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ABSTRACT
We study deterministic mean-location parameter estimation when only
quantized versions of the original observations are available, due to
bandwidth constraints. When the dynamic range of the parameter is
small or comparable with the noise variance, we introduce a class of
maximum likelihood estimators that require transmitting just one bit
per sensor to achieve an estimation variance close to that of the (clair-
voyant) sample mean estimator. When the dynamic range is compa-
rable or large relative to the noise standard deviation, we show that an
optimum quantization step exists to achieve the best possible variance
for a given bandwidth constraint. We will also establish that in certain
cases the sample mean estimator formed by quantized observations is
preferable for complexity reasons. We finally address implementation
issues and guarantee that all the numerical maximizations required by
the proposed estimators are concave.

1. INTRODUCTION

Wireless Sensor Networks (WSN) comprise a large number of geo-
graphically distributed nodes characterized by low power constraints
and limited computation capability. However, with sensor collabo-
ration, potentially powerful networks can be constructed to monitor
and control environments [2]. While a number of works address sen-
sor collaboration for distributed detection (see e.g., [8] and references
therein), the equally challenging problem of distributed estimation has
not received much attention. In distributed estimation based on data
collected by a WSN, each sensor has available a subset of the obser-
vations that must be either transmitted to a central node (WSN with a
fusion center) or shared among nodes (ad-hoc WSN).

Under either WSN configuration, attention has focused on decen-
tralized algorithms exploiting spatial correlation to reduce transmis-
sion requirements, e.g., [1, 6]. A not so well studied issue is that
bandwidth limits necessitate the estimator to be formed using quan-
tized versions of the original observations. In this setup, quantization
becomes an integral part of the estimation process, since one may
think of quantization as a means of constructing binary observations.
We then deal with parameter estimation given a set of binary obser-
vations. When the noise pdf is known, transmitting a single bit per
sensor can lead to minimal loss in the estimator variance compared
with the clairvoyant estimator [5]. When the noise pdf is unknown,
pdf-unaware estimators based on quantized data have been introduced
in [4].

Our focus is on bandwidth-constrained distributed mean-location
parameter estimation in Additive White Gaussian Noise (AWGN). We
seek Maximum Likelihood Estimators (MLE) and benchmark their
variances with the Cramer-Rao Lower Bound (CRLB); that is asymp-
totically achieved by the MLE. We will show that the deciding factor
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in the choice of the estimator is a proper form of Signal Noise Ra-
tio (SNR), defined here as the dynamic range of the parameter square
over the noise variance.

2. PROBLEM STATEMENT

We consider the problem of estimating a deterministic scalar parame-
ter θ in the presence of zero-mean AWGN,

x(n) = θ + w(n), n = 0, 1, . . . , N − 1, (1)

where w(n) ∼ N (0, σ2), and n is the sensor index. Throughout, we
will use p(w) := 1/(

√
2πσ) exp[−w2/(2σ2)] to denote the noise

probability density function (pdf).
If all the observations {x(n)}N−1

n=0 were available, the MLE of θ

would be the Sample Mean Estimator, x̄ = N−1 ∑N−1
n=0 x(n). This

can be regarded as a clairvoyant estimator with variance

var(x̄) =
σ2

N
. (2)

Due to bandwidth limitations, the observations x(n) have to be quan-
tized and estimation can only be based on these quantized values. To
this end, we will henceforth think of quantization as the construction
of a set of indicator variables (referred to, as binary observations)

bk(n) = 1{x(n) ∈ (τk, +∞)}, k ∈ Z, (3)

where τk is a threshold defining bk(n) and Z denotes the set of inte-
gers. The bandwidth constraint manifests itself in dictating estimation
of θ to be based on the binary observations {bk(n), k ∈ Z}N−1

n=0 . The
initial goal of this paper is twofold: i) develop the MLE for estimat-
ing θ given a set of binary observations, and ii) study the associated
CRLB – a bound achieved by the MLE as N → ∞.

Instrumental to the ensuing derivations is the fact that bk(n) as
defined in (3) is a Bernoulli variable with parameter

qk(θ) := Pr{bk(n) = 1} = F (τk − θ), k ∈ Z, (4)

where F (x) := 1/(
√

2πσ)
∫ +∞

x
exp(−u2/2σ2) du denotes the com-

plementary Cumulative Distribution Function (CDF) of the noise.
The problem under consideration bears similarities and differ-

ences with quantization. On the one hand, for a fixed n the set of
binary observations {bk(n), k ∈ Z} specifies uniquely the quantized
value of x(n) to one of the pre-specified levels {τk, k ∈ Z}. On
the other hand, different from quantization in which the goal is to re-
construct x(n) (and the optimum solution is known to be given by
Lloyd’s quantizer), our goal is to estimate θ.

3. MLE BASED ON BINARY OBSERVATIONS:
COMMON THRESHOLDS

Let us consider the most stringent bandwidth constraint, requiring
sensors to transmit one bit per x(n) observation. And as a simple
first approach, let every sensor use the same threshold τc to form

b(n) = 1{x(n) ∈ (τc, +∞)}, n = 0, 1, . . . , N − 1. (5)
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Fig. 1. CRLB and Chernoff bound as a function of the distance be-
tween τc and θ measured in AWGN standard deviation (σ) units.

Dropping the subscript k, we let b := [b(0), . . . , b(N − 1)]T , and
denote as q(θ) the parameter of these Bernoulli variables. We are
now ready to derive the MLE and the pertinent CRLB; see [5]1.

Proposition 1 The MLE θ̂ based on the binary observations b is:

θ̂ = τc − F−1

(
1

N

N−1∑
n=0

b(n)

)
. (6)

The CRLB for any unbiased estimator θ̂ based on b is given by

var(θ̂) ≥ 1

N

[
p2(τc − θ)

F (τc − θ)[1 − F (τc − θ)]

]−1

:= B(θ). (7)

Proposition 1 asserts that θ can be consistently estimated from a
single binary observation per sensor, with variance as small as B(θ).
Minimizing B(θ) reveals that Bmin is achieved when τc = θ, and

Bmin =
2πσ2

4N
≈ 1.57

σ2

N
. (8)

In words, if we place τc optimally, the variance increases only by a
factor of π/2 with respect to the clairvoyant estimator x̄ that relies on
unquantized observations. If we use the (tight) Chernoff bound for
the complementary CDF, a simple bound on B(θ) can be obtained:

B(θ) ≤ πσ2

2N
e+ 1

2 [(τc−θ)/σ]2 . (9)

Fig. 1 depicts B(θ) and its Chernoff bound, from where it becomes
apparent that for |τc − θ|/σ ≤ 1 the increase in variance will be
around 2 [c.f. (7), and (9)]. Roughly speaking, to achieve a variance
close to var(x̄) in (2), it suffices to place τc “σ−close” to θ.

One can envision an iterative algorithm in which the threshold is
iteratively adjusted over time. Call τ

(j)
c the threshold used at time j,

and θ̂(j) the corresponding estimate obtained as in (6). Having this
estimate, we can now set τ

(j+1)
c = θ̂(j), for subsequent estimates to

not only benefit from the increased number of observations but also
from improved binary observations.

4. MLE BASED ON BINARY OBSERVATIONS:
NON-IDENTICAL THRESHOLDS

When the dynamic range of θ is in the order of σ (i.e., the possi-
ble values of θ are restricted to an interval of size comparable to σ)
the variance of the estimator introduced in Section 3 will be close to
var(x̄). When the dynamic range of θ is large relative to σ, a different

1Omitted due to space considerations, proofs pertaining to claims in this
paper can be found in [7]

approach must be pursued using binary observations bk(n), generated
from different regions (τk, +∞) in order to assure that there will al-
ways be a threshold τk close to the true parameter.

Let Nk be the total number of sensors transmitting binary obser-
vations based on the threshold τk, and define ρk := Nk/N as the
corresponding fraction of sensors. We further suppose that the index
kn chosen by sensor n, is known at the destination (the fusion center
or peer sensors in an ad-hoc WSN). Algorithmically, we can summa-
rize our approach in three steps:

[S1] Define a set of thresholds τ = {τk, k ∈ Z} and associated
frequencies ρ = {ρk, k ∈ Z}.

[S2] Convene the index kn to be used by sensor n; i.e., sensor n
generates the binary observation bkn(n) using the threshold
τkn . Define b := [bk0(0), . . . , bkN−1(N − 1)]T .

[S3] Transmit the corresponding binary observations to find the MLE,
as we describe next.

The log-likelihood function is given by

L(θ) =

N−1∑
n=0

bkn(n) ln(qkn(θ))+(1−bkn(n)) ln(1−qkn(θ)), (10)

from where the MLE of θ given {bkn}N−1
n=0 , is

θ̂ = arg maxθ{L(θ)}. (11)

As θ̂ in (11) cannot be found in closed-form, we resort to a numerical
search, such as Newton’s algorithm based on the iteration

θ̂(i+1) = θ̂(i) − L̇(θ̂(i))

L̈(θ̂(i))
, (12)

where L̇(θ) := ∂L(θ)/∂θ, and L̈(θ) := ∂2L(θ)/∂θ2 are the first
and second derivatives of the log-likelihood function. Albeit numer-
ically found, the Newton iteration (12) is guaranteed to converge to
the global optimum of L(θ) thanks to its concavity:

Proposition 2 L(θ) given in- (10) is concave on θ.

Furthermore, the CRLB for this problem is:

Proposition 3 The CRLB for any unbiased estimator θ̂ based on b is

B(θ, τ , ρ) =
1

N

[∑
k

ρkp2(τk − θ)

F (τk − θ)[1 − F (τk − θ)]

]−1

:=
1

N
S−1(θ, τ , ρ). (13)

Using non-identical thresholds across sensors provides an additional
degree of freedom, that we exploit in the ensuing subsection.

4.1. Selection of the parameters (τ , ρ)

Since the CRLB depends on θ the selection of (τ , ρ) depends not only
on the estimator variance for a specific value of θ, but also on how
confident we are that the actual parameter will take on this value. To
incorporate this confidence we introduce a weighting function, W (θ),
which accounts for the relative importance of different values of θ.
For instance, if we know a priori that θ ∈ (Θ1, Θ2), we can choose
W (θ) = u(θ−Θ1)−u(θ−Θ2), where u(·) is the unit step function.

Given this weighting function, a reasonable performance indica-
tor is the weighted variance,

CW :=

∫ +∞

−∞
W (θ)var(θ̂) dθ. (14)

Although we only have an expression for the CRLB (13), we know
that the MLE will approach this bound as N → ∞. Consequently,
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selecting the best possible (τ , ρ) amounts to finding the set (τ , ρ)
that minimizes the weighted asymptotic CRLB [c.f (13) and (14)],

lim
N→+∞

NCW = NBW (τ , ρ) =

∫ +∞

−∞

W (θ)

S(θ, τ , ρ)
dθ. (15)

Thus, the optimum set (τ ∗, ρ∗), should be selected as,

(τ ∗, ρ∗) = arg min
(τ ,ρ)

∫ +∞

−∞

W (θ)

S(θ, τ , ρ)
dθ,

s.t.
∑

k

ρk = 1, ρk ≥ 0 ∀k. (16)

Solving (16) is complex, but introducing a proper relaxation we have
been able to obtain the following theorem.

Theorem 1 The weighted CRLB of any estimator θ̂ based on binary
observations must satisfy,

BW (τ , ρ) ≥ Bmin :=
1

N

[∫ +∞
−∞ [W (θ)]

1
2 dθ

]2

∫ +∞
−∞

p2(u)
F (u)[1−F (u)]

du
(17)

The bound is attained if and only if there exist a set (τ , ρ) such that

S(θ, τ , ρ) = K[W (θ)]
1
2 , K :=

∫ +∞
−∞

p2(u)
F (u)[1−F (u)]

du∫ +∞
−∞ [W (θ)]

1
2 dθ

. (18)

The claims of Theorem 1, are reminiscent of Cramer-Rao’s The-
orem in the sense that (17) establishes a bound, and (18) offers a con-
dition for this bound to be attained. Specializing (17) to a Gaussian-
shaped W (θ), with variance σ2

θ , we find

Bmin =
π
√

2

1.6

σσθ

N
. (19)

The best possible weighted variance for any estimator based on a sin-
gle binary observation per sensor can only be close to the clairvoyant
variance when σθ ≈ σ, a condition valid in small to medium SNR
scenarios. When the SNR is high (σθ 
 σ), the performance gap
between (2) and (19) is significant requiring a different approach.

Although we cannot assure that there always exists a set (τ , ρ)

such that S(θ, τ , ρ) = K[W (θ)]
1
2 , we can adopt as a relaxed op-

timal solution the set (τ †, ρ†) that minimizes the distance between

S(θ, τ , ρ) and K[W (θ)]
1
2 , so that

(τ †, ρ†) = arg min
(τ ,ρ)

∥∥∥∥∥K[W (θ)]
1
2 −

∑
k

sk(θ)

∥∥∥∥∥
2

s.t. ρk > 0 (20)

with,

sk(θ) =
ρkp2(τk − θ)

F (τk − θ)[1 − F (τk − θ)]
. (21)

We emphasize that (τ †, ρ†) obtained as the solution of (20) will in
general be different from the optimum (τ ∗, ρ∗) obtained as the solu-
tion of (16). Nonetheless numerically solving (20) yields a small min-
imum distance, illustrating that the estimator (11) based on (τ †, ρ†)
is nearly optimal (see Section 7).

5. RELAXING THE BANDWIDTH CONSTRAINT

Variances of the estimators in Sections 3 and 4 are close to var(x̄)
when the parameter’s range is small, or, in the order of the noise vari-
ance. If for a Gaussian weight we define the SNR as γ := σ2

θ/σ2, the
variance of the estimator defined by (11) is [c.f. (2) and (19)],

Bmin =
π
√

2

1.6

√
γ var(x̄) (22)
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Fig. 2. Variance of the estimator relying on a sequence of binary
observations. Room for decreasing variance once τ < σ is small.

indicating that the bound on the average variance grows as
√

γ with
respect to the clairvoyant estimator’s variance. Recalling that with
the optimal set (τ ∗, ρ∗), (11) is the best possible estimator when the
bandwidth is constrained to one bit per sensor, the poor performance
at high SNR is not a problem of the estimator itself, but is inherent
to the harsh bandwidth constraint (just 1 bit per sensor). In order to
accommodate high-SNR scenarios, we will allow for transmissions of
a larger number of binary observations. Using a sequence of thresh-
olds τ := {τk, k ∈ Z}, we will rely on multiple binary observations
per sensor, b(n) := {bk(n), k ∈ Z}, with corresponding Bernoulli
parameters q := {qk = Pr{x(n) > τk}, k ∈ Z}.

Since x(n) cannot be at the same time smaller than τk1 and larger
than τk2 for k1 < k2, b can only take on realizations of the form

βl = {βk, k ∈ Z|yk = 1, for k ≤ l, and yk = 0, for k > l}. (23)

The event b(n) = βl corresponds to the event {x(n) ∈ (τl, τl+1)},
reinforcing the fact that creating multiple binary observations is just a
different way of looking at quantization.

Given these definitions, the per-sensor log-likelihood is:

Ln(θ) =

+∞∑
k=−∞

δ[βk − b(n)] ln[qk+1(θ) − qk(θ)], (24)

where δ[βk − b(n)] := 1, if βk = b(n); and 0 otherwise. Indepen-
dence across sensors implies

L(θ) =

N−1∑
n=0

Ln(θ), (25)

and yields the MLE of θ given {b(n)}N−1
n=0 as

θ̂ = argmaxθ{L(θ)}. (26)

Two important features of θ̂ in (26) are summarized next.

Proposition 4 (a) L(θ) in (25) is a concave function of θ; and (b) The
CRLB of any unbiased estimator of θ based on {b(n)}N−1

n=0 is

B(θ) =
1

N

[
+∞∑

k=−∞

[p(τk+1 − θ) − p(τk − θ)]2

F (τk+1 − θ) − F (τk − θ)

]−1

. (27)

By asserting that L(θ) in (25) is concave, Proposition 4-(a) im-
plies that θ̂ in (26) can be reliably implemented. To appreciate the
value of Proposition 4-(b) notice that for an infinite set of equally
spaced thresholds (with spacing τ := τk+1 − τk), B(θ) is periodic
with period τ . Fig. 2 depicts B(θ) parameterized by τ/σ, along with
the maximum and minimum values of B(θ) as functions of τ/σ. An
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immediate observation is that for a given τ the worst and best vari-
ances are almost equal for τ ≤ 2σ, being for all practical purposes
constant when τ ≤ σ. Also important, when τ ≤ σ, B(θ) is almost
equal to the clairvoyant estimator’s variance.

To transmit the binary observations note that if bk(n) = 1, then
bk′(n) = 1 for k′ < k; and likewise if bk(n) = 0, then bk′(n) = 0
for k′ > k. Loosely speaking, we can say that each binary obser-
vation transmitted provides information about half of the thresholds,
and the required number of bits Nt to be transmitted per sensor should
grow logarithmically with the allowable parameter range. Precisely,
the actual value of Nt will depend on the parameter’s range; e.g., for
θ ∈ [−U, U ], it will be Nt ≈ log2[(σ + 2U)/τ ]. When the priori
knowledge about θ dictates a Gaussian weighting function W (θ) the
result can be summarized as follows.

Proposition 5 When W (θ) is a Gaussian bell with variance σ2
θ , the

infinite set b(n) can be transmitted using Nt bits, such that:

E(Nt) < 3 +

[
log2 Q−1(1/4) +

1

2
log2

(
σ2

θ + σ2

τ2

)]
+

, (28)

where τ := τk+1−τk ∀k, Q(x) := 1/(
√

2π)
∫ +∞

x
exp(−u2/2) du,

and [x]+ = max(0, x).

Combining Propositions 4-(b) and 5 yields a benchmark on the per-
formance of estimators based on binary observations. For a given
bandwidth constraint, we determine τ from (28), and from there the
benchmark variance from (27).

Eq. (28) can be written more intuitively in terms of γ as

E(Nt) < 2.43 +
1

2
log2 (1 + γ) + log2

(σ

τ

)
, (29)

where we substituted the constants in (28) by their explicit values,
and assumed for simplicity that the argument inside the [·]+ operator
is positive (valid if τ2 < 0.45(σ2

θ + σ2)). The first logarithmic term
in (29) can be viewed as quantifying the information that each obser-
vation x(n) carries about the underlying parameter, while the second
can be thought of as quantifying our confidence on the observations.

5.1. Optimum threshold spacing

Different from classical estimation problems were the number of mea-
surements is given, in bandwidth-constrained problems the total num-
ber of available bits, Nb, is given. Thus, a convenient metric for a
bandwidth-constrained estimation problem is the following.

Definition 1 Suppose that for a given estimator based on binary obser-
vations, the transmission of binary observations requires an average
of N̄t bits. Define the per-bit worst case CRLB as:

Cb = N̄t max
θ

{B(θ)}. (30)

For a given bandwidth constraint, Nb, the variance will be bounded
by var(θ̂) ≥ Cb/Nb. Applying Definition 1 to the CRLB in (27), we
deduce that Cb is a function of the spacing τ

Cb(τ) = N̄t(τ) max
θ

{CRLB(θ, τ)}, (31)

what leads to considering the optimum threshold spacing τ∗(γ) as

τ∗ = argminτ{Cb(τ)}. (32)

By accounting for the bandwidth constraint, we proved the exis-
tence of an optimum quantization step τ∗ and a corresponding opti-
mum number of bits per observation. Fig. 3 shows Cb(τ), and τ∗(γ).
It is apparent from these curves, that τ∗(γ) is quite insensitive to vari-
ations of γ. When γ varies from 0 dB to 50 dB (a 105 range), τ∗

moves from 2σ to σ. Furthermore, the curves Cb(τ) are very flat
around the optimum, implying that we can adopt τ = σ as a work-
ing compromise for the optimum threshold spacing (i.e., quantization
step).
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a small change when the SNR moves over a range of 50 dB.

6. QUANTIZED SAMPLE MEAN ESTIMATOR

Consider the observations {x(n)}N−1
n=0 and quantize them with a uni-

form quantizer at resolution τ to obtain,

xQ(n) = τ round[x(n)/τ ], (33)

where xQ denotes the quantized observations and round(x) is the
integer closest to x.

The Quantized Sample Mean Estimator (QSME) is just the sam-
ple mean of the quantized observations

x̄Q(n) :=
1

N

N−1∑
n=0

xQ(n), (34)

which is a desirable estimator if one just ignores the bandwidth con-
straint. Interestingly, this simple estimator is not very far from the
MLE in (26) as stated in the following proposition.

Proposition 6 The variance of the QSME in (34) is bounded by

E[(x̄Q − θ)2] ≤
(

1 +
τ

σ
+

τ2

4σ2

)
σ2

N
. (35)

Since x̄Q is biased, the pertinent performance metric is the Mean
Square Error (MSE), not the variance. Fig. 2 shows that the MSE
of the MLE for a threshold spacing τ = 2σ is roughly comparable
to the MSE of the QSME for a spacing τ = σ/2; or equivalently, for
comparable variances the QSME requires 2 extra bits per observation.
While 2 extra bits is a rather poor solution in low SNR problems re-
quiring transmission of a few bits, for large SNR problems the (slight)
bandwidth increase is worthwhile because of the reduced complexity.

7. NUMERICAL RESULTS

We implement here the estimator introduced in Section 4. For a given
threshold spacing τ , the set of frequencies ρ is obtained as the (nu-
merical) solution of the least-squares problem in (20). Figs. 4 and 5
show the result of computing ρ for the case of Gaussian and Uniform
weighting functions, respectively. In both cases, it is apparent that a
threshold spacing τ = 2σ suffices to achieve a small MSE. This is ev-
ident in the uniform case where reducing the spacing results in nulling
some of the ρk. Particularly interesting are the error curves depicting
the difference between [W (θ)]

1
2 and S(θ, τ , ρ). When the threshold

spacing is reduced from τ = 2σ to τ = σ, the error is almost un-
changed. We hence deduce that choosing the thresholds with a spac-
ing smaller than 2σ is of no practical value. Once the thresholds are
designed, the estimation problem itself can be solved using Newton’s
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Fig. 6. Gaussian noise and Gaussian weight function. With a thresh-
old spacing τ = 2σ we achieve a good approximation to the minimum
asymptotic average variance (σ = 1, τ = 2, and σθ = 2).

algorithm, based on the iteration (12). The results are shown on Fig. 6
for the case of a Gaussian weight function with 2σ spacing between
thresholds. For each value of N , the experiment is repeated 200 times
and the average variance is plotted against the theoretical threshold,
which appears to reasonably predict its value. It also confirms that a
threshold spacing τ = 2σ, is good enough.

8. CONCLUDING REMARKS

We were motivated by the observation that an estimator based on the
transmission of a single binary observation per sensor can have vari-
ance as small as π/2 times that of the clairvoyant sample mean esti-
mator (Section 3). By noting that this excellent performance can only
be achieved under careful design choices, we introduced a class of
estimators establishing our first major result: in the low-to-medium
SNR range, this class of MLE performs close to the clairvoyant esti-
mator’s variance (Section 3). We then tackled high SNR problems,
and showed that a quantization step roughly equal to the noise’s stan-
dard deviation is nearly optimal in the sense of minimizing a properly
defined per-bit CRLB (Section 5), establishing our second major con-
clusion, on the optimal number of bits per sensor to be transmitted.
The quantized sample mean estimator was introduced showing that
at high SNR even a simple-minded estimator requires transmission of
only a small number of extra bits than the MLE. This allowed us to
establish analytically that bandwidth-constrained distributed estima-
tion is not a relevant problem in high SNR scenarios. For such cases,
we advocate using the sample mean estimator based on the quantized
observations for its low complexity (Section 6). The last major con-
clusion of the present paper is that numerical maximization required
by our MLE can be posed as a convex optimization problem, thus
ensuring convergence by e.g., Newton-type iterative algorithms.
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