on [c.f.(1.15)].

Unexpectedly, (1.19) is similar to (1.15). Actually, a fair comparison between the two requires
compensating for the difference in the total number of bits used in each case. This can be accom-
plished by introducing the per-bit CRLBs for the independent and correlated cases respectively,

C(s) = NB(s), CD(s) = N log2(3)BD(s) , (1.20)
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Figure 1.3When the noise pdf is unknown numerically integrating the CCDF using the trapezoidal rule yields an approx-
imation of the mean.

which lower bound the corresponding variances achievable by the transmission of a single bit.
Evaluation ofC(s)/σ2 andCD(s)/σ2 follows from (1.15), (1.19) and (1.20) and is depicted

in Fig. 1.1 for Gaussian noise andσ-distances∆1, ∆2 having amplitude as large as5. Some-
what surprisingly, both approaches yield very similar bounds with the one relying on dependent
binary observations being slightly better in the achievable variance; or correspondingly, in requiring
a smaller number of sensors to achieve the same CRLB.

1.3 Unknown noise pdf

In certain applications it may not be reasonable to assume knowledge about the noise pdfpw(w).
These cases requirenonparametricapproaches as the one pursued in this section.

We assume thatpw(w) has zero mean so thats in (1.1) is identifiable. Letpx(x) andFx(x)
denote the pdf and CCDF of the observationsx(n). As s is the mean ofx(n), we can write

s :=
∫ +∞

−∞
xpx(x) dx = −

∫ +∞

−∞
x

∂Fx(x)
∂x

dx =
∫ 1

0

F−1
x (v) dv , (1.21)

where in establishing the second equality we used the fact that the pdf is the negative derivative of
the CCDF, and in the last equality we introduced the change of variablesv = Fx(x). But note that
the integral of the inverse CCDF can be written in terms of the integral of the CCDF as (see also
Fig. 1.3)

s = −
∫ 0

−∞
[1− Fx(u)] du +

∫ +∞

0

Fx(u) du, (1.22)

allowing one to express the means of x(n) in terms of its CCDF. To avoid carrying out integrals
with infinite range, let us assume thatx(n) ∈ (−T, T ) which is always practically satisfied forT
sufficiently large, so that we can rewrite (1.22) as

s =
∫ T

−T

Fx(u) du − T. (1.23)

Numerical evaluation of the integral in (1.23) can be performed using a number of known tech-
niques. Let us consider an ordered set of interior points{τk}K

k=1 along with end-pointsτ0 = −T and
τK+1 = T . Relying on the fact thatFx(τ0) = Fx(−T ) = 1 andFx(τK+1) = Fx(T ) = 0, applica-
tion of the trapezoidal rule for numerical integration yields (see also Fig. 1.3)

s =
1
2

K∑

k=1

(τk+1 − τk−1)Fx(τk) − T + ea, (1.24)
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with ea denoting the approximation error. Certainly, other methods like Simpson’s rule, or the
broader class of Newton-Cotes formulas, can be used to further reduceea.

Whichever the choice, the key is that binary observations constructed from the regionBk :=
(τk,∞) have Bernoulli parameters

qk := Pr{x(n) > τk} = Fx(τk). (1.25)

Inserting the nonparametric estimatorsF̂x(τk) = q̂k in (1.24), our parameter estimator when the
noise pdf is unknown takes the form:

ŝ =
1
2

K∑

k=1

q̂k(τk+1 − τk−1) − T. (1.26)

Sinceq̂k ’s are unbiased, (1.24) and (1.26) imply thatE(ŝ) = s + ea. Being biased, the proper per-
formance indicator for̂s in (1.26) is the mean squared error (MSE), not the variance.

Maintaining the bandwidth constraint of1 bit per sensor (i.e.,K = 1), we divide theN sensors
in K subgroups containingN/K sensors each, and define the regions

B1(n) := Bk = (τk,∞), n = (k − 1)(N/K), . . . , k(N/K)− 1; (1.27)

RegionB1(n) will be used by sensorn to construct and transmit the binary observationb1(n).
Herein, the unbiased estimators ofqk are

q̂k =
1

(N/K)

k(N/K)−1∑

n=(k−1)(N/K)

b1(n), k = 1, . . . , K, (1.28)

and are used in (1.26) to estimates. It is easy to verify thatvar(q̂k) = qk(1− qk)/(N/K), and that
q̂k1 andq̂k2 are independent fork1 6= k2.

The resultant MSE,E[(s− ŝ)2], can be bounded as follows (Ribeiro and Giannakis 2006b).

Proposition 1.3.1 Considerŝ given by(1.26), with q̂k as in(1.28). Assume that forT sufficiently
large and knownpx(x) = 0, for |x| ≥ T , the noise pdf has bounded derivativeṗw(u) := ∂pw(w)/∂w;
and defineτmax := maxk{τk+1 − τk} and ṗmax := maxu∈(−T,T ) {ṗw(u)}. The MSE is given by

E[(s− ŝ)2] = |ea|2 + var(ŝ), (1.29)

with the approximation errorea andvar(ŝ), satisfying

|ea| ≤ T ṗmax

6
τ2
max, (1.30)

var(ŝ) =
K∑

k=1

(τk+1 − τk−1)2

4
qk(1− qk)

N/K
, (1.31)

with {τk}K
k=1 a grid of thresholds in(−T, T ) and{qk}K

k=1 as in(1.25).

Note from (1.31) that the larger contributions tovar(ŝ) occur whenqk ≈ 1/2, since this value
maximizes the coefficientsqk(1− qk); for a symmetric noise pdf, this happens when the thresholds
satisfyτk ≈ s [c.f. (1.25)]. Thus, as with the case where the noise pdf is known, whens belongs to
an a priori known interval[s1, s2], this knowledge must be exploited in selecting thresholds around
the likeliest values ofs.
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On the other hand, note that thevar(ŝ) term in (1.29) will dominate|ea|2 because|ea|2 ∝ τ4
max

as per (1.30). To clarify this point, consider an equispaced grid of thresholds withτk+1 − τk = τ =
τmax, ∀k, such thatτmax = 2T/(K + 1) < 2T/K. Using the (loose) boundqk(1− qk) ≤ 1/4, the
MSE is bounded by [c.f. (1.29) - (1.31)]

E[(s− ŝ)2] <
4T 6ṗ2

max

9K4
+

T 2

N
. (1.32)

The bound in (1.32) is minimized by selectingK = N , which amounts to havingeach sensor use a
different regionto construct its binary observation. In this case,|ea|2 ∝ N−4 and its effect becomes
practically negligible. Moreover, most pdfs have relatively small derivatives; e.g., for the Gaussian
pdf we haveṗmax = (2πeσ4)−1/2. The integration error can be further reduced by resorting to a
more powerful numerical integration method, although its difference with respect to the trapezoidal
rule will not have noticeable impact in practice.

SinceK = N , the selectionτk+1 − τk = τ , ∀k, yields

ŝ = τ

N−1∑
n=0

b1(n)− T = T

[
2

N + 1

N−1∑
n=0

b1(n)− 1

]
, (1.33)

thatdoes not require knowledge of the thresholdused to construct the binary observations at the FC
of a WSN. This feature allows each sensor to randomly select its threshold without using values
pre-assigned by the FC; see also (Luo 2005a) for related random quantization algorithms which also
yieldeduniversal(in the noise variance) parameter estimators based on severely quantized WSN
data.

Remark 1 While e2
a ∝ T 6 seems to dominatevar(ŝ) ∝ T 2 in (1.32), this is not true for the oper-

ational low-to-medium Q-SNR range for distributed estimators based on binary observations. This
is because the support2T over whichFx(x) in (1.23) is non-zero depends onσ and the dynamic
range|S1 − S2| of the parameters. And as the Q-SNR decreases,T ∝ σ. But sinceṗmax ∝ σ−2,
e2
a ∝ σ2/N4 which is negligible when compared to the termvar(ŝ) ∝ σ2/N .

Apart from providing useful bounds on the finite-sample performance, eqs. (1.30), (1.31), and (1.32)
establish asymptotic optimality of thês estimators in (1.26) and (1.33) as summarized in the fol-
lowing:

Corollary 1.3.2 Under the assumptions of Propositions 1.3.1 and the conditions: i)τmax ∝ K−1;
and ii) T 2/N, T 6/K4 → 0 asT, K, N →∞, the estimatorŝs in (1.26)and(1.33)are asymptoti-
cally (asK, N →∞) unbiased and consistent in the mean-square sense.

The estimators in (1.26) and (1.33) are consistent even if the support of the datapdf is infinite, as
long as we guarantee a proper rate of convergence relative to the number of sensors and thresholds.

Remark 2 To compare the estimators in (1.5) and (1.33), consider thats ∈ [S1, S2] = [−σ, σ], and
that the noise is Gaussian with varianceσ2, yielding a Q-SNRγ = 4. No estimator can have vari-
ance smaller thanvar(x̄) = σ2/N ; however, for the (medium)γ = 4 Q-SNR value they can come
close. For the known pdf estimator in (1.5), the variance isvar(ŝ) ≈ 2σ2/N . The unknown pdf esti-
mator in (1.33) requires an assumption about the essentially non-zero support of the Gaussian pdf.
If we suppose that the noise pdf is non-zero over[−2σ, 2σ], the corresponding variance becomes
var(ŝ) ≈ 9σ2/N . The penalties due to the transmission of a single bit per sensor with respect to
x̄ are approximately2 and9. While the increasing penalty is expected as the uncertainty about the
noise pdf increases, the relatively small loss is rather unexpected.
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Figure 1.4 The variance of the estimators in (1.5) and (1.33) are close to the sample mean estimator variance (σ2 :=
E[w2(n)] = 1, T = 3, s ∈ [−1, 1]).

Fig. 1.4 depicts theoretical bounds and simulated variances for the estimators (1.5) and (1.33) for
an example Q-SNRγ = 4. The sample mean estimator variance,var(x̄) = σ2/N , is also depicted
for comparison purposes. The simulations corroborate the implications of Remark 3, reinforcing the
assertion that for low to medium Q-SNR problems quantization to a single bit per observation leads
to minimal losses in variance performance. Note that for this particular example, the unknown pdf
variance bound, (1.32), overestimates the variance by a factor of roughly1.2 for the uniform case
and roughly2.6 for the Gaussian case.

1.3.1 Lower bound on the MSE

In Section 1.2 we derived the CRLB offering the fundamentallower bound on the achievable vari-
ance and the MLE that approaches this bound asN increases. In contrast, (1.32) is anupperbound
on the MSE of the estimator in (1.33). The counterpart of the CRLB for estimation based on binary
observations when the pdf is unknown is a lower bound in the MSE achievable by any estimator.

To obtain this bound we start from the CRLB when the noise pdf is known that we introduced
in (1.6). We then maximize this CRLB with respect to the noise pdf and the local quantization rules
to obtain a lower bound on the MSE performance of any estimator when the pdf is unknown. The
result is summarized in the following proposition (Xiaoet al.2005a).

Proposition 1.3.3 Consider the signal model in(1.1); x(n) observations belonging to the interval
(−T, T ); i.e.,x(n) ∈ [−T, T ]; and let each sensor communicate one binary observationb(n) as per
(1.2). Then, for any estimator̂s of s relying on{b(n)}N−1

n=0 there exists a noise pdf such that

E[(s− ŝ)2] ≥ T 2

4N
. (1.34)

Proposition 1.3.3 implies that no estimator based on quantizated samples down to a single bit
per sensor can attain an MSE smaller thanT 2/4N . Comparing (1.32) with (1.34) we deduce that
the estimator in (1.33) is optimal up to a constant factor of 4.
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Figure 1.5(Left): The vector of binary observationsb takes on the value{y1, y2} if and only ifx(n) belongs to the region
B{y1,y2}; (Right): Selecting the regionsBk(n) perpendicular to the covariance matrix eigenvectors results in independent
binary observations.

1.4 Estimation of Vector Parameters

Consider now the case of a physical phenomenon characterized by a set ofp parameters that we lump
in to the vectors := [s1, . . . , sp]T . As before, we wish to finds, by deploying a WSN composed of
N sensors{Sn}N−1

n=0 , with each sensor observings through a linear transformation

x(n) = Hns + w(n), (1.35)

wherex(n) := [x1(n), . . . , xM (n)]T ∈ RM is the measurement vector at sensorSn, w(n) ∈ RM

is zero-mean additive noise with pdfpw(w) and the matricesHn ∈ RM×P .
As in (1.2), we define the binary observationbk(n) as the indicator function ofx(n) belonging

to the regionBk(n) ⊂ RM :

bk(n) = 1{x(n) ∈ Bk(n)}, k ∈ [1,K] , (1.36)

We then define the per sensor vector of binary observationsb(n) := [b1(n), . . . , bK(n)]T , and note
that since its entries are binary, realizationsy of b(n) belong to the set

B := {β ∈ RK | [β]k ∈ {0, 1}, k ∈ [1,K]}, (1.37)

where[β]k denotes thekth component ofβ. With eachβ ∈ B and each sensor we now associate
the region

Bβ(n) :=
⋂

[β]k=1

Bk(n)
⋂

[β]k=0

B̄k(n), (1.38)

whereB̄k(n) denotes the set-complement ofBk(n) in RM . Note that the definition in (1.38) implies
thatx(n) ∈ Bβ(n) if and only if b(n) = β; see also Fig. 1.5 (Left) for an illustration inR2 (M =
2). The corresponding probabilities are

qβ(n) := Pr{b(n) = β} =
∫

Bβ(n)

pw[u−Hns] du. (1.39)

Using definitions (1.39) and (1.37), we can write the pertinent log-likelihood function as

L(s) =
N−1∑
n=0

∑

β∈B
δ(b(n)− β) ln qβ(n), (1.40)
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and the MLE ofs as
ŝ = arg max

s
L(s) . (1.41)

The nonlinear search needed to obtainŝ could be challenging. Fortunately, as the following proposi-
tion asserts, under certain conditions that are usually met in practice,L(s) is concave which implies
that computationally efficient search algorithms can be invoked to find its global maximum (Ribeiro
and Giannakis 2006b).

Proposition 1.4.1 If the MLE problem in(1.41)satisfies the conditions:

[c1] The noise pdfpw(w) is log-concave (Boyd and Vandenberghe 2004, p.104)

[c2] The regionsBk(n) are chosen as half-spaces.

thenL(s) in (1.40)is a concave function ofs.

Note that [c1] is satisfied by common noise pdfs, including the multivariate Gaussian (Boyd and
Vandenberghe 2004, p.104). On the other hand, [c2] places a constraint in the regions defining the
binary observations, which is simply up to the designer’s choice. The merits of having a concave
log-likelihood function are summarized in the following remark.

Remark 3 The numerical search needed to obtainŝ could be challenged either by the multimodal
nature ofL(s) or by numerical ill-conditioning caused by e.g., saddle points. But when the log-
concavity conditions in Proposition 1.4.1 are satisfied, computationally efficient search algorithms
like e.g., Newton’s method are guaranteed to converge to the global maximum (Boyd and Vanden-
berghe 2004, Chap. 2).

1.4.1 Colored Gaussian Noise

Analyzing the performance of the MLE in (1.41) is only possible asymptotically (asN or SNR go
to infinity). Notwithstanding, when the noise is Gaussian, simplifications render variance analysis
tractable and lead to interesting guidelines for constructing the estimatorŝ.

Restrictpw(w) to the class of multivariate Gaussian pdfs, and letC(n) denote the noise covari-
ance matrix at sensorn. Assume that{C(n)}N−1

n=0 are known and let{(em(n), σ2
m(n))}M

m=1 be the
set of eigenvectors and associated eigenvalues

C(n) =
M∑

m=1

σ2
m(n)em(n)eT

m(n). (1.42)

For each sensor, we define a set ofK = M regionsBk(n) as half-spaces whose borders are hyper-
planes perpendicular to the covariance matrix eigenvectors; i.e.,

Bk(n) = {x ∈ RM | eT
k (n)x ≥ τk(n)}, k = 1, . . . ,K = M, (1.43)

Fig (1.5) (Right) depicts the regionsBk(n) in (1.43) forM = 2. Note that since each entry ofx(n)
offers a distinct scalar observation, the selectionK = M amounts to a bandwidth constraint of1 bit
per sensor per dimension.

The rationale behind this selection of regions is that the resultant binary observationsbk(n) are
independent, meaning thatPr{bk1(n)bk2(n)} = Pr{bk1(n)} Pr{bk2(n)} for k1 6= k2. As a result,
we have a total ofMN independent binary observations to estimates.
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Herein, the Bernoulli parametersqk(n) take on a particularly simple form in terms of the Gaus-
sian tail function

qk(n) =

∫

eT
k (n)u≥τk(n)

pw(u−Hns) du = Q

(
τk(n)− eT

k (n)Hns
σk(n)

)
:= Q[∆k(n)], (1.44)

where we introduced theσ-distancebetweenHns and the corresponding threshold∆k(n) := [τk(n)
−eT

k (n)Hns]/σk(n).
Due to the independence among binary observations we havep(b(n)) =

∏K
k=1 [qk(n)]bk(n)

[1− qk(n)]1−bk(n), leading to

L(s) =
N−1∑
n=0

K∑

k=1

bk(n) ln qk(n) + [1− bk(n)] ln[1− qk(n)], (1.45)

whoseNK independentsummands replace theN2K dependentterms in (1.40).
Since the regionsBk(n) are half-spaces, Proposition 1.4.1 applies to the maximization of (1.45)

and guarantees that the numerical search for theŝ estimator in (1.45) is well-conditioned and will
converge to the global maximum. More important, it will turn out that these regions render finite
sample performance analysis of the MLE in (1.41), tractable. In particular, it is possible to derive
a closed-form expression for the Fisher Information Matrix (FIM) (Kay 1993, p.44), as we outline
next; see (Ribeiro and Giannakis 2006b) for detailed derivations.

Proposition 1.4.2 The FIM,I, for estimatings based on the binary observations obtained from the
regions defined in(1.43), is given by

I =
N−1∑
n=0

HT
n

[
K∑

k=1

e−∆2
k(n)ek(n)eT

k (n)
2πσ2

k(n)Q(∆k(n))[1−Q(∆k(n))]

]
Hn. (1.46)

Inspection of (1.46) shows that the variance of the MLE in (1.41) depends on the signal function
containing the parameter of interest (viaHn), the noise structure and power (via the eigenvalues
and eigenvectors), and the selection of the regionsBk(n) (via theσ-distances). Among these three
factors only the last one is inherent to the bandwidth constraint, the other two being common to the
estimator that is based on the originalx(n) observations.

The last point is clarified if we consider the FIMIx for estimatings given the unquantized vector
x(n). This matrix can be shown to be ((Ribeiro and Giannakis 2006b, Appendix. D)),

Ix =
N−1∑
n=0

HT
n

[
M∑

m=1

em(n)eT
m(n)

σ2
m(n)

]
HT

n . (1.47)

If we define the equivalent noise powers as

ρ2
k(n) :=

2πQ(∆k(n))[1−Q(∆k(n))]
e−∆2

k(n)
σ2

k(n), (1.48)

we can rewrite (1.46) in the form

I =
N−1∑
n=0

HT
n

[
K∑

k=1

ek(n)eT
k (n)

ρ2
k(n)

]
HT

n , (1.49)

which except for the noise powers has form identical to (1.47). Thus, comparison of (1.49) with (1.47)
reveals that from a performance perspective,the use of binary observations is equivalent to an
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φ (n)
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v

Figure 1.6 The vector flowv incises over a certain sensor capable of measuring the normal component ofv.

increase in the noise variancefrom σ2
k(n) to ρ2

k(n), while the rest of the problem structure remains
unchanged. Since we certainly want the equivalent noise increase to be as small as possible, mini-
mizing (1.48) over∆k(n) calls for this distance to be set to zero, or equivalently, to select thresholds
τk(n) = eT

k (n)Hns. In this case, the equivalent noise power is

ρ2
k(n) =

π

2
σ2

k(n). (1.50)

Surprisingly, even in the vector case a judicious selection of the regionsBk(n) can result in a very
small penalty (π/2) in terms of the equivalent noise increase. Similar to Section 1.2, we can thus
claim that while requiring the transmission of 1 bit per sensor per dimension, the variance of the
MLE in (1.41), based on{b(n)}N−1

n=0 , yields a variance close to the clairvoyant estimator’s variance
– which is based on{x(n)}N−1

n=0 – for low-to-medium Q-SNR problems.

Example 1.4.3 Suppose we wish to estimate a vector flow using incidence observations. With refer-
ence to Fig. 1.6, consider the flow vectorv := (v0, v1)T , and a sensor positioned at an angleφ(n)
with respect to a known reference direction. We will rely on a set of so called incidence observations
{x(n)}N−1

n=0 measuring the component of the flow normal to the corresponding sensor

x(n) := 〈v,n〉+ w(n) = v0 sin[φ(n)] + v1 cos[φ(n)] + w(n), (1.51)

where〈, 〉 denotes inner product,w(n) is zero-mean AWGN, andn = 0, 1, . . . , N − 1 is the sensor
index. The model(1.51)applies to the measurement of hydraulic fields, pressure variations induced
by wind and radiation from a distant source (Mainwaring et al. 2002).

Estimatingv fits the framework presented in this section requiring the transmission of a single
binary observation per sensor,b1(n) = 1{x(n) ≥ τ1(n)}. The FIM in(1.49)is easily found to be

I =
N−1∑
n=0

1
ρ2
1(n)

(
sin2[φ(n)] sin[φ(n)] cos[φ(n)]

sin[φ(n)] cos[φ(n)] cos2[φ(n)]

)
. (1.52)

Furthermore, sincex(n) in (1.51) is linear in v and the noise pdf is log-concave (Gaussian) the
log-likelihood function is concave as asserted by Proposition 1.4.1.

Suppose that we are able to place the thresholds optimally as implied byτ1(n) = v0 sin[φ(n)]
+v1 cos[φ(n)], so thatρ2

1(n) = (π/2)σ2. If we also make the reasonable assumption that the angles
are random and uniformly distributed,φ(n) ∼ U [−π, π], then the average FIM turns out to be:

Ī =
2

πσ2

(
N/2 0
0 N/2

)
. (1.53)
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Figure 1.7 Average variance for the components ofv. The empirical as well as the bound (1.54) are compared with the
analog observations based MLE (v = (1, 1), σ = 1).

But according to the law of large numbersI ≈ Ī, and the estimation variance will be approximately

var(v0) = var(v1) =
πσ2

N
. (1.54)

Fig. 1.7 depicts the bound(1.54), as well as the simulated variancesvar(v̂0) andvar(v̂1) in com-
parison with the clairvoyant MLE based on{x(n)}N−1

n=0 , corroborating our analytical expressions.

1.5 Maximum a Posteriori Probability Estimation

The parameter of interests was so far assumed deterministic. Consequently, the MLE was con-
sidered as the optimum estimator and the CRLB as the ultimate performance limit. An alternative
formulation is to use available a priori knowledge to models as a random vector parameter with a pri-
ory pdfps(s), estimates using a maximum a posteriori (MAP) probability estimator, and regard the
MSE as the performance indicator. We will show in this section that despite the different formulation
we can obtain results similar to those described in Section 1.4.

Let us recall the observation model in (1.35), denote the mean ofs asE(s) := µs and sup-
pose the noise vector is white and Gaussian i.e.,E[w(n)wT (n)] = diag[σ2

1(n), . . . , σ2
M (n)]. In this

case, we writeHn := [hn1, . . . ,hnM ]T and define the (independent) binary observationsb(n) :=
[b1(n), . . . , bM (n)] as

bk(n) := 1{xk(n) > hT
nkµs} , (1.55)

for k ∈ [1,M ]. The resemblance with the problem of Section 1.4 is clear and not surprisingly the
following proposition holds true (Shaet al.2005).

Proposition 1.5.1 Consider a vector parameters, with log-concave prior distributionps(s),the
model in(1.35)with pw(w) white Gaussian withE[w(n)wT (n)] = diag[σ2

1(n), . . . , σ2
M (n)]; and
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binary messages{b(n)}N−1
n=0 as in(1.55). Then, if we define the per sensor log-likelihoodLn(s) as

Ln(s) =
M∑

k=1

ln Q

(
bk(n)hT

nk [µs − s]
σk(n)

)
. (1.56)

(a) The MAP estimator ofs based on{b(n)}N−1
n=0 is given by

ŝMAP = arg max

[
N−1∑
n=0

Ln(s)

]
+ ln[ps(s)] := arg max L(s). (1.57)

(b) The log-likelihoodL(s) is a concave function ofs.

Proposition 1.5.1 establishes that at least for white Gaussian noise the comments in Remark 3 carry
over to MAP based parameter estimation. In fact, Proposition 1.5.1 has been established under much
more general assumptions, including the case of colored Gaussian noise (Shaet al.2005).

1.5.1 Mean-Squared Error

For estimation of random parameters bounds on the MSE can be obtained by computing the pertinent
Fisher Information Matrix (FIM)J that can be expressed as the sum of two parts (Van Trees 1968,
p. 84):

J = JD + JP , (1.58)

whereJD represents information obtained from the data, andJP capturesa priori information. The
MSE of theith component ofs is bounded by theith diagonal element ofJ; i.e.,

MSE(ŝi) ≥
[
J−1

]
ii

. (1.59)

Also, note that for any FIM,[J−1]ii ≥ 1/[J]ii (Kay 1993). This property yields a different bound
onMSE(ŝi)

MSE(ŝi) ≥ 1
[J ]ii

, (1.60)

which is easier to compute although not tight in general.
The following proposition provides a bound (exact value) on[J]ii when binary (analog-amplitude)

observations are used (Shaet al.2005).

Proposition 1.5.2 Consider the signal model in (1.35) withw(n) white Gaussian with covariance
matrixE[w(n)wT (n)] = diag[σ2

1(n), . . . , σ2
M (n)] and Gaussian prior distribution with covariance

E[ssT ] = Cs. Write (1.35) componentwise asxk(n) = hT
nks + wk(n). Then, theith diagonal ele-

ment of the FIMJ in (1.58)satisfies:

(a) when binary observations as in (1.55) are used

[J ]ii ≥
2
π

N−1∑
n=0

M∑

k=1

h2
nki

σk(n)
√

σ2
k(n) + hT

nkCshnk

+
[
C−1

s

]
ii

(1.61)

(b) when analog-amplitude observations are used

[JCV]ii =
N−1∑
n=0

M∑

k=1

h2
nki

σ2
k(n)

+
[
C−1

s

]
ii

. (1.62)
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Comparing (1.61) with (1.62) the analogy with the result in Proposition 1.4.2 becomes clear. Indeed,
we can define the equivalent noise powers as

ρ2
k(n) =

π

2
σ2

w

√
1 +

hT
nkCshnk

σ2
k(n)

(1.63)

so that we can express the bound in (1.61) as

[JCV]ii =
N−1∑
n=0

M∑

k=1

h2
nki

ρ2
k(n)

+
[
C−1

s

]
ii

. (1.64)

As in the case of deterministic parameters, the effect of quantization in MSE is equivalent to a
noise power increase fromσ2

k(n) to ρ2
k(n) [c.f. (1.62) and (1.64)]. In the case of random signals,

the average SNR of the observationsxk(n) is well defined and given byγnk := hT
nkCshnk/σ2

k(n).
Using the latter and (1.64), we infer that the equivalent noise increase is

Lk(n) :=
ρ2

k(n)
σ2

k(n)
=

π

2

√
1 + γnk. (1.65)

Note that asγnk → 0, the information lossLk(n) → π/2 corroborating the results in Section 1.4
for deterministic parameter estimation. In any event, it is worth re-iterating the remarkable fact that
for low to medium SNRγ, the equivalent noise increaseLK is small.

1.6 Dimensionality Reduction for Distributed Estimation

In this section, we consider linear distributed estimation of random signals when the sensors observe
and transmit analog-amplitude data. Consider the WSN depicted in Fig. 1.8, comprisingN sensors
linked with an FC. Each sensor, say thenth one, observes anMn × 1 vectorxn that is correlated
with a p× 1 random signal of interests. Through akn ×Mn fat matrix Cn, each sensor trans-
mits a compressedkn × 1 vectorCnxn, using e.g., multicarrier modulation with one entry riding
per subcarrier. Low-power and bandwidth constraints at the sensors encourage transmissions with
kn ¿ Mn, while linearity in compression and estimation are well motivated by low-complexity
requirements. Furthermore, we assume that:

(a1) No information is exchanged among sensors, and each sensor-FC link comprises akn × kn

full rank fading multiplicative channel matrixDn along with zero-mean additive FC noise
zn, which is uncorrelated withxn, Dn, and across channels; i.e., noise covariance matrices
satisfyΣzn1zn2

= 0 for n1 6= n2. Matrices{Dn,Σznzn}N−1
n=0 are available at the FC.

(a2) Dataxn and the signal of interests are zero-mean with full rank auto- and cross-covariance
matricesΣss, Σsxn andΣxn1xn2

∀ n1, n2 ∈ [0, N − 1], all of which are available at the FC.

In multicarrier links, full rank of the channel matrices{Dn}N−1
n=0 is ensured if sensors do not

transmit over subcarriers with zero channel gain. Matrices{Dn}N−1
n=0 can be acquired via training,

and likewise the signal and noise covariances in (a1) and (a2) can be estimated via sample averaging
as usual. With multicarrier (and generally any orthogonal) sensor access, the noise uncorrelatedness
across channels is also well justified. Notice that unlike (Gastparet al.2004; Luoet al.2005; Zhang
et al.2003; Zhuet al.2005), we neither confine ourselves to a linear signal-plus-noise modelxn =
Hns + wn, nor we invoke any assumption on the distribution (e.g., Gaussianity) of{xn}N−1

n=0 and
s. Equally important, we do not assume ideal channel links.
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Figure 1.8 Distributed setup for estimating a random signals

Sensors transmit over orthogonal channels so that the FC separates and concatenates the received
vectors{yn(Cn) = DnCnxn + zn}N−1

n=0 , to obtain the
∑N−1

n=0 kn ×1 vector

y(C0, . . . ,CN−1) = diag(D0C0, . . . ,DN−1CN−1)x + z, (1.66)

Left multiplying y by a p× (
∑N−1

n=0 kn) matrix B, we form the linear estimatês of s. For a
prescribed powerPn per sensor, our problem is to obtain under (a1)-(a2) MSE optimal matrices
{Co

n}N−1
n=0 andBo; i.e., we seek (tr denotes matrix trace)

(Bo, {Co
n}N−1

n=0 ) = arg minB,{Cn}N−1
n=0

E[‖s−By(C0, . . . ,CN−1)‖2],
s. to tr(CnΣxnxnCT

n ) ≤ Pn, n ∈ {0, . . . , N − 1}. (1.67)

1.6.1 Decoupled Distributed Estimation-Compression

We consider first the case whereΣxnxm ≡ 0,∀n 6= m, which shows up e.g., when matrices{Hn}N−1
n=0

in the linear modelxn = Hns + wn are mutually uncorrelated and also uncorrelated withwn.
Then, the multi-sensor optimization task in (1.67) reduces to a set ofN decoupled problems. Specif-
ically, it is easy to show that the cost function in (1.67) can be written as (Schizaset al.2005b)

J(B, {Cn}N−1
n=0 ) =

∑N−1
n=0 E[‖s−Bn(DnCnxn + zn)‖2]− (N − 1)tr(Σss) (1.68)

whereBn is the p× kn submatrix ofB := [B0 . . .BN−1]. As the nth non-negative summand
depends only onBn andCn, the MSE optimal matrices are given by

(Bo
n,Co

n) = arg minBn,Cn E[‖s−Bn(DnCnxn + zn)‖2],
s. to tr(CnΣxnxnCT

n ) ≤ Pn, n ∈ {0, . . . , N − 1}. (1.69)

Since the cost function in (1.69) corresponds to a single-sensor setup (N = 1), we will drop the
subscriptn for notational brevity and writeBn = B,Cn = C,xn = x, zn = z, Pn = P andkn =
k. The Lagrangian for minimizing (1.68) can be easily written as:

J(B,C, µ) = Jo + tr(BΣzzBT ) + µ[tr(CΣxxCT )− P ]

+ tr[(Σsx −BDCΣxx)Σ−1
xx (Σxs −ΣxxCT DT BT )], (1.70)

whereJo := tr(Σss −ΣsxΣ−1
xx Σxs) is the minimum attainable MMSE for linear estimation ofs

based onx.
In what follows, we derive a simplified form of (1.70) the minimization of which will provide

closed-form solutions for the MSE optimal matricesBo andCo. Aiming at this simplification, con-
sider the SVDΣsx = UsxSsx VT

sx, and the eigen-decompositionsΣzz = QzΛzQT
z andDT Σ−1

zz D
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= QzdΛzdQT
zd, whereΛzd := diag(λzd,1 · · ·λzd,k) andλzd,1 ≥ · · · ≥ λzd,k > 0. Notice thatλzd,i

captures the SNR of theith entry in the received signal vector at the FC. Further, defineA :=
QT

x VsxST
sx SsxVT

sxQx with ρa := rank(A) = rank(Σsx), andAx := Λ−1/2
x AΛ−1/2

x with corre-
sponding eigen-decompositionAx = QaxΛaxQax, whereΛax = diag(λax,1, · · · , λax,ρa , 0, · · · , 0)
andλax,1 ≥ . . . ≥ λax,ρa

> 0. Moreover, letVa := Λ−1/2
x Qax denote the invertible matrix which

simultaneously diagonalizes the matricesA andΛx. Since matrices (Qzd,Qx,Va,Usx,Λzd,Qzd,
D,Σzz) are all invertible, for every matrixC (or B) we can clearly find a unique matrixΦC (cor-
respondinglyΦB) that satisfies:

C = QzdΦCVT
a QT

x , B = UsxΦBΛ−1
zd QT

zdD
T Σ−1

zz , (1.71)

whereΦC := [φc,ij ] andΦB have sizesk ×M andp× k, respectively. Using (1.71), the Lagrangian
in (1.70) becomes

J(ΦC , µ) = Jo + tr(Λax) + µ(tr(ΦCΦT
C)− P ) (1.72)

−tr
(
(Λ−1

zd + ΦCΦT
C)−1ΦCΛaxΦT

C

)
.

Applying the well known Karush-Kuhn-Tucker (KKT) conditions (e.g., (Boyd and Vandenberghe
2004, Ch. 5)) that must be satisfied at the minimum of (1.72), it can be shown that the matrixΦo

C

minimizing (1.72), is diagonal with diagonal entries (Schizaset al.2005b)

φo
c,ii =




±

√(
λax,i

µoλzd,i

)1/2

− 1
λzd,i

, 1 ≤ i ≤ κ

0, κ + 1 ≤ i ≤ k
(1.73)

whereκ is the maximum integer in[1, k] for which {φo
c,ii}κ

i=1 are strictly positive, or, rank(Φo
C)

= κ; andµo is chosen to satisfy the power constraint
∑κ

i=1(φ
o
c,ii)

2 = P as

µo =
(
∑κ

i=1(λax,iλ
−1
zd,i)

1/2)2

(P +
∑κ

i=1 λ−1
zd,i)2

. (1.74)

When k > ρa, the MMSE remains invariant (Schizaset al. 2005b); thus, it suffices to consider
k ∈ [1, ρa]. Summarizing, it has been established that:

Proposition 1.6.1 Under (a1), (a2), and fork ≤ ρa, the matrices minimizingJ(Bp×k,Ck×M ) =
E[‖s−Bp×k(DCk×Mx + z)‖2], subject to tr(Ck×MΣxx CT

k×M ) ≤ P , are:

Co = QzdΦo
CVT

a QT
x , (1.75)

Bo = ΣsxQxVaΦo
C

T
(
Φo

CΦo
C

T + Λ−1
zd

)−1

Λ−1
zd QT

zdD
T Σ−1

zz ,

whereΦo
C is given by (1.73), and the corresponding Lagrange multiplierµo is specified by (1.74).

The MMSE is

Jmin(k) = Jo +
ρa∑

i=1

λax,i −
k∑

i=1

λax,i(φo
c,ii)

2

λ−1
zd,i + (φo

c,ii)
2 . (1.76)

According to Proposition 1.6.1, the optimal weight matrixΦo
C in Co distributes the given power

across the entries of the pre-whitened vectorVT
a Qxx at the sensor in a waterfilling-like manner so as

to balance channel strength and additive noise variance at the FC with the degree of dimensionality
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reduction that can be afforded. It is worth mentioning that (1.73) dictates a minimum power per
sensor. Specifically, in order to ensure that rank(Φo

C) = κ the power must satisfy

P >

∑κ
i=1(λax,iλ

−1
zd,i)

1/2

√
λax,κλzd,κ

−
κ∑

i=1

λ−1
zd,i. (1.77)

The optimal matrices in Proposition 1.6.1 can be viewed as implementing a two-step scheme, where:
i) s is estimated based onx at the sensor using the LMMSE estimateŝLM = ΣsxΣ−1

xx x; and
ii) compress and reconstructŝLM using the optimal matricesCo andBo implied by Proposition
1.6.1 after replacingx with ŝLM . For this estimate-first compress-afterwards (EC) interpretation,
(Schizaset al.2005b) have proved that:

Corollary 1.6.2 For k ∈ [1, ρa], thek ×M matrix in (1.75) can be written asCo = ĈoΣsx Σ−1
xx ,

whereĈo is thek × p optimal matrix obtained by Proposition 1.6.1 whenx = ŝLM . Thus, the EC
scheme is MSE optimal in the sense of minimizing (1.68).

Another interesting feature of the EC scheme implied by Proposition 1.6.1 is that the MMSE
Jmin(k) is non-increasing with respect to the reduced dimensionalityk, given a limited power budget
per sensor. Specifically, (Schizaset al.2005b) have shown that that:

Corollary 1.6.3 If Co
k1×M andCo

k2×M are the optimal matrices determined by Proposition 1.6.1
with k1 < k2, under the same channel parametersλzd,i for i = 1, . . . , k1, and common powerP ,
the MMSE in (1.76) is non-increasing; i.e.,Jmin(k1) ≥ Jmin(k2) for k1 < k2.

Notice that Corollary 1.6.3 advocates the efficient power allocation that the EC scheme performs
among the compressed components. To assess the difference in handling noise effects, it is useful
compare the EC scheme with the methods in (Zhuet al. 2005) and (Zhanget al. 2003), which
we abbreviate as C′E and C′′E because they perform compression (C) followed by estimation (E).
Although C′E and C′′E have been derived under ideal link conditions, they can be modified them
here to account forDn. The comparisons will further include an option we term CE, which com-
presses first the data and reconstructs them at the FC usingCo andBo found by (1.75) after setting
s = x, and then estimatess based on the reconstructed data vectorx̂. For benchmarking purposes,
we also depictJo, achieved when estimatings based on uncompressed data transmitted over ideal
links. Fig. 1.9 (Left) depicts the MMSE versusk for Jo, EC, CE, C′E and C′′E for a linear model
x = Hs + w, whereM = 50 andp = 10. The matricesH,Σss andΣww, are selected randomly
such that tr(HΣssHT )/tr(Σww) = 2, while s andw are uncorrelated. We setΣzz = σ2

zIk, and
selectP such that10 log10(P/σ2

z) = 7dB. As expectedJo benchmarks all curves, while the worst
performance is exhibited by C′E. Albeit suboptimal, CE comes close to the optimal EC. Contrasting
it with the increase C′′E exhibits in MMSE beyond a certaink, we can appreciate the importance of
coping with noise effects. This increase is justifiable since each entry of the compressed data in C′′E
is allocated a smaller portion of the given power ask grows. In EC however, the quality of channel
links and the available power determine the number of the compressed components, and allocate
power optimally among them.

1.6.2 Coupled Distributed Estimation-Compression

In this section, we allow the sensor observations to be correlated. BecauseΣxx is no longer block
diagonal, decoupling of the multi-sensor optimization problem cannot be effected in this case. The
pertinent MSE cost is [c.f. (1.67)]

J({Bn,Cn}N−1
n=0 ) = E[‖s−∑N−1

n=0 Bn(DnCnxn + zn)‖2]. (1.78)
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Minimizing (1.78) does not lead to a closed-form solution and incurs complexity that grows expo-
nentially withN (Luo et al.2005). For this reason, we resort to iterative alternatives which converge
at least to a stationary point of the cost in (1.78). To this end, let us suppose temporarily that matrices
{Bl}N−1

l=0,l 6=n and{Cl}N−1
l=0,l 6=n are fixed and satisfy the power constraints tr(ClΣxlxl

CT
l ) = Pl, for

l = 0, . . . , N − 1 andl 6= n. Upon defining the vector̄sn := s−∑N−1
l=0,l 6=n(BlDlClxl + Blzl) the

cost in (1.78) becomes

J(Bn,Cn) = E[‖s̄n −BnDnCnxn −Bnzn‖2] , (1.79)

which being a function ofCn andBn only, falls under the realm of Proposition 1.6.1. This means
that when{Bl}N−1

l=0,l 6=n and {Cl}N−1
l=0,l 6=n are given, the matricesBn andCn minimizing (1.79)

under the power constraint tr(CnΣxnxnCT
n ) ≤ Pn can be directly obtained from (1.75), after setting

s = s̄n, x = xn, z = zn andρa = rank(Σs̄nxn
) in Proposition 1.6.1. The corresponding auto- and

cross- covariance matrices needed must also be modified asΣss = Σs̄ns̄n
andΣsxn

= Σs̄nxn
. The

following result can thus be established for coupled sensor observations:

Proposition 1.6.4 If (a1) and (a2) are satisfied, andkn ≤ rank(Σs̄nxn
), then for given matrices

{Bl}N−1
l=0,l 6=n and {Cl}N−1

l=0,l 6=n satisfying tr(ClΣxlxl
CT

l ) = Pl, the optimalBo
n and Co

n matrices

minimizingE[‖s−∑N−1
l=0 Bl(DlClxl + zl)‖2] are provided by Proposition 1.6.1, after settingx =

xn, s = s̄n and applying the corresponding covariance modifications.

Proposition 1.6.4 suggests Algorithm 1 for distributed estimation in the presence of fading and
FC noise. Notice that Algorithm 1 belongs to the class of block coordinate descent iterative schemes.

Algorithm 1 :

Initialize randomly the matrices{C(0)
n }N−1

n=0 and{B(0)
n }N−1

n=0 , such that tr(C(0)
n ΣxnxnC(0)T

n ) =
Pn.
i = 0
repeat

i = i + 1
for n = 0,N − 1 do

Given the matricesC(i)
0 ,B(i)

0 , . . . ,C(i)
n−1,B

(i)
n−1,C

(i−1)
n+1 ,B(i−1)

n+1 , . . . ,C(i−1)
N−1 ,B(i−1)

N−1 deter-

mineC(i)
n ,B(i)

n via Proposition 1.6.1
end for

until |MSE(i) −MSE(i−1)| < ε for given toleranceε

At every stepn during theith iteration, it yields the optimal pair of matricesCo
n,Bo

n, treating the rest
as given. Thus, the MSE(i) cost per iteration is non-increasing and the algorithm always converges
to a stationary point of (1.78). Beyond its applicability to possibly non-Gaussian and nonlinear data
models, it is the only available algorithm for handling fading channels and generally colored FC
noise effects in distributed estimation.

Next, we illustrate through a numerical example the MMSE performance of Algorithm 1 in a
3-sensor setup using the same linear model as in Section 1.6.1, while settingM0 = M1 = 17 and
M2 = 16. FC noisezn is white with varianceσ2

zn
. The powerPn and varianceσ2

zn
are chosen such

that10 log10(P/σ2
zn

) = 13dB, for n = 0, 1, 2, andε = 10−3. Fig. 1.9 (Right) depicts the MMSE as
a function of the total numberktot =

∑2
n=0 kn of compressed entries across sensors for: i) a central-

ized EC setup for which a single (virtual) sensor (N = 1) has available the data vectors of all three
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Figure 1.9 MMSE comparisons versusk for a centralized,L = 1 (Left), and a distributed 3-sensor setup (Right).

sensors; ii) the estimator returned by Algorithm 1; iii) the decoupled EC estimator which ignores
sensor correlations; iv) the C′E estimator and v) an iterative estimator developed in (Schizaset al.
2005b), denoted here as EC-d, which similar to C′E accounts for fading but ignores noise. Interest-
ingly, the decentralized Algorithm 1 comes very close to the hypothetical single-sensor bound of the
centralized EC estimator, while outperforming the decoupled EC one.

1.7 Distortion-Rate Analysis

In contrast to the previous section, here we consider digital-amplitude data transmission (bits) from
the sensors to the FC. In such a setup, all the sensors must adhere to a rate constraint. In order to
determine the minimum possible distortion (MSE) between the signal of interest and its estimate at
the FC, under encoding rate constraints, we perform Distortion-Rate (D-R) analysis and determine
bounds for the D-R function.

Fig. 1.10 (Left) depicts a WSN comprisingN sensors that communicate with an FC. Each sen-
sor, say thenth, observes anMn × 1 vectorxn(t) which is correlated with ap× 1 random signal
(parameter vector) of interests(t), wheret denotes discrete time. Similar to (Oohama 1998; Pandya
et al.2004; Viswanathan and Berger 1997), we assume that:

(a3) No information is exchanged among sensors and the links with the FC are noise-free.

(a4) The random vectors(t) is generated by a stationary Gaussian vector memoryless source with
s(t) ∼ N (0,Σss); the sensor data{xn(t)}N−1

n=0 adhere to the linear-Gaussian modelxn(t) =
Hns(t) + wn(t), wherewn(t) denotes additive white Gaussian noise (AWGN); i.e.,wn(t) ∼
N (0, σ2I); noisewn(t) is uncorrelated across sensors, time and withs; andHn as well as
(cross-) covariance matricesΣss, Σsxn andΣxnxm are known∀ n,m ∈ {0, . . . , N − 1}.

Notice that (a3) assumes that sufficiently strong channel codes are used; while whiteness ofwn(t)
and the zero-mean assumptions in (a4) are made without loss of generality. The linear model in (a4)
is commonly encountered in estimation and in a number of cases it even accurately approximates
non-linear mappings; e.g., via a first-order Taylor expansion in target tracking applications. Although
confining ourselves to Gaussian vectorsxn(t) is of interest on its own, it can be shown, similarly
to (Berger 1971, p. 134), that the D-R functions obtained for Gaussian data bound from above their
counterparts for non-Gaussian sensor dataxn(t).
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Figure 1.10 (Left): Distributed setup.; (Right): Test channel forx Gaussian in a point-to-point link.

Blocksx(L)
n := {xn(t)}L

t=1, comprisingL consecutive time instantiations of the vectorxn(t),
are encoded per sensor to yield each encoder’s outputu(L)

n = f (L)
n (x(L)

n ), n = 0, . . . , N − 1. These
outputs are communicated through ideal orthogonal channels to the FC. There,u(L)

n ’s are decoded to
obtain an estimate ofs(L) := {s(t)}L

t=1 denoted aŝs(L)
R (u(L)

0 , . . . ,u(L)
N−1) = g(L)

R (x(L)
0 , . . . ,x(L)

N−1),
sinceu(L)

n is a function ofx(L)
n . The rate constraint is imposed through a bound on the cardinality of

the range of the sensor encoding functions, i.e., the cardinality of the range off (L)
n must be no greater

than2LRn , whereRn is the available rate at the encoder of thenth sensor. The sum rate satisfies the
constraint

∑N−1
n=0 Rn ≤ R, whereR is the total available rate shared by theN sensors. This setup is

precisely the vector Gaussian CEO problem in its most general form without any restrictions in the
number of observations and the number of parameters (Bergeret al.1996). Under this rate constraint,
we want to determine the minimum possible MSE distortion(1/L)

∑L
t=1 E[‖s(t)− ŝR(t)‖2] for

estimatings in the limit of infinite block-lengthL. WhenN = 1, a single-letter information the-
oretic characterization is known for the latter, but no simplification is known for the distributed
multi-sensor scenario.

1.7.1 Distortion-Rate for Centralized Estimation

Let us first specify the D-R function for estimatings(t) in a single-sensorsetup. The single-letter
characterization of the D-R function in this setup allow us to drop the time index. Here, all{xn}N−1

n=0

:= x are available to a single sensor, andx = Hs + w. We letρ := rank(H) denote the rank of
matrix H. The D-R function in such a scenario provides a lower (non-achievable) bound on the
MMSE that can be achieved in a multi-sensor distributed setup, where eachxn is observed by a
different sensor. Existing works treat the caseM = p (Sakrison 1968; Wolf and Ziv 1970), but here
we look for the D-R function regardless ofM, p, in the linear-Gaussian model framework.

D-R Analysis for Reconstruction

The D-R function for encoding a vectorx, with pdf p(x), using rateR at an individual sensor, and
reconstructing it (in the MMSE sense) asx̂ at the FC, is given by (Cover and Thomas 1991, p. 342):

Dx(R) = min
p(x̂|x)

Ep(x̂,x)[‖x− x̂‖2], s. toI(x; x̂) ≤ R (1.80)

wherex ∈ RM andx̂ ∈ RM , and the minimization is w.r.t. the conditional pdfp(x̂|x). Let Σxx =
QxΛxQT

x denote the eigenvalue decomposition ofΣxx, whereΛx = diag(λx,1 · · · λx,M ) and
λx,1 ≥ · · · ≥ λx,M > 0.

For x Gaussian,Dx(R) can be determined by applying rwf to the pre-whitened vectorxw :=
QT

x x (Cover and Thomas 1991, p. 348). For a prescribed rateR, it turns out that∃ k such that
the firstk entries{xw(i)}k

i=1 of xw are encoded and reconstructed independently from each other
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using rate{Ri = 0.5 log2 (λx,i/d(k, R))}k
i=1, whered(k,R) =

(∏k
i=1 λx,i

)1/k

2−2R/k with R =
∑k

i=1 Ri; and the lastM − k entries ofxw are assigned no rate; i.e.,{Ri = 0}M
i=k+1. The cor-

responding MMSE for encodingxw(i), the ith entry ofxw, under a rate constraintRi, is Di =
E[‖xw(i)− x̂w(i)‖2] = d(k, R) when i = 1, . . . , k; andDi = λx,i when i = k + 1, . . . , M . The
resultant MMSE (D-R function) is

Dx(R) = E[‖x− x̂‖2] = E[‖xw − x̂w‖2] = kd(k,R) +
∑M

i=k+1 λx,i. (1.81)

Especially ford(k, R), it follows thatmax({λx,i}M
i=k+1) ≤ d(k,R) < min{λx,1, . . . , λx,k}. Intu-

itively, d(k, R) is a threshold distortion determining which entries ofxw are assigned with nonzero
rate. The firstk entries ofxw with varianceλx,i > d(k, R) are encoded with non-zero rate, but the
lastM − k ones are discarded in the encoding procedure (are set to zero).

Associated with the rwf principle is the so called test channel; see e.g., (Cover and Thomas 1991,
p. 345). The encoder’s MSE optimal output isu = QT

x,kx + ζ, whereQx,k is formed by the firstk
columns ofQx, andζ models the distortion noise that results due to the rate-constrained encoding
of x. The zero-mean AWGNζ is uncorrelated withx and its diagonal covariance matrixΣζζ has
entries[Σζζ ]ii = λx,iDi/(λx,i −Di). The part of the test channel that takes as inputu and outputs
x̂, models the decoder. The reconstructionx̂ of x at the decoder output is

x̂ = Qx,kΘku = Qx,kΘkQT
x,kx + Qx,kΘkζ, (1.82)

whereΘk is a diagonal matrix with non-zero entries[Θk]ii = (λx,i −Di)/λx,i, i = 1, . . . , k.

D-R Analysis for Estimation

The D-R function for estimating a sources given observationx (where the source and observa-
tion are probabilistically drawn from the joint pdfp(x, s)) with rateR at an individual sensor, and
reconstructing it (in the MMSE sense) asx̂ at the FC is given by (Berger 1971, p. 79)

Ds(R) = min
p(ŝR|x)

Ep(ŝR,s)[‖s− ŝR‖2], s. toI(x; ŝR) ≤ R (1.83)

wheres ∈ Rp andŝR ∈ Rp, and the minimization is w.r.t. the conditional pdfp(ŝR|x). In order to
achieve the D-R function, one might be tempted to first compressx by applying rwf at the sensor,
without taking into account the data model relatings with x, and subsequently use the reconstructed
x̂ to form the MMSE conditional expectation estimateŝce = E[s|x̂] at the FC. An alternative option
would be to first form the MMSE estimatês = E[s|x], encode the latter using rwf at the sensor,
and after decoding at the FC, obtain the reconstructed estimateŝec. Referring as before the former
option asCompress-Estimate(CE), and to the latter asEstimate-Compress(EC), we are interested
in determining which one yields the smallest MSE under a rate constraintR. Another interesting
question is whether any of the CE and EC schemes enjoys MMSE optimality (i.e., achieves (1.83)).
With subscriptsce andec corresponding to these two options, let us also define the errorss̃ce :=
s− ŝce ands̃ec := s− ŝec.

For CE, we depict in Fig. 1.11 (Top) the test channel for encodingx via rwf, followed by
MMSE estimation ofs based on̂x. Suppose that when applying rwf tox with prescribed rateR,
the first kce components ofxw are assigned with non-zero rate and the rest are discarded. The
MMSE optimal encoder’s output for encodingx is uce = QT

x,kce
x + ζce. The covariance matrix

of ζce has diagonal entries[Σζceζce ]ii = λx,iD
ce
i /(λx,i −Dce

i ) for i = 1, . . . , kce, whereDce
i :=

E[(xw(i)− x̂w(i))2]. SinceDce
i =

(∏kce

i=1 λx,i

)1/kce

2−2R/kce when i = 1, . . . , kce and Dce
i =

λx,i, wheni = kce + 1, . . . , M , the reconstructed̂x in CE is [c.f. (1.82)]:

x̂ = Qx,kceΘceQT
x,kce

x + Qx,kceΘceζce, (1.84)
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Figure 1.11 (Top): Test channel for the CE scheme.; (Bottom): Test channel for the EC scheme.

where[Θce]ii = (λx,i −Dce
i )/λx,i, for i = 1, . . . , kce. Letting x̌ := QT

x x̂ = [x̌T
1 01×(M−kce)]T ,

with x̌1 := ΘceQT
x,kce

x + Θceζce, we have for the MMSE estimatêsce = E[s|x̂]

ŝce = E[s|QT
x x̂] = E[s|x̌1] = Σsx̌1Σ

−1
x̌1x̌1

x̌1, (1.85)

sinceQT
x is unitary and the lastM − kce entries ofx̌ are useless for estimatings. It has been

shown in (Schizaset al. 2005a) that the covariance matrixΣs̃ces̃ce := E[(s− ŝce)(s− ŝce)T ] =
Σss −Σsx̌1Σ

−1
x̌1x̌1

Σx̌1s of s̃ce is

Σs̃ces̃ce = Σss −ΣsxΣ−1
xx Σxs + ΣsxQx∆ceQT

x Σxs, (1.86)

where∆ce := diag
(
Dce

1 λ−2
x,1 · · ·Dce

N λ−2
x,M

)
.

In Fig. 1.11 (Bottom) we depict the test channel for the EC scheme. The MMSE estimateŝ =
E[s|x] is followed by the test channel that results when applying rwf to a pre-whitened version of
ŝ, with rateR. Let Σŝŝ = QŝΛŝQT

ŝ be the eigenvalue decomposition for the covariance matrix of
ŝ, whereΛŝ = diag(λŝ,1 · · ·λŝ,p) andλŝ,1 ≥ · · · ≥ λŝ,p. Suppose now that the firstkec entries of
ŝw = QT

ŝ ŝ are assigned with non-zero rate and the rest are discarded. The MSE optimal encoder’s
output is given byuec = QT

ŝ,kec
ŝ + ζec, and the estimatêsec is

ŝec = Qŝ,kecΘecQT
ŝ,kec

ŝ + Qŝ,kecΘecζec, (1.87)

whereQŝ,kec is formed by the firstkec columns ofQŝ. For thekec × kec diagonal matricessec

and Σζecζec we have[sec]ii = (λŝ,i −Dec
i )/λŝ,i and [Σζecζec ]ii = λŝ,iD

ec
i /(λŝ,i −Dec

i ), where

Dec
i := E[(ŝw(i)− ŝec,w(i))2], and̂sec,w := QT

ŝ ŝec. Recall also thatDec
i =

(∏kec

i=1 λŝ,i

)1/kec

2
−2R
kec

wheni = 1, . . . , kec andDec
i = λŝ,i, for i = kec + 1, . . . , p. Upon defining∆ec := diag

(
Dec

1 · · ·Dec
p

)
,

the covariance matrix of̃sec is given by (Schizaset al.2005a)

Σs̃ecs̃ec = Σss −ΣsxΣ−1
xx Σxs + Qŝ∆ecQT

ŝ . (1.88)

The MMSE associated with CE and EC is given, respectively, by [c.f. (1.86) and (1.88)]

Dce(R) := tr(Σs̃ces̃ce) = Jo + εce(R),

Dec(R) := tr(Σs̃ecs̃ec) = Jo + εec(R), (1.89)

whereεce(R) := tr(ΣsxQx∆ceQT
x Σxs), εec(R) := tr(Qŝ∆ecQT

ŝ ), and the quantityJo := tr(Σss −
ΣsxΣ−1

xx Σxs) is the MMSE achieved when estimatings based onx, without source encoding
(R →∞). SinceJo is common to both EC and CE it is important to compareεce(R) with εec(R) in
order to determine which estimation scheme achieves the smallest MSE. The following proposition
provides such an asymptotic comparison:
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Proposition 1.7.1 If R > Rth := 1
2 max {log2 ((

∏ρ
i=1 λx,i) /σ2ρ

)
, log2 ((

∏ρ
i=1 λŝ,i) / (λŝ,ρ)ρ)},

then it holds thatεce(R) = γ12−2R/M andεec(R) = γ22−2R/ρ, whereγ1 andγ2 are constants.

An immediate consequence of Proposition 1.7.1 is that the MSE for EC converges asR →∞
to Jo with rateO(2−2R/ρ). The MSE of CE converges likewise, but with rateO(2−2R/M ). For the
typical caseM > ρ, EC approaches the lower boundJo faster than CE, implying correspondingly
a more efficient usage of the available rateR. This is intuitively reasonable since CE compressesx,
which contains the noisew. Since the lastM − ρ eigenvalues ofΣxx equal the noise varianceσ2,
part of the available rate is consumed to compress the noise. On the contrary, the MMSE estimator
ŝ in EC suppresses significant part of the noise. For the special case of a scalar data model (M =
p = 1) it has been shown (Schizaset al. 2005a) thatDec(R) = Dce(R), while for the vector and
matrix models (M > 1 and/orp > 1) we have determined appropriate threshold ratesRth have been
determined such thatDce(R) > Dec(R) for R > Rth.

If the SNR is defined as SNR= tr(HΣssHT )/Mσ2, it is possible to compare the MMSE when
estimatings using the CE and EC schemes; see Fig. 1.12 (Left). WithΣss = σ2

sIp, p = 4 and
M = 40, we observe that beyond a threshold rate, the distortion of EC converges toJo faster than
that of CE, which corroborates Proposition 1.7.1.

The analysis so far raises the question whether EC is MSE optimal. We have seen that this is
the case when estimatings with a given rateR without forcing any assumption aboutM andp. A
related claim has been reported in (Sakrison 1968; Wolf and Ziv 1970) forM = p. The extension to
M 6= p established in (Schizaset al.2005a) can be summarized as follows:

Proposition 1.7.2 The D-R function when estimatings based onx can be expressed as

Ds(R) = min
p(ŝR|x)

I(x;ŝR)≤R

E[‖s− ŝR‖2] = E[‖s̃‖2] + min
p(ŝR|ŝ)

I(ŝ;ŝR)≤R

E[‖ŝ− ŝR‖2], (1.90)

whereŝ = ΣsxΣ−1
xx x is the MMSE estimator, and̃s is the corresponding MMSE.

Proposition 1.7.2 reveals that the optimal means of estimatings is to first form the optimal
MMSE estimatês and then apply optimal rate-distortion encoding to this estimate. The lower bound
on this distortion whenR →∞ is Jo = E[‖s̃‖2], which is intuitively appealing. The D-R function
in (1.90) is achievable, because the rightmost term in (1.90) corresponds to the D-R function for
reconstructing the MMSE estimatês which is known to be achievable using random coding; see
e.g., (Berger 1971, p. 66).

1.7.2 Distortion-Rate for Distributed Estimation

Let us now consider the D-R function for estimatings in a multi-sensor setup, under a total avail-
able rateR which has to be shared among all sensors. Because analytical specification of the D-R
function in this case remains intractable, we will present an alternating algorithm that numerically
determines an achievable upper bound for it. Combining this upper bound with the non-achievable
lower bound corresponding to an equivalent single-sensor setup, and applying the MMSE optimal
EC scheme, will provide a region where the D-R function lies in. For simplicity in exposition, we
confine ourselves to a two-sensor setup, but the results apply to any finiteN > 2.

To this end, consider the following single-letter characterization of the upper bound on the D-R
function:

D̄(R) = min
{p(un|xn)}1n=0,ŝR

Ep(s,{un}1n=0)
[‖s− ŝR‖2], s. toI(x; {un}1n=0) ≤ R, (1.91)
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where the minimization is w.r.t.{p(un|xn)}1n=0 andŝR := ŝR(u0,u1). Achievability ofD̄(R) can
be established by readily extending to the vector case the scalar results in (Chenet al.2004). To carry
out the minimization in (1.91), we will develop an alternating scheme wherebyu1 is treated as side
information that is available at the decoder when optimizing (1.91) w.r.t.p(u0|x0) andŝR(u0,u1).
The side informationu1 is considered as the output of an optimal rate-distortion encoder applied
to x1 for estimatings, without taking into accountx0. Sincex1 is Gaussian, the side information
will have the form (c.f. subsection 1.7.1)u1 = Q1x1 + ζ1, whereQ1 ∈ Rk1×M1 andk1 ≤ M1,
due to the rate constrained encoding ofx1. Recall thatζ1 is uncorrelated withx1 and Gaussian; i.e.,
ζ1 ∼ N (0,Σζ1ζ1).

Based onψ := [xT
0 uT

1 ]T , the optimal estimator fors is the MMSE one:̂s = E[s|ψ] = ΣsψΣ−1
ψψ

ψ = L0x0 + L1u1, whereL0, L1 arep×M0 andp× k1 matrices so thatΣsψΣ−1
ψψ = [L0 L1]. If

s̃ is the corresponding MSE, thens = ŝ + s̃, wherẽs is uncorrelated withψ due to the orthogonality
principle. Noticing also that̂sR(u0,u1) is uncorrelated with̃s because it is a function ofx0 andu1,
we haveE[‖s− ŝR(u0,u1)‖2] = E[‖ŝ− ŝR(u0,u1)‖2] +E[‖s̃‖2], or,

E[‖s− ŝR(u0,u1)‖2] = E[‖L0x0 − (ŝR(u0,u1)− L1u1)‖2] + E[‖s̃‖2]. (1.92)

Clearly, it holds thatI(x;u0,u1) = R1 + I(x0;u0)− I(u1;u0), whereR1 := I(x;u1) is the rate
consumed to form the side informationu1 and the rate constraint in (1.91) becomesI(x;u0,u1) ≤
R ⇔ I(x0;u0)− I(u1;u0) ≤ R−R1 := R0. The new signal of interest in (1.92) isL0x0; thus,
u0 has to be a function ofL0x0. Using also the fact thatx0 → L0x0 → u0 constitutes a Markov
chain, it is possible to obtain from (1.91) the D-R upper bound (Schizaset al.2005a):

¯̄D(R0) = E[‖s̃‖2] + min
p(u0|L0x0),ŝR

I(L0x0;u0)−I(u0;u1)≤R0

E[‖L0x0 − s̃R,01(u0,u1)‖2], (1.93)

wheres̃R,01(u0,u1) := ŝR(u0,u1)− L1u1. Through (1.93) we can determine an achievable D-R
region, having available rateR0 at the encoder and side informationu1 at the decoder. Sincex0 and
u1 are jointly Gaussian, the Wyner-Ziv result applies (Wyner and Ziv 1976), which allows one to
consider thatu1 is available both at the decoder and the encoder. This, in turn, permits re-writing
the (1.93) as (Schizaset al.2005a)

¯̄D(R0) = min
p(ŝR,01|s̃0)

I(s̃0;ŝR,01)≤R0

E[‖s̃0 − ŝR,01(u0,u1)‖2] + E[‖s̃‖2], (1.94)

whereŝR,01(u0,u1) = ŝR(u0,u1)− L1u1 − E[L0x0|u1] ands̃0 = L0x0 − E[L0x0|u1].
Notice that (1.94) is the D-R function for reconstructing the MSEs̃0 with rateR0. Sinces̃0 is

Gaussian, we can readily apply rwf to the pre-whitenedQT
s̃0

s̃0 for determining¯̄D(R0) and the corre-
sponding test channel that achieves¯̄D(R0). Through the latter, and considering the next eigenvalue
decompositionΣs̃0s̃0 = Qs̃0 diag(λs̃0,1 · · ·λs̃0,p)QT

s̃0
, it follows that the first encoder’s output that

minimizes (1.91) has the form:

u0 = QT
s̃0,k0

L0x0 + ζ0 = Q0x0 + ζ0, (1.95)

whereQs̃0,k0 denotes the firstk0 columns ofQs̃0 , k0 is the number ofQT
s̃0

s̃0 entries that are assigned
with non-zero rate, andQ0 := QT

s̃0,k0
L0. Thek0 × 1 AWGN ζ0 ∼ N (0,Σζ0ζ0) is uncorrelated

with x0. Additionally, we have[Σζ0ζ0 ]ii = λs̃0,iD
0
i /(λs̃0,i −D0

i ), whereD0
i =

(∏k0
i=1 λs̃0,i

)1/k0

2−2R0/k0 , for i = 1, . . . , k0, andD0
i = λs̃0,i wheni = k0 + 1, . . . , p. This way, we are able to deter-

mine alsop(u0|x0). The reconstruction function has the form:

ŝR(u0,u1) = Qs̃0,k0Θ0u0 + L0Σx0u1Σ
−1
u1u1

u1 + L1u1

−Qs̃0,k0Θ0QT
s̃0,k0

L0Σx0u1Σ
−1
u1u1

u1, (1.96)
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where[Θ0]ii = λs̃0,iD
0
i /(λs̃0,i −D0

i ), and the MMSE is¯̄D(R0) =
∑p

j=1 D0
j + E[‖s̃‖2].

The approach in this subsection can be applied in an alternating fashion from sensor to sensor
in order to determine appropriatep(un|xn), for n = 0, 1, andŝR(u0,u1) that at best globally mini-
mize (1.93). The conditional pdfs can be determined by finding the appropriate covariancesΣζnζn

.
Furthermore, by specifying the optimalQ0 andQ1, characterization of the encoders’ structure is
obtained. In Fig. 1.12 (Right), we plot the non-achievable lower bound which corresponds to one

Algorithm 2 :

Initialize Q(0)
0 ,Q(0)

1 ,Σ(0)
ζ0ζ0

,Σ(0)
ζ1ζ1

by applying optimal D-R encoding to each sensor’s test chan-
nel independently. For a total rateR, generateJ random increments{r(m)}J

m=0, such that
0 ≤ r(m) ≤ R and

∑M
m=0 r(m) = R. SetR0(0) = R1(0) = 0.

for j = 1,J do
SetR(j) =

∑j
l=0 r(l)

for n = 0,1 do
n̄ = |n− 1| %The complementary index
R0(j) = I(x;u(j)

n̄ )
We useQ(j−1)

n̄ ,Σ(j−1)
ζn̄ζn̄

, R(j), R0(j) to determineQ(j)
n , Σ(j)

ζnζn
and ¯̄D(Rn(j))

end for
Update matricesQ(j)

l ,Σ(j)
ζlζl

that result the smallest distortion̄̄D(Rl(j)), with l ∈ [0, 1]

SetRl(j) = R(j)− I(x;u(j)

l̄
) andRl̄(j) = I(x;u(j)

l̄
).

end for

sensor having available the entirex and using the optimal EC scheme. Moreover, we plot an achiev-
able D-R upper bound determined by letting then-th sensor form its local estimatêsn = E[s|xn],
and then apply optimal rate-distortion encoding toŝn. If ŝR,0 andŝR,1 are the reconstructed versions
of ŝ0 andŝ1, respectively, then the decoder at the FC forms the final estimateŝR = E[s|ŝR,0, ŝR,1].
We also plot the achievable D-R region determined numerically by Algorithm 2. For each rate, the
smallest distortion is recorded after500 executions of the algorithm simulated withΣss = Ip, p = 4,
andM0 = M1 = 20, at SNR= 2. We observe that the algorithm provides a tight upper bound of the
achievable D-R region, which combined with the non-achievable lower bound (solid line) effectively
reduces the ‘uncertainty region’ where the D-R function lies.

1.7.3 D-R Upper Bound via Convex Optimization

In this subsection we outline an alternative approach which relies on convex optimization tech-
niques to obtain numerically an upper bound of the D-R region (Xiaoet al. 2005b). The idea is to
calculate the Berger-Tung achievable D-R region (Berger 1977) for the vector Gaussian CEO prob-
lem, and subsequently determine the minimum sum rateRΣ =

∑N−1
n=0 Rn such that the estimation

MSE satisfies tr(E[(s− ŝR)(s− ŝR)T ]) < D, where ŝR = E[s|{un}N−1
n=0 ] and D is the desired

upper bound on the distortion. The Berger-Tung achievable region is calculated after having the
encoders’ output to have in formun = xn + ζn, whereζn ∼ N (0,Σζnζn) are independent ofxn,
for n = 0, 1, . . . , N − 1. Furthermore, the sum rate can be expressed as a function ofHn andΣζnζn

(Xiao et al.2005b)

RΣ = 0.5 log

(
det

(
Ip +

N−1∑
n=0

HT
n (IMn + Σζnζn)−1Hn

)
N−1∏
n=0

det(IMn + Σ−1
ζnζn

)

)
.



DISTRIBUTED ESTIMATION UNDER BANDWIDTH AND ENERGY CONSTRAINTS 29

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

Rate (bits)

D
is

to
rt

io
n 

(M
M

S
E

)
CE scheme
EC scheme
Lower bound on MSE, J

o

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

Rate (bits)

D
is

to
rt

io
n 

(M
in

im
um

 M
S

E
)

Decoupled EC
Upper bound determined by Alg. 2
Non−achievable lower bound

Figure 1.12 (Left): D-R region for EC and CE at SNR= 2; (Right): Distortion-rate bounds for estimatings in a two-
sensor setup.

The D-R upper bound is obtained as the optimal solution of the following minimization problem (º
denotes positive semidefiniteness)

min
{Σζnζn}N−1

n=0

RΣ, s. toΣζnζn º 0, tr(Σs̃Rs̃R
) ≤ D, (1.97)

whereΣs̃Rs̃R := E[(s− ŝR)(s− ŝR)T ] = (Ip +
∑N−1

n=0 HT
n (IMn + Σζnζn)−1Hn)−1.

Although, the minimization problem in (1.97) is not convex, (Xiaoet al.2005b) has shown that
(1.97) is equivalent to the following convex formulation:

minΣs̃Rs̃R
,{Σζnζn}N−1

n=0
−0.5 log det(Σs̃Rs̃R) + 0.5

∑N−1
n=0 log det(IMn + Σ−1

ζnζn
), (1.98)

s. to tr(Σs̃Rs̃R) ≤ D,Σζnζn º 0,Σs̃Rs̃R º 0, (Ip +
∑N−1

n=0 HT
n (IMn + Σζnζn)−1Hn)−1 ¹ Σs̃Rs̃R ,

which is solved numerically using the interior point method (Boyd and Vandenberghe 2004).

1.8 Closing Comments

We considered distributed estimation using wireless sensor networks and demonstrated that under
limited resources the seemingly unrelated problems of dimensionality reduction, compression, quan-
tization and estimation are actually intertwined due to the distributed nature of sensor networks.

We started with parameter estimation under severe bandwidth constraints that were adhered to
by quantizingeach sensor’s observation to one or a few bits. By jointly accounting for the unique
quantization-estimation tradeoffs present, these bit(s) per sensor were first used to derive distributed
maximum likelihood estimators (MLEs) for scalar mean-location estimation in the presence of gen-
erally non-Gaussian noise when the noise pdf is completely known; subsequently, when the pdf is
known except for a number of unknown parameters; and finally, when the noise pdf is unknown. In
all three cases, the resulting estimators turned out to exhibit comparable variances that can come sur-
prisingly close to the variance of the clairvoyant estimator which relies on unquantized observations.
This happens when the SNR capturing both quantization and noise effects assumes low-to-moderate
values. Analogous claims were established for practical generalizations in the multivariate and col-
ored noise cases for distributed estimation of vector deterministic and random parameters. Therein,
MLE and MAP estimators were formed via numerical search but the log-likelihoods were proved to
be concave thus ensuring fast convergence to the unique global maximum.
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We also pursued a related but distinct approach where the bandwidth constraint is adhered to by
reduced-dimensionality observations. We dealt with non-ideal channel links that are characterized
by multiplicative fading and additive noise. When data across sensors are uncorrelated, we presented
global MSE optimal schemes in closed-form and proved that they implement estimation followed by
compression per sensor. For correlated sensor observations, we outlined a block coordinate descent
algorithm which guarantees convergence at least to a stationary point of the associated mean-square
error cost. The optimal estimators allocate properly the prescribed power following a waterfilling-
like principle. Fundamental MSE limits were finally studied through the D-R function for estimating
a random vector in a single-sensor setup, where an estimate-first compress-afterwards approach was
turns out to be optimal. An alternating algorithm was also outlined for determining numerically a
D-R upper bound in the distributed multi-sensor setup. Using this upper bound in conjunction with
the non-achievable lower bound, determined through the single-sensor D-R function, yielded a tight
region, where the D-R function for distributed estimation lies in.

1.9 Further Reading

The problem of estimation based on quantized observations was studied in early works by (Gubner
1993) and (Lam and Reibman 1993) and revisited in the context of distributed estimation using
WSNs in (Papadopouloset al. 2001). The material on Sections 1.1 – 1.4 is based on results from
(Ribeiro and Giannakis 2006a) and (Ribeiro and Giannakis 2006b), while the material in Section 1.5
has been reported in (Shaet al. 2005). When the noise pdf is unknown, the problem of estimation
based on severely quantized data has been also studied by (Luo 2005a), (Luo 2005b) and (Luo
and Xiao 2005) where the notion of universal estimators was introduced. A recent extension of the
material covered in these sections to state estimation of dynamical stochastic processes can be found
in (Ribeiroet al.2007).

Distributed estimation via dimensionality reduction has been also considered in (Zhuet al.
2005), (Gastparet al. 2004) and (Zhanget al. 2003) for ideal channel links and/or Gaussian data
models. Detailed derivations of what was presented in Section 1.6 can be found in (Schizaset al.
2005b). When it comes to rate constrained distributed estimation D-R bounds for the Gaussian CEO
setup, results are due to (Oohama 1998) and (Chenet al.2004) whenM = p. The results in Section
1.7 are from (Schizaset al.2005a) and (Xiaoet al.2005b).

A different approach to reduce communication costs in distributed estimation is to allow com-
munication between one-hop neighbors only and let the sensors converge to a common estimate. In
(Xiao and Boyd 2004) estimation is considered tantamount to convergence to the steady state distri-
bution of a Markov chain. In (Schizaset al. 2006) estimation is shown equivalent to distributed
optimization of a convex argument. A related approach can be found in (Barbarossa and Scut-
tari 2006) where the WSN is modelled as a network of coupled oscillators. A different estimation
approach using hidden Markov fields is reported in (Dogandžić 2006).
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form, IEEE Transactions on Information Theory, submitted Nov. 2004, available at
http://www.eecs.berkeley.edu/∼gastpar/.

J. GUBNER, Distributed Estimation and Quantization,IEEE Transactions on Information Theory, vol. 39,
pp. 1456–1459, 1993.

S. M. KAY , Fundamentals of Statistical Signal Processing - Estimation Theory. Prentice Hall, 1993.

W. LAM AND A. REIBMAN , Quantizer design for decentralized systems with communication constraints,
IEEE Transactions on Communications, vol. 41, pp. 1602–1605, Aug. 1993.

Z.-Q. LUO, An isotropic universal decentralized estimation scheme for a bandwidth constrained ad hoc sensor
network,IEEE Journal on Selected Areas in Communications, vol. 23, pp. 735–744, April 2005.

Z.-Q. LUO, Universal Decentralized Estimation in a Bandwidth Constrained Sensor Network,IEEE Transac-
tions on Information Theory, vol. 51, pp. 2210–2219, June 2005.

Z.-Q. LUO, G. B. GIANNAKIS , AND S. ZHANG, Optimal linear decentralized estimation in a bandwidth con-
strained sensor network,in Proc. of the Intl. Symp. on Info. Theory, pp. 1441–1445, Adelaide, Australia,
Sept. 4-9 2005.

Z.-Q. LUO AND J.-J. XIAO, Decentralized estimation in an inhomogeneous sensing environment,IEEE Trans-
actions on Information Theory, vol. 51, pp. 3564 –3575, October 2005.

A. M AINWARING , D. CULLER, J. POLASTRE, R. SZEWCZYK, AND J. ANDERSON, Wireless sensor net-
works for habitat monitoring,in Proc. of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications, vol. 3, pp. 88–97, Atlanta, Georgia, 2002.

Y. OOHAMA , The Rate-Distortion Function for the Quadratic Gaussian CEO Problem,IEEE Transactions On
Information Theory, pp. 1057–1070, May 1998.

A. PANDYA , A. KANSAL , G. POTTIE, AND M. SRIVASTAVA , Fidelity and Resource Sensitive Data Gathering,
in Proc. of the 42nd Allerton Conference, Allerton, IL, September 2004.



32 BIBLIOGRAPHY

H. PAPADOPOULOS, G. WORNELL, AND A. OPPENHEIM, Sequential signal encoding from noisy measure-
ments using quantizers with dynamic bias control,IEEE Transactions on Information Theory, vol. 47,
pp. 978–1002, 2001.

A. RIBEIRO AND G. B. GIANNAKIS , Bandwidth-Constrained Distributed Estimation for Wireless Sensor Net-
works, Part I: Gaussian Case,IEEE Transactions on Signal Processing, vol. 54, pp. 1131–1143, March 2006.

A. RIBEIRO AND G. B. GIANNAKIS , Bandwidth-Constrained Distributed Estimation for Wireless Sensor Net-
works, Part II: Unknown pdf,IEEE Transactions on Signal Processing, vol. 54, pp. 2784–2796, July 2006.

A. RIBEIRO, G. B. GIANNAKIS , AND S. I. ROUMELIOTIS, SOI-KF: Distributed Kalman Filtering with Low-
Cost Communications using the Sign Of Innovations,IEEE Transactions on Signal Processing, 2007, to
appear.

D. J. SAKRISON, Source encoding in the presence of random disturbance,IEEE Transactions on Information
Theory, pp. 165–167, January 1968.

I. D. SCHIZAS, G. B. GIANNAKIS , AND N. JINDAL , Distortion-Rate Analysis for Distributed Estimation with
Wireless Sensor Networks,IEEE Transactions On Information Theory, submitted December 2005.available
at http://spincom.ece.umn.edu/.

I. D. SCHIZAS, G. B. GIANNAKIS , AND Z.-Q. LUO, Distributed estimation using reduced dimensionality
sensor observations,IEEE Transactions on Signal Processing, submitted November 2005.available at
http://spincom.ece.umn.edu/.

I. D. SCHIZAS, A. RIBEIRO, AND G. B. GIANNAKIS , Distributed Estimation with Ad Hoc Wireless Sensor
Networks,Proc. of XIV European Sign. Proc. Conf., Florence, Italy, Sept. 4-8, 2006.

A. F. SHAH , A. RIBEIRO, AND G. B. GIANNAKIS , Bandwidth-Constrained MAP Estimation for Wireless
Sensor Networks,Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, October 28 - November 1, 2005, Pages: 215 - 219.

H. L. VAN TREES, Detection, Estimation, and Modulation Theory. John Wiley and Sons, first ed., 1968.
H. V ISWANATHAN AND T. BERGER, The Quadratic Gaussian CEO Problem,IEEE Transactions on Informa-

tion Theory, pp. 1549–1559, September 1997.
J. WOLF AND J. ZIV , Transmission of noisy information to a noisy receiver with minimum distortion,IEEE

Transactions on Information Theory, pp. 406–411, July 1970.
A. WYNER AND J. ZIV , The Rate-Distortion Function for Source Coding with Side Information at the

Decoder,IEEE Trans. on Info. Theory, pp. 1–10, January 1976.
J.-J. XIAO , Z.-Q. LUO AND G. B. GIANNAKIS , Performance bounds for the rate-constrained universal decen-

tralized estimators in sensor networks,in Proc. of the IEEE Workshop on Signal Processing Advances in
Wireless Communications, New York, NY, 5-8 June 2005, pp. 126–130.

J.-J. XIAO AND Z.-Q. LUO, Optimal rate and power allocation in Gaussian vector CEO problem,in IEEE Int.
Workshop Comp. Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 13-15 December
2005

L. X IAO AND S. BOYD, Fast Linear Iterations for Distributed Averaging, Systems and Control Letters, vol. 53,
pp. 65 78, 2004.

K. ZHANG, X. R. LI , P. ZHANG, AND H. L I, Optimal linear estimation fusion–Part VI: Sensor data compres-
sion,in Proc. of the Intl. Conf. on Info. Fusion, pp. 221–228, Queensland, Australia 2003.

Y. ZHU, E. SONG, J. ZHOU, AND Z. YOU, Optimal dimensionality reduction of sensor data in multisensor
estimation fusion,IEEE Transactions on Signal Processing, vol. 53, pp. 1631–1639, May 2005.


