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Abstract— Abstract — Wireless sensor networks deployed to
perform surveillance and monitoring tasks have to operate under
stringent energy and bandwidth limitations. These motivate well
distributed estimation scenarios where sensors quantize and
transmit only one, or a few bits per observation, for use in
forming parameter estimators of interest. In a companion paper,
we developed algorithms and studied interesting tradeoffs that
emerge even in the simplest distributed setup of estimating a
scalar location parameter in the presence of zero-mean additive
white Gaussian noise of known variance. Herein, we derive
distributed estimators based on binary observations along with
their fundamental error-variance limits for more pragmatic
signal models: i) known univariate but generally non-Gaussian
noise probability density functions (pdfs); ii) known noise
pdfs with a finite number of unknown parameters; and iii)
practical generalizations to multivariate and possibly corre-
lated pdfs. Estimators utilizing either independent or colored
binary observations are developed and analyzed. Corroborating
simulations present comparisons with the clairvoyant sample-
mean estimator based on unquantized sensor observations, and
include a motivating application entailing distributed parameter
estimation where a WSN is used for habitat monitoring.

Keywords — (5) Comm/information theory aspects of sensor
networks

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of low-cost
energy-limited transceiver nodes spatially deployed in large
numbers to accomplish monitoring, surveillance and control
tasks through cooperative actions [5]. The potential of WSNs
for surveillance has by now been well appreciated espe-
cially in the context of data fusion and distributed detection;
e.g., [15], [16] and references therein. However, except for
recent works where spatial correlation is exploited to reduce
the amount of information exchanged among nodes [1], [3],
[6], [11], [12], use of WSNs for the equally important problem
of distributed parameter estimation remains largely uncharted.
When sensors have to quantize measurements in order to
save energy and bandwidth, estimators based on quantized
samples and pertinent tradeoffs have been studied for rel-
atively simple models [7], [8], [10]. In these contributions
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as well as in the present work that deals with WSN-based
distributed parameter acquisition under bandwidth constraints,
the notions of quantization and estimation are intertwined. In
fact, quantization becomes an integral part of estimation as
it creates a set of binary observations based on which the
estimator must be formed.

In a companion paper we studied estimation of a scalar
mean-location parameter in the presence of zero-mean ad-
ditive white Gaussian noise [14]. We proved that when the
dynamic range of the unknown parameter is comparable
to the noise standard deviation, estimation based on sign
quantization of the original observations exhibits variance
almost equal to the variance of the (clairvoyant) estimator
based on unquantized observations. We further established
that under signal-to-noise ratio (SNR) conditions encountered
with WSNs, even a single bit per sensor can have a variance
close to the clairvoyant estimator. In this paper, we derive
distributed parameter estimators based on binary observations
along with their fundamental error-variance limits for more
pragmatic signal models. Interestingly, for this class of models
it is still true that transmitting a few bits (or even a single
bit) per sensor can approach under realistic conditions the
performance of the estimator based on unquantized data.

We begin with mean-location parameter estimation in the
presence of known univariate but generally non-Gaussian
noise pdfs (Section III-A). We next develop mean-location
parameter estimators based on binary observations and bench-
mark their performance when the noise variance is unknown;
however, the same approach in principle applies to any noise
pdf that is known except for a finite number of unknown
parameters (Section III-B). Finally, we consider vector gen-
eralizations where each sensor observes a given (possibly
nonlinear) function of the unknown parameter vector in the
presence of multivariate and possibly colored noise (Sec-
tion IV). Under relaxed conditions, the resultant Maximum
Likelihood Estimator (MLE) turns out to be the maximum of a
concave function, thus ensuring convergence of Newton-type
iterative algorithms. Moreover, we show that by judiciously
quantizing each sensor’s data renders the estimators’ variance
stunningly close to the variance of the clairvoyant estimator
that is based on the unquantized observations (Section IV-A).
Simulations corroborate our theoretical findings in Section V,
where we also test them on a motivating application involving
distributed parameter estimation with a WSN for measuring
vector flow (Section V-B). We conclude the paper in Sec-
tion VI.
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II. PROBLEM STATEMENT

Consider a WSN consisting of N sensors deployed to
estimate a deterministic p × 1 vector parameter θ. The nth

sensor observes an M × 1 vector of noisy observations

x(n) = fn(θ) + w(n), n = 0, 1, . . . , N − 1 , (1)

where fn : Rp → RM is a known (generally nonlinear)
function and w(n) denotes zero-mean noise with pdf pw(w),
that is known possibly up to a finite number of unknown
parameters. We further assume that w(n1) is independent of
w(n2) for n1 �= n2; i.e., noise variables are independent
across sensors. We will use Jn to denote the Jacobian of
the differentiable function fn whose (i, j)th entry is given by
[Jn]ij = ∂[fn]i/∂[θ]j .

Due to bandwidth limitations, the observations x(n) have
to be quantized and estimation of θ can only be based on these
quantized values. We will henceforth think of quantization as
the construction of a set of indicator variables

bk(n) = 1{x(n) ∈ Bk(n)}, k = 1, . . . , K , (2)

taking the value 1 when x(n) belongs to the region Bk(n) ⊂
RM , and 0 otherwise. Estimation of θ will rely on this set
of binary variables {bk(n), k = 1, . . . ,K}N−1

n=0 . The latter are
Bernoulli distributed with parameters qk(n) satisfying

qk(n) := Pr{bk(n) = 1} = Pr{x(n) ∈ Bk(n)}. (3)

In the ensuing sections, we will derive the Cramér-Rao
Lower Bound (CRLB) to benchmark the variance of all
unbiased estimators θ̂ constructed using the binary obser-
vations {bk(n), k = 1, . . . ,K}N−1

n=0 . We will further show
that it is possible to find Maximum Likelihood Estimators
(MLEs) that (at least asymptotically) are known to achieve
the CRLB. Finally, we will reveal that the CRLB based
on {bk(n), k = 1, . . . , K}N−1

n=0 can come surprisingly close
to the clairvoyant CRLB based on {x(n)}N−1

n=0 in certain
applications of practical interest.

III. SCALAR PARAMETER ESTIMATION – PARAMETRIC

APPROACH

Consider the case where θ ↔ θ is a scalar (p = 1), x(n) =
θ+w(n), and pw(w) ↔ pw(w, σ) is known, with σ denoting
the noise standard deviation. Seeking first estimators θ̂ when
the possibly non-Gaussian noise pdf is known, we move on
to the case where σ is unknown, and prove that in both cases
the variance of θ̂ based on a single bit per sensor can come
close to the variance of the sample mean estimator, x̄ :=
N−1

∑N−1
n=0 x(n).

A. Known noise pdf

When the noise pdf is known, we will rely on a single
region B1(n) in (2) to generate a single bit b1(n) per sensor,
using a threshold τc common to all N sensors: B1(n) :=
Bc = (τc,∞), ∀n. Based on these binary observations,
b1(n) := 1{x(n) ∈ (τc,∞)} received from all N sensors,
the fusion center seeks estimates of θ.

Let Fw(u) :=
∫∞

u
pw(w) dw denote the Complementary

Cumulative Distribution Function (CCDF) of the noise. Us-
ing (3), we can express the Bernoulli parameter as, q1 =∫∞

τc−θ
pw(w)dw = Fw(τc − θ); and its MLE as q̂1 =

N−1
∑N−1

n=0 b1(n). Invoking now the invariance property of
MLE, it follows readily that the MLE of θ is given by [14]1:

θ̂ = τc − F−1
w

(
1
N

N−1∑
n=0

b1(n)

)
. (4)

Furthermore, it can be shown that the CRLB, that bounds
the variance of any unbiased estimator θ̂ based on b1(n)N−1

n=0

is [14]

var(θ̂) ≥ 1
N

Fw(τc − θ)[1 − Fw(τc − θ)]
p2

w(τc − θ)
:= B(θ) .(5)

If the noise is Gaussian, and we define the σ-distance between
the threshold τc and the (unknown) parameter θ as ∆c :=
(τc − θ)/σ, then (5) reduces to

B(θ) =
σ2

N

2πQ(∆c)[1 − Q(∆c]
e−∆c

:=
σ2

N
D(∆c), (6)

with Q(u) := (1/
√

2π)
∫∞

u
e−w2/2 dw denoting the Gaussian

tail probability function.
The bound B(θ) is the variance of x̄, scaled by the factor

D(∆c); recall that var(x̄) = σ2/N [4, p.31]. Optimizing
B(θ) with respect to ∆c, yields the optimum at ∆c = 0
and

Bmin =
π

2
σ2

N
, (7)

the minimum CRLB. Eq. (7) reveals something unexpected:
relying on a single bit per x(n), the estimator in (4) incurs a
minimal (just a π/2 factor) increase in its variance relative to
the clairvoyant x̄ which relies on the unquantized data x(n).
But this minimal loss in performance corresponds to the ideal
choice ∆c = 0, which implies τc = θ and requires perfect
knowledge of the unknown θ for selecting the quantization
threshold τc.

A closer look at B(θ) in (5) will confirm that the loss can
be huge if τc−θ � 0. Indeed, as τc−θ → ∞ the denominator
in (5) goes to zero faster than its numerator, since Fw is the
integral of the non-negative pdf pw; and thus, B(θ) → ∞ as
τc − θ → ∞. The implication of the latter is twofold: i) since
it shows up in the CRLB, the potentially high variance of
estimators based on quantized observations is inherent to the
possibly severe bandwidth limitations of the problem itself
and is not unique to a particular estimator; ii) for any choice
of τc, the fundamental performance limits in (5) are dictated
by the end points τc − Θ1 and τc − Θ2 when θ is confined
to the interval [Θ1,Θ2]. On the other hand, how successful
the τc selection is depends on the dynamic range |Θ1 − Θ2|
which makes sense because the latter affects the error incurred
when quantizing x(n) to b1(n). Notice that in such joint
quantization-estimation problems one faces two sources of
error: quantization and noise. To account for both, the proper

1Although related results are derived in [14, Prop.1] for Gaussian noise, it
is straightforward to generalize the referred proof to cover also non-Gaussian
noise pdfs.
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figure of merit for estimators based on binary observations is
what we will term quantization signal-to-noise ratio (Q-SNR):

γ :=
|Θ1 − Θ2|2

σ2
; (8)

Notice that contrary to common wisdom, the smaller Q-SNR
is, the easier it becomes to select τc judiciously and the better
performance can be achieved by the estimator in (4), for a
given σ, since its CRLB in (5) can be lower.

B. Known Noise pdf with Unknown Variance

No matter how small the variance in (5) can be made by
properly selecting τc, the estimator θ̂ in (4) requires perfect
knowledge of the noise pdf which may not be always justi-
fiable. A more realistic approach is to assume that the noise
pdf is known (e.g., Gaussian) but some of its parameters are
unknown. A case frequently encountered in practice is when
the noise pdf is known except for its variance E[w2(n)] = σ2.
Introducing the standardized variable v(n) := w(n)/σ we
write the signal model as

x(n) = θ + σv(n). (9)

Let pv(v) and Fv(v) :=
∫∞

v
pv(u)du denote the known pdf

and CCDF of v(n). Note that according to its definition, v(n)
has zero mean, E[v2(n)] = 1, and the pdfs of v and w are
related by pw(w) = (1/σ)pv(w/σ). Note also that all two
parameter pdfs can be standardized likewise.

To estimate θ when σ is also unknown while keeping the
bandwidth constraint to 1 bit per sensor, we divide the sensors
in two groups each using a different region (i.e., threshold)
to define the binary observations:

B1(n) :=
{

(τ1,∞) := B1, for n = 0, . . . , (N/2) − 1
(τ2,∞) := B2, for n = (N/2), . . . , N.

(10)
That is, the first N/2 sensors quantize their observations using
the threshold τ1, while the remaining N/2 sensors rely on the
threshold τ2. Without loss of generality, we assume τ2 > τ1.

The Bernoulli parameters of the resultant binary observa-
tions can be expressed in terms of the CCDF of v(n) as:

q1(n) :=
{

Fv

[
τ1−θ

σ

]
:= q1 for n = 0, . . . , (N/2) − 1,

Fv

[
τ2−θ

σ

]
:= q2 for n = (N/2), . . . , N.

(11)
Given the noise independence across sensors, the MLEs of
q1, q2 can be found, respectively, as

q̂1 =
2
N

N/2−1∑
n=0

b1(n), q̂2 =
2
N

N−1∑
n=N/2

b1(n). (12)

Mimicking (4), we can invert Fv in (11) and invoke the
invariance property of MLEs, to obtain the MLE θ̂ in terms
of q̂1 and q̂2. This result is stated in the following proposition
that also derives the CRLB for this estimation problem2.

Proposition 1 Consider estimating θ in (9), based on binary
observations constructed from the regions defined in (10).

2Omitted due to space considerations, proofs pertaining to claims in this
work can be found in [13]
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Fig. 1. Per bit CRLB when the binary observations are independent
(Section III-B) and dependent (Section III-C), respectively. In both cases,
the variance increase with respect to the sample mean estimator is small
when the σ-distances are close to 1, being slightly better for the case of
dependent binary observations (Gaussian noise).

(a) The MLE of θ is

θ̂ =
F−1

v (q̂2)τ1 − F−1
v (q̂1)τ2

F−1
v (q̂2) − F−1

v (q̂1)
, (13)

with F−1
v denoting the inverse function of Fv, and q̂1, q̂2

given by (12).
(b) The variance of any unbiased estimator of θ, var(θ̂), based
on {b1(n)}N−1

n=0 is bounded by

B(θ) :=
2σ2

N

(
∆1∆2

∆2 − ∆1

)2 [
q1 (1 − q1)
p2

v(∆1)∆2
1

+
q2 (1 − q2)
p2

v(∆2)∆2
2

]
(14)

where qk is given by (11), and

∆k :=
τk − θ

σ
, k = 1, 2, (15)

is the σ-distance between θ and the threshold τk.

Eq. (14) is reminiscent of (5), suggesting that the variances
of the estimators they bound are related. This implies that
even when the known noise pdf contains unknown parameters
the variance of θ̂ can come close to the variance of the
clairvoyant estimator x̄, provided that the thresholds τ1, τ2

are chosen close to θ relative to the noise standard deviation
(so that ∆1, ∆2, and ∆2 − ∆1 in (15) are ≈ 1). For the
Gaussian pdf, Fig. 1 shows the contour plot of B(θ) in (14)
normalized by σ2/N := var(x̄). Notice that in the low Q-
SNR regime ∆1,∆2 ≈ 1, and the relative variance increase
B(θ)/var(x̄) is less than 3.

C. Dependent binary observations

In the previous subsection, we restricted the sensors to
transmit only 1 bit per x(n) datum, and divided the sensors in
two classes each quantizing x(n) using a different threshold.
A related approach is to let each sensor use two thresholds:

B1(n) := B1 = (τ1,∞), n = 0, 1, . . . , N − 1,

B2(n) := B2 = (τ2,∞), n = 0, 1, . . . , N − 1,(16)

where τ2 > τ1. We define the per sensor vector of binary ob-
servations b(n) := [b1(n), b2(n)]T , and the vector Bernoulli
parameter q := [q1(n), q2(n)]T , whose components are as
in (11).

Note the subtle differences between (10) and (16). While
each of the N sensors generates 1 binary observation ac-
cording to (10), each sensor creates 2 binary observations
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as per (16). The total number of bits from all sensors in
the former case is N , but in the latter N log2 3, since our
constraint τ2 > τ1 implies that the realization b = (0, 1)
is impossible. In addition, all bits in the former case are
independent, whereas correlation is present in the latter since
b1(n) and b2(n) come from the same x(n). Even though one
would expect this correlation to complicate matters, a property
of the binary observations defined as per (16), summarized
in the next lemma, renders estimation of θ based on them
feasible.

Lemma 1 The MLE of q := (q1(n), q2(n))T based on the bi-
nary observations {b(n)}N−1

n=0 constructed according to (16)
is given by

q̂ =
1
N

N−1∑
n=0

b(n). (17)

Interestingly, (17) coincides with (12), proving that the
corresponding estimators of θ are identical; i.e., (13) yields
also the MLE θ̂ even in the correlated case. However, as the
following proposition asserts, correlation affects the estima-
tor’s variance and the corresponding CRLB.

Proposition 2 Consider estimating θ in (9), when σ is un-
known, based on binary observations constructed from the
regions defined in (16). The variance of any unbiased esti-
mator of θ, var(θ̂), based on {b1(n), b2(n)}N−1

n=0 is bounded
by

BD(θ) :=
σ2

N

(
∆1∆2

∆2 − ∆1

)2

[
q1 (1 − q1)
p2

v(∆1)∆2
1

+
q2 (1 − q2)
p2

v(∆2)∆2
2

− q2 (1 − q1)
pv(∆1)p(∆2)∆1∆2

]
,(18)

where the subscript D in BD(θ) is used as a mnemonic for
the dependent binary observations this estimator relies on
[c.f. (14)].

Unexpectedly, (18) is similar to (14). Actually, a fair
comparison between the two requires compensating for the
difference in the total number of bits used in each case. This
can be accomplished by introducing the per-bit CRLBs for
the independent and correlated cases respectively,

C(θ) = NB(θ), CD(θ) = N log2(3)BD(θ) , (19)

which lower bound the corresponding variances achievable by
the transmission of 1 bit.

Evaluation of C(θ)/σ2 and CD(θ)/σ2 follows from (14),
(18) and (19) and is depicted in Fig. 1 for Gaussian noise and
σ-distances ∆1, ∆2 having amplitude as large as 5. Some-
what surprisingly, both approaches yield very similar bounds
with the one relying on dependent binary observations being
slightly better in the achievable variance; or correspondingly,
in requiring a smaller number of sensors to achieve the same
CRLB.

x0

x1

B{0,0} (n)

B{0,1} (n)
B{1,0} (n)

B{1,1} (n)

B1(n)

B0(n)

Fig. 2. The vector of binary observations b takes on the value {y1, y2} if
and only if x(n) belongs to the region B{y1,y2}.

IV. VECTOR PARAMETER GENERALIZATION

Let us now return to the general problem we started with
in Section II. We begin by defining the per sensor vector of
binary observations b(n) := (b1(n), . . . , bK(n))T , and note
that since its entries are binary, realizations β of b(n) belong
to the set

B := {β ∈ RK | [β]k ∈ {0, 1}, k = 1, . . . ,K}, (20)

where [β]k denotes the kth component of β. With each β ∈ B
and each sensor we now associate the region

Bβ(n) :=
⋂

[β]k=1

Bk(n)
⋂

[β]k=0

B̄k(n), (21)

where B̄k(n) denotes the set-complement of Bk(n) in RM .
Note that the definition in (21) implies that x(n) ∈ Bβ(n) if
and only if b(n) = β; see also Fig. 2 for an illustration in
R2 (M = 2). The corresponding probabilities are:

qβ(n) := Pr{b(n) = β} = Pr{x(n) ∈ Bβ(n)}
=

∫
Bβ(n)

pw[u − fn(θ);ψ] du, (22)

with fn as in (1), and ψ containing the unknown parameters
of the known noise pdf. Using definitions (22) and (20), we
can write the pertinent log-likelihood function as

L(θ,ψ) =
N−1∑
n=0

∑
y∈B

δ(b(n) − β) ln qβ(n), (23)

and the MLE of θ as

θ̂ = arg max
(θ,ψ)

L(θ,ψ) . (24)

The nonlinear search needed to obtain θ̂ could be challenging.
Fortunately, as the following proposition asserts, under certain
conditions that are usually met in practice, L(θ,ψ) is concave
which implies that computationally efficient search algorithms
can be invoked to find its global maximum.

Proposition 3 If the MLE problem in (24) satisfies the condi-
tions:

[c1] The noise pdf pw(w;ψ) ↔ pw(w) is log-
concave [2, p.104], and ψ is known.

[c2] The functions fn(θ) are linear; i.e., fn(θ) = Hnθ,
with Hn ∈ R(M×p).

[c3] The regions Bk(n) are chosen as half-spaces.
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x1

x2

B2(n)

B1(n)

fn (θ)

e1(n)

τ2(n)

e2(n)

τ1(n)

Fig. 3. Selecting the regions Bk(n) perpendicular to the covariance matrix
eigenvectors results in independent binary observations.

then L(θ) in (23) is a concave function of θ.

Note that [c1] is satisfied by common noise pdfs, including
the multivariate Gaussian [2, p.104]; and also that [c2] is
typical in parameter estimation. Moreover, even when [c2]
is not satisfied, linearizing fn(θ) using Taylor’s expansion
is a common first step, typical in e.g., parameter tracking
applications. On the other hand, [c3] places a constraint in
the regions defining the binary observations, which is simply
up to the designer’s choice.

A. Colored Gaussian Noise

Analyzing the performance of the MLE in (24) is only
possible asymptotically (as N or SNR go to infinity).
Notwithstanding, when the noise is Gaussian, simplifications
render variance analysis tractable and lead to interesting
guidelines for constructing the estimator θ̂.

Restrict pw(w;ψ) ↔ pw(w) to the class of multivariate
Gaussian pdfs, and let C(n) denote the noise covariance
matrix at sensor n. Assume that {C(n)}N−1

n=0 are known and
let {(em(n), σ2

m(n))}M
m=1 be the set of eigenvectors and

associated eigenvalues:

C(n) =
M∑

m=1

σ2
m(n)em(n)eT

m(n). (25)

For each sensor, we define a set of K = M regions Bk(n)
as half-spaces whose borders are hyper-planes perpendicular
to the covariance matrix eigenvectors; i.e.,

Bk(n) = {x ∈ RM | eT
k (n)x ≥ τk(n)}, k = 1, . . . , K = M,

(26)
Fig (3) depicts the regions Bk(n) in (26) for M = 2. Note that
since each entry of x(n) offers a distinct scalar observation,
the selection K = M amounts to a bandwidth constraint of
1 bit per sensor per dimension.

The rationale behind this selection of regions is that the
resultant binary observations bk(n) are independent, meaning
that Pr{bk1(n)bk2(n)} = Pr{bk1(n)}Pr{bk2(n)} for k1 �=
k2. As a result, we have a total of MN independent binary
observations to estimate θ.

Herein, the Bernoulli parameters qk(n) take on a particu-

larly simple form in terms of the Gaussian tail function,

qk(n) =

∫
eT

k (n)u≥τk(n)

pw(u − fn(θ)) du

= Q

(
τk(n) − eT

k (n)fn(θ)
σk(n)

)
:= Q(∆k(n)),(27)

where we introduced the σ-distance between fn(θ)
and the corresponding threshold ∆k(n) := [τk(n) −
eT

k (n)fn(θ)]/σk(n).
Due to the independence among binary observations

p(b(n)) =
∏K

k=1[qk(n)]bk(n)[1 − qk(n)]1−bk(n), leading to

L(θ) =
N−1∑
n=0

K∑
k=1

bk(n) ln qk(n) + [1 − bk(n)] ln[1 − qk(n)],

(28)
whose NK independent summands replace the N2K depen-
dent summands in (23).

Since the regions Bk(n) are half-spaces, Proposition 3
applies to the maximization of (28) and guarantees that
the numerical search for the θ̂ estimator in (28) is well-
conditioned and will converge to the global maximum, at
least when the functions fn are linear. More important, it will
turn out that these regions render finite sample performance
analysis of the MLE in (24), tractable. In particular, it is
possible to derive a closed-form expression for the Fisher
Information Matrix (FIM) [4, p.44], as we establish next.

Proposition 4 The FIM, I, for estimating θ based on the binary
observations obtained from the regions defined in (26), is
given by

I =
N−1∑
n=0

JT
n

[
K∑

k=1

e−∆2
k(n)ek(n)eT

k (n)
2πσ2

k(n)Q(∆k(n))[1 − Q(∆k(n))]

]
Jn,

(29)
where Jn denotes the Jacobian of fn(θ).

Inspection of (29) shows that the variance of the MLE
in (24) depends on the signal function containing the pa-
rameter of interest (via the Jacobians), the noise structure
and power (via the eigenvalues and eigenvectors), and the
selection of the regions Bk(n) (via the σ-distances). Among
these three factors only the last one is inherent to the
bandwidth constraint, the other two being common to the
estimator that is based on the original x(n) observations.

The last point is clarified if we consider the FIM Ix for
estimating θ given the unquantized vector observations x(n).
This matrix can be shown to be (see [13, Apx. D]),

Ix =
N−1∑
n=0

JT
n

[
M∑

m=1

em(n)eT
m(n)

σ2
m(n)

]
JT

n . (30)

If we define the equivalent noise powers as

ρ2
k(n) :=

2πQ(∆k(n))[1 − Q(∆k(n))]
e−∆2

k(n)
σ2

k(n), (31)

we can rewrite (29) in the form

I =
N−1∑
n=0

JT
n

[
K∑

k=1

ek(n)eT
k (n)

ρ2
k(n)

]
JT

n , (32)
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Fig. 4. Noise of unknown power estimator. The simulation corroborates the
close to clairvoyant variance prediction of (14) (σ = 1, θ = 0, Gaussian
noise)

which except for the noise powers has form identical to (30).
Thus, comparison of (32) with (30) reveals that from a
performance perspective, the use of binary observations is
equivalent to an increase in the noise variance from σ2

k(n)
to ρ2

k(n), while the rest of the problem structure remains
unchanged.

Since we certainly want the equivalent noise increase to
be as small as possible, minimizing (31) over ∆k(n) calls
for this distance to be set to zero, or equivalently, to select
thresholds τk(n) = eT

k (n)fn(θ). In this case, the equivalent
noise power is

ρ2
k(n) =

π

2
σ2

k(n). (33)

Surprisingly, even in the vector case a judicious selection of
the regions Bk(n) results in a very small penalty (π/2) in
terms of the equivalent noise increase. Similar to Sections III-
A and III-B, we can thus claim that while requiring the
transmission of 1 bit per sensor per dimension, the variance of
the MLE in (24), based on {b(n)}N−1

n=0 , yields a variance close
to the clairvoyant estimator’s variance –based on {x(n)}N−1

n=0 –
for low-to-medium Q-SNR problems.

V. SIMULATIONS

A. Scalar parameter estimation

We begin by simulating the estimator in (13) for scalar
parameter estimation in the presence of AWGN with unknown
variance. Results are shown in Fig. 4 for two different sets
of σ-distances, ∆1, ∆2, corroborating the values predicted
by (14) and the fact that the performance loss with respect to
the clairvoyant sample mean estimator, x̄, is indeed small.

B. Vector Parameter Estimation – A Motivating Application

In this section, we illustrate how a problem involving vector
parameters can be solved using the estimators of Section IV-
A. Suppose we wish to estimate a vector flow using incidence
observations. With reference to Fig. 5, consider the flow vec-
tor v := (v0, v1)T , and a sensor positioned at an angle φ(n)

x0

x1

φ (n)

n

v

Fig. 5. The vector flow v incises over a certain sensor capable of measuring
the normal component of v.

with respect to a known reference direction. We will rely on a
set of so called incidence observations {x(n)}N−1

n=0 measuring
the component of the flow normal to the corresponding sensor

x(n) := 〈v,n〉+w(n) = v0 sin[φ(n)]+v1 cos[φ(n)]+w(n),
(34)

where 〈, 〉 denotes inner product, w(n) is zero-mean AWGN,
and n = 0, 1, . . . , N − 1 is the sensor index. The model (34)
applies to the measurement of hydraulic fields, pressure varia-
tions induced by wind and radiation from a distant source [9].

Estimating v fits the framework of Section IV-A requiring
the transmission of a single binary observation per sensor,
b1(n) = 1{x(n) ≥ τ1(n)}. The FIM in (32) is easily found
to be

I =
N−1∑
n=0

1
ρ2
1(n)

(
sin2[φ(n)] sin[φ(n)] cos[φ(n)]

sin[φ(n)] cos[φ(n)] cos2[φ(n)]

)
.

(35)
Furthermore, since x(n) in (34) is linear in v and the noise
pdf is log-concave (Gaussian) the log-likelihood function is
concave as asserted by Proposition 3.

Suppose that we are able to place the thresholds optimally
at τ1(n) = v0 sin[φ(n)] + v1 cos[φ(n)], so that ρ2

1(n) =
(π/2)σ2. If we also make the reasonable assumption that
the angles are random and uniformly distributed, φ(n) ∼
U [−π, π], then the average FIM turns out to be:

Ī =
2

πσ2

(
N/2 0

0 N/2

)
. (36)

But according to the law of large numbers I ≈ Ī, and the
estimation variance will be approximately given by

var(v0) = var(v1) =
πσ2

N
. (37)

Fig. 6 depicts the bound (37), as well as the simulated vari-
ances var(v̂0) and var(v̂1) in comparison with the clairvoyant
MLE based on {x(n)}N−1

n=0 , corroborating our analytical ex-
pressions.

VI. CONCLUSIONS

We were motivated by the need to effect energy savings
in a wireless sensor network deployed to estimate parameters
of interest in a decentralized fashion. To this end, we de-
veloped parameter estimators for realistic signal models and
derived their fundamental variance limits under bandwidth
constraints. The latter were adhered to by quantizing each

735



10
2

10
−2

10
−1

Empirical and theoretical variance for first component of v

number of sensors

va
ria

nc
e

empirical
theoretical
analog MLE

10
2

10
−2

10
−1

Empirical and theoretical variance for second component of v

number of sensors

va
ria

nc
e

empirical
theoretical
analog MLE

Fig. 6. Average variance for the components of v. The empirical as well
as the bound (37) are compared with the analog observations based MLE
(v = (1, 1), σ = 1).

sensor’s observation to one or a few bits. By jointly account-
ing for the unique quantization-estimation tradeoffs present,
these bit(s) per sensor were first used to derive distributed
maximum likelihood estimators (MLEs) for scalar mean-
location parameters in the presence of generally non-Gaussian
noise when the noise pdf is completely known, and when the
pdf is known except for a number of unknown parameters.

In both cases, the resulting estimators turned out to ex-
hibit comparable variances that can come surprisingly close
to the variance of the clairvoyant estimator which relies
on unquantized observations. This happens when the SNR
capturing both quantization and noise effects assumes low-
to-moderate values. Analogous claims were established for
practical generalizations that were pursued in the multivariate
and colored noise cases for distributed estimation of vector
parameters under bandwidth constraints. Therein, MLEs were
formed via numerical search but the log-likelihoods were
proved to be concave thus ensuring fast convergence to the
unique global maximum.

A motivating application was also considered reinforc-
ing the conclusion that in low-cost-per-node wireless sensor
networks, distributed parameter estimation based even on a
single bit per observation is possible with minimal increase
in estimation variance3.

3 The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.
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