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Abstract

Cooperative Diversity (CD) networks have been receiving
a lot of attention recently as a distributed means of improving
error performance and capacity. This paper derives the aver-
age Symbol Error Probability (SEP) for Amplify and Forward
CD links. The resulting expressions are general as they hold for
an arbitrary number of cooperating branches, arbitrary num-
ber of cooperating hops per branch, and many channel fading
models. Their simplicity provides valuable insights to the per-
formance of CD networks and allows their optimization. Be-
sides revealing the diversity advantage, they clearly show from
where this advantage comes from and prove that the diversity
advantage holds independently of the channel fading model. Fi-
nally, they explain how diversity is improved in multi-hop CD
networks.
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1. Introduction

Cooperative diversity (CD) networks are attracting increas-
ing attention as a new and promising diversity technique. Some-
what inspired by multi-antenna systems the technology ex-
ploits the fact that around a given terminal, there can be other
single-antenna terminals which can be used to enhance diver-
sity by forming a virtual (or distributed) multi-antenna sys-
tem. As demonstrated in e.g., [1], [2], [3], CD networks can
achieve a diversity order equal to the number of paths between
the source and the destination, and in this sense, they offer sim-
ilar advantages to any existing diversity technique.

Relying on high SNR approximations, this paper derives ex-
pressions for the average Symbol Error Probability (SEP). The
results obtained are simple and general, which allows their ap-
plication to complex CD scenarios. In particular, we show how
to estimate the average SEP in networks with multiple coop-
erating branches each composed of multiple cooperating hops.
They are valid for various fading models, provided that their
probability density functions (pdf ) are non-zero at zero instan-
taneous SNR.

∗ Work in this paper was prepared through collaborative participation in the
Communications and Networks Consortium sponsored by the U. S. Army
Research Laboratory under the Collaborative Technology Alliance Pro-
gram, Cooperative Agreement DAAD19-01-2-0011. The U. S. Govern-
ment is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon.
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Figure 1. Single cooperating terminal.

2. SEP with a single cooperating terminal

2.1. System Model

Consider the simplest CD strategy shown in Fig. 1, where we
have an information source, S, and a destination D, communi-
cating over a complex channel f . A relay terminal, R, is will-
ing to cooperate in this link providing D with a second copy
of the original signal through the complex channels S-R and
R-D with flat fading coefficients g and h, respectively. Without
loss of generality, we assume that all the additive white Gaus-
sian noise (AWGN) terms, nR1 , nR2 , and nD have equal vari-
ance N0. Similar to [3], [6], we suppose that the realizations of
the random variables f , g, and h have been acquired at the re-
ceiver ends e.g., via training. Note that no particular assump-
tions are made on channel statistics.

We consider the Amplify and Forward (AF) model where re-
lays simply amplify the signal received from the source [3]. As-
suming that S and R transmit through orthogonal channels, the
destination D receives two independent copies of the signal x:

yD = fx + nD,

yR = hA(gx + nR1) + nR2 = hAgx + nR, (1)

where nR := hAnR1 + nR2 , and A is the amplification fac-
tor which will be discussed later. The receiver collects these
copies with a maximum ratio combiner (MRC) to form a de-
cision variable z. For fixed f , g and h realizations, the vari-
able z is Gaussian, and the SEP conditioned on the instanta-
neous SNR, γz , is given by Pe = Q(

√
kγz), where the con-

stant k depends on the type of modulation (2 for PSK), and
Q(x) := (1/

√
2π)

∫∞
x

e−u2/2 du. The SNR of z can be calcu-
lated readily as,

γz = |f |2 Px

σ2
D

+ |Agh|2 Px

σ2
R

= γD + γR, (2)

where Px is the transmitted power at S, γD := |f |2Px/σ2
D, and

γR := |Agh|2Px/σ2
R. Being the sum of the SNR of the two in-

dependent paths, (2) will allow us to work with each of them in-
dependently and then analyze what happens when we sum up
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their contributions. Before that we choose the amplification fac-
tor A to maintain constant average power output, equal to the
original transmitted power,

A2 =
Px

Px|h|2 + N0
. (3)

Substituting (3) into (2), we obtain,

γz =
γgγh

1 + γg + γh
+ γf , (4)

where γg and γh are the per-hop SNRs associated with the
channels g and h, respectively, and are defined similar to γf ;
that is γg := |g|2Px/N0 and γh := |h|2Px/N0.

At high SNR, the 1 in the denominator of (4) is negligible;
and thus (4) reduces to,

γz =
γgγh

γg + γh
+ γf . (5)

The SNR in (5) is analytically more tractable than that in (4),
which will come handy when analyzing the SEP in Sections 2.2
and 3.2. For those justifiably skeptic about this approxima-
tion, [5] shows that for high SNR the average SEPs of (4)
and (5) are indistinguishable.

Traditional approaches to obtaining the average SEP (see
e.g. [7, chapter 8]) become cumbersome, and even if we were
able to obtain the SEP in closed form, the resulting expression
would provide limited insight. Instead, we will use a new tool
developed in [8], which enables average SEP calculations for
sufficiently large SNR by looking at the pdf of the SNR around
zero. This approach will allow us to achieve insightful results
with relatively simple computations.

2.2. SEP Analysis

The work in [8] shows that the average SEP for large SNR
can be well approximated relaying on the Mc Laurin series of
pγ̂(γ̂). In particular, if the derivatives of pγ̂(γ̂) up to order t−1
are null, we have the following asymptotic expression for the
average SEP:

P̄e →
∏t+1

i=1(2i − 1)
2(t + 1)k(t+1)

.
1
t!

∂tpγ

∂γt
(0), (6)

Based on (6), we have to study the behavior of pγ(γ) around
zero, and this is precisely the aim of the following Proposition.

Proposition 1 Consider three non-negative independent random
variables X , Y , and Z with pdfs pX(x), pY (y) and pZ(z),
respectively. These pdfs are unknown except for their values
at zero that are denoted as x0, y0, and z0 and assumed to be
nonzero. If the variable V is defined as,

V :=
XY

X + Y
+ Z, (7)

then pV (v) = 0, and the first derivative of pV (v) evaluated at
zero is given by,

∂pV

∂v
(0) = (x0 + y0)z0. (8)

The proof of Proposition 1 is given in [5]. If X , Y , and Z
are the per-hop SNRs in (5), then V corresponds to γz , the SNR
of the decision variable. What is more, the derivative in (8) can
be plugged in (6) to yield an expression for the average SEP,

P̄e → 3
4k2

[Pγg
(0) + Pγh

(0)] Pγf
(0). (9)

In the special case of Rayleigh fading, the SNR is exponentially
distributed with pdf : pγ(γ) = (1/γ̄)e

γ
γ̄ , and (9) reduces to,

P̄e → 3
4k2

(
1
γ̄g

+
1
γ̄h

)
1
γ̄f

. (10)

This result is strikingly simple, and will allow us to draw some
interesting conclusions in Section 2.3. Furthermore, the treat-
ment in this section can be easily generalized to an arbitrary
number of cooperative branches and hops per branch as we will
see in Sections 3.1 and 3.2 respectively.

By now we have established that diversity of order two is
possible for our simple CD network under various fading chan-
nel models. Furthermore, we have seen that the diversity comes
from the product of two independent SNRs , that of the direct
path and the one of the relay path.

2.3. Relay Selection

We consider here the relay selection problem which is eas-
ily tractable with our approach. We focus on Rayleigh fading
but the results can be readily generalized to other models. Sup-
pose that several terminals are available to cooperate with the
source, and the source has to decide which one will be the best
possible cooperator. The optimization problem under consid-
eration is selecting the relay that minimizes the average SEP.
Looking at (10), we can see that minimizing the average SEP is
equivalent to minimizing the function:

Ω =
1

|ḡ|2 +
1

|h̄|2 , (11)

where |ḡ|2 := E(|ḡ|2), and |h̄|2 := E(|h̄|2). Note that Ω is
twice the inverse of the harmonic mean of |ḡ|2 and |h̄|2. So,
the solution to the relay selection problem is selecting the pair
which maximizes the harmonic mean of the fading coefficients
average power; i.e.,

Ropt = Ri : max{µH(|ḡi|2, |h̄i|2)}, (12)

where µH denotes the harmonic mean function. This is poten-
tially applicable to routing problems in CD networks.

A slightly different problem arises when |ḡ|2 and |h̄|2 can-
not vary independently due to physical limitations arising from
e.g., the path-loss between two terminals. Letting dSR denote
the distance S-R and dSD the distance S-D, we define the rel-
ative distance from source to relay as ρ := dSR/dSD, from
where we can easily infer that |ḡ|2 and |h̄|2 are given by:

|ḡ|2 =
|f̄ |2
ρα

|h̄|2 =
|f̄ |2

(1 − ρ)α
, (13)

where |f̄ |2 := E(|f̄ |2), and α is the pathloss slope [4, p.104].
Given this physical model, (11) takes the form

Ω =
1

|f̄ |2 [ρα + (1 − ρ)α] , (14)
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Figure 2. Multi-branch cooperation. M termi-
nals cooperate with S to attain diversity of or-
der M + 1.

which has a maximum for ρ = 1/2, for any α > 1. This implies
the intuitively appealing result that the relay should be placed
just in the middle between source and destination. Moreover,
this result does not depend on the detailed path-loss model. It is
clear from (14) that for exponents α > 3, usually encountered
in practice, the minimum SEP has also null second derivative.
Thus, this minimum is relatively robust to relay displacements
from the optimum position, which is always desirable for opti-
mal designs.

The optimal placement obtained sheds light to more gen-
eral cooperation scenarios of interest. In this sense, we should
focus on CD schemes that work well when h and g have bal-
anced (ideally equal) power profiles, because placing the re-
lay either close to the source or close to the destination offer
suboptimal solutions. This result also speaks for the flexibil-
ity optimally placed CD systems have in improving the average
SEP relative to non-CD multi-antenna systems of diversity or-
der two.

3. General Cooperative Links

3.1. Multi-branch Cooperative Diversity

The ideas of Section 2 can be generalized to multi-branch
CD networks such as those depicted in Fig. 2. In addition to
the direct path with fading coefficient f , we consider M coop-
erating terminals (relays) {R1, . . . , RM}. The channel coeffi-
cient between S and relay Ri is denoted as gi, while that be-
tween Ri and D as hi. We assume that the relays transmit over
mutually orthogonal channels. At each relay, a noise term ni

is present and a second noise term mi is introduced at recep-
tion. At each cooperating terminal, the amplification factor is
that defined in (3).

The generalization of the results of section Section 2 is stated
in the following proposition (for the proof see [5]).

Proposition 2 Consider a set of non-negative random vari-
ables {X} = {X0,X1, ...,XM} whose pdfs p0, p1, ..., pM

have non zero values at zero, and denote these values as

p0(0), p1(0), ..., pM (0). If the random variable VM is,

VM :=
M∑
i=0

Xi, (15)

then all the derivatives of pvM
evaluated at zero up to order

(M − 1) are zero, and the M th order derivative is given by

∂MpVM

∂vM
(0) =

M∏
i=0

pi(0). (16)

It is worth mentioning that this result is applicable to various
conceivable diversity strategies, even outside the scope of CD
networks. This generality will be exploited to analyze the multi-
hop scenario in Section 3.3, but for now we will use the limit in
Proposition 2 as an expression for the SNR of the multi-branch
CD network of Fig. 2. The decision variable z at the MRC out-
put is given by,

z =
(

f

σD

)∗
ỹD +

M∑
i=1

(
hiAigi

σRi

)∗
ỹRi

, (17)

where we defined the variables ỹD := yD/σD and ỹRi
:=

yRi
/σRi

. It follows easily from (17) that the SNR of the de-
cision variable is approximately given by,

γz = γf +
M∑
i=1

γgi
γhi

γgi
+ γhi

, (18)

where again we eliminated the one in the denominator of the re-
lay path SNRs, which is equivalent to considering Ai = 1/gi,
and has no impact on the asymptotic SEP. We proceed by anal-
ogy to Section 2.2 applying Proposition 2 to the variable de-
fined by (17),

∂Mpγz
(γz)

∂γM
z

= pγf
(0)

M∏
i=1

[pγgi
(0) + pγhi

(0)]. (19)

Substituting (19) into (6), we obtain the asymptotic expression
for the average SEP of the multi-branch CD system,

P̄e ≈ C(M) pγf
(0)

M∏
i=1

(
pγgi

(0) + pγhi
(0)
)

, (20)

where C(M) =
∏M+1

k=1 (2k−1)

2(M+1)!k(M+1) is a constant that depends on
the number of cooperating branches M . It is interesting to note
that C(M) increases with M , which slightly affects the diver-
sity advantage.

Equation (20) is quite general as it holds under any SNR dis-
tribution provided that the underlying pdf at the origin is non-
zero. For the case of Rayleigh fading, it takes the form,

P̄e ≈ C(M)
kM+1

.
1
γf

M∏
i=1

(
1

γgi

+
1

γhi

)
. (21)

3.2. Multi-hop Cooperative Diversity

A second point of interest is what happens when we add
multiple hops to each of the diversity branches. In principle, one
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Figure 3. Multi-hop system with N intermediate
relays (N + 1 hops).

expects that as the results were generalizable to M branches,
they should be generalizable to N hops. And indeed this is the
case. We consider a set of N cooperating relays Ri, as depicted
in Fig. 3.

Without loss of generality the relays will be considered to
be an ordered set {R} = {R1, . . . , RN}; and for the sake of
uniformity, the source will be named R0, and the destination
RN+1. At node Ri the received signal will be named yi−1 and
the transmitted signal xi. Note that x0 is the signal transmit-
ted by the source and yN is the signal received at destination.
The fading coefficient between Ri and Ri+1 will be denoted as
hi, the amplification factor at node Ri as Ai, and the AWGN as
ni. Given this nomenclature, the system equations are

yi = hi−1xi−1 + ni, (22)
xi = Aiyi.

A detailed treatment of this model for Ai defined as in (3) seems
infeasible. But as we emphasized in Section 2.1, the results for
large average SNR are indistinguishable from the model using
the simpler definition Ai = 1/hi−1, with which we obtain the
following input-output relationship:

yN = hNx0 + hN

n−1∑
i=0

Aini + nN , (23)

Based on (23), we can show that the instantaneous SNR γ of
the received variable yN is,

γ =
γ0γ1 . . . γN∑N

i=0 γ0γ1 . . . γi−1γi+1 . . . γN

, (24)

where {γi}N
i=0 are the per-hop SNRs, defined by

γi := Px/N0|hi|2. To study this SNR we require the fol-
lowing Proposition (proved in [5]).

Proposition 3 Consider N + 1 non-negative independent
random variables X0,X1, . . . , XN , with unknown pdfs
p0(x0), p1(x1), . . . , pN (xN ) except for their values at zero
that are assumed strictly positive and known. If we de-
fine the random variable

Z = g( �X) =
X0X1 . . . XN∑N

i=0 X0X1 . . . Xi−1Xi+1 . . . XN

, (25)

then the pdf of Z at the origin, satisfies

pZ(0) =
N∑

i=0

pXi
(0). (26)

Using (26), and (6) we obtain the following expression for the
asymptotic average SEP of a multi-hop system:

P̄e ≈ 1
2k

N∑
k=0

pγi
(0). (27)

For the case of Rayleigh fading, the latter reduces to

P̄e ≈ 1
2k

N∑
k=0

1
γ̄i

. (28)

From (28) we see that the multi-hop system is a diversity one
system, and each new hop adds a new term to the probabil-
ity of error. The advantage of multi-hop transmissions comes
from the path loss gains associated with it. In a practical sys-
tem, dividing the transmission path will result in a group of av-
erage SNRs whose sum of inverses is smaller than the inverse
of the original path SNR. In fact, from (28) we can obtain a con-
dition under which a multi-hop system offers advantages over
a single-hop system. If Γ̄ denotes the average SNR of the sin-
gle hop system, the multi-hop system will be preferred if

N∑
k=0

1
γ̄i

<
1
Γ̄

. (29)

Note that the sum in the left hand side of (29) is 1/N times the
harmonic mean of the individual hop SNRs. Thus, we have es-
tablished that for Rayleigh fading channels multi-hop should
be preferred over single hop if the harmonic mean of the aver-
age multi-hop SNRs is larger than the single-hop SNR divided
by the number of hops .

Worth mentioning, is that from (28) we can easily general-
ize the optimal relay placement design of Section 2.3. Regard-
less of the underlying path loss model, the result is that equi-
spaced relays along the line that connects source with destina-
tion are SEP-optimal at sufficiently high SNR. This optimal de-
sign enjoys the same properties as that of Section 2.3 and points
to the importance of CD networks having per-hop fading coef-
ficients with balanced average power.

3.3. Multi-branch, Multi-hop CD

Relying on the results of Sections 3.1 and 3.2, we are ready
to obtain an expression for the average SEP of multi-branch,
multi-hop transmissions. The result of Section 3.1 applies to a
sum of random variables regardless of their specific pdfs, pro-
vided that their values at the origin are nonzero. In particular,
Proposition 2 applies when the pdfs correspond to a multi-hop
transmission as that of Section 3.2 for which the asymptotic
value of the pdf at zero is given by (26).

Based on these two observations, let us consider a coopera-
tive system with M + 1 diversity branches {B0, B1, . . . , BM},
where by convention the diversity branch B0 corresponds to the
direct path. Each of the remaining M branches {B1, . . . , BM}
is composed of Ni relays {R1, . . . , RNi

}. The channel coeffi-
cients between the relays Rij and Ri,j+1 of branch Bi are de-
noted by hij , with hi0 being the coefficient between the source
and the first relay, and hiNi

being that between the last relay
and the destination.

We define the average per-hop SNRs as usual
γij := E|hij |2Px/N0, and we also define pij(γij) to be
the pdf of γij . With these definitions and combining the re-
sults of (20) and (26) we arrive at

P̄e ≈ C(M)
kM+1

p00(0)
M∏
i=1


 Ni∑

j=0

pij(0)


 . (30)
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Figure 4. Multi-branch cooperation.

Restricting (30) to Rayleigh fading, we obtain,

P̄e ≈ C(M)
kM+1

1
γ̄00

M∏
i=1

(
Ni∑
0

1
γ̄ij

)
, (31)

which is neat in its simplicity given its applicability to quite
general cooperative networks.

4. Simulations and numerical results

A first concern is how tight the asymptotic results are with
respect to pragmatic SNR values. Several simulations ran with
this goal confirmed that the asymptotic results provide a very
good approximation not only for large but also for moderate
SNR values. We tested BPSK modulation, Rayleigh fading and
parameterized the results against the transmit SNR defined as
SNR := Px/N0. Fig. 4 presents simulated values for various
number of cooperating branches. In this case, we consider the
channels gi and hi as having equal power and compare the sim-
ulation results with the analytical lines predicted by (21). For
SNR values as low as 10dB, the difference between the ob-
served SEP and the asymptotic SEP is less than 9%.

Similar tightness is observed in Fig. 5 for the multi-hop case.
In this case the quality approximation remains good for even
large number of cooperating hops. different from the case of
Fig. 4 where the approximations are not good for more than
four or five cooperating branches.

It is apparent from Figs. 4 and 5, and can be confirmed
from (31), that in general relay power is better used when it
adds a cooperative branch than when it adds a hop in an exis-
tent branch .

5. Concluding Remarks

We analyzed the average error probability performance for
networks with cooperative terminals amplifying and forward-
ing their received signals from the source, when the average
SNR is sufficiently high. Our performance analysis is applica-
ble to cooperative links with any number of hops and branches;
and remains valid for a large class of fading models, whose
pdfs have nonzero values at the origin, including Rayleigh and
Rician fading channels. While our error probability formulas
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Figure 5. Multi-hop cooperation.

were derived for high average SNR, our simulations testified
that they match well the simulated error probability even at
moderate SNR values.

Our error probability analysis revealed that the error gain of
multi-hop systems stems from the reduced path loss, while that
of multi-branch systems comes from both the reduced path loss
and the diversity. Furthermore, the simplicity of our error prob-
ability expressions can be used to design cooperative relays op-
timally in the sense of minimizing error probability. This may
have interesting applications to routing algorithms, relay place-
ment, and power allocation among different terminals in wire-
less networks, directions we have marked in our future research
agenda1.
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