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ABSTRACT

This paper deals with recursive random parameter or state estima-

tion for use in distributed tracking applications implemented with

a Wireless Sensor Network (WSN). Bandwidth and energy limita-

tions encountered with WSNs, motivate quantization of individual

sensor observations before their digital transmission to the fusion

center, where tracking is to be performed. Recent results investi-

gating the intertwining between quantization and batch parameter

estimation with WSNs, hint that quantization to a single bit per sen-

sor may lead to a small penalty in state estimation variance. Relying

on a dynamical model, we derive a Kalman-like Filter (KF) based

on what we term “sign-differential” quantization, and establish that

for all cases of practical interest, its asymptotic variance comes sur-

prisingly close to the asymptotic variance of the clairvoyant mini-

mum mean-square error KF state estimator which is based on the

original (analog) observations. In a nutshell, this paper establishes

the rather unexpected result that tracking with a WSN can simply

rely on sensor observations quantized to a single bit.

1. INTRODUCTION

Continuously reducing the size and price of electronic devices has

made possible the concept of Wireless Sensor Networks (WSN) in

which a large number of small, power-limited, low-cost devices is

deployed to perform monitoring, surveillance and control tasks [7].

The unique characteristics of WSNs require rethinking of many

standard algorithms when bandwidth and power resources are re-

duced by orders of magnitude. Such rethinking is advanced in the

context of distributed detection, where a WSN is deployed to de-

cide among a number of possible hypotheses; see e.g., [15, 16] and

references therein. The related problem of distributed estimation

however, has received relatively less attention in the WSN context.

Spatial correlations have been exploited to reduce the amount of in-

formation exchanged among sensors [2, 3, 4, 5, 8, 11, 12]. Recent

works –to which the present paper belongs to– explore the inter-

twining between quantization and estimation that arises due to the

distributed nature of WSNs [1, 9, 10, 13, 14]. If a digital com-

munication system is to be used, individual observations have to

be quantized and estimation can only rely on this set of binary ob-

servations, a problem undoubtedly different from estimation based

on the original (analog) observations. The information loss due to

quantization certainly increases the achievable variance [10]. Re-

sults in [10] hint that when the noise power is at least comparable

with the range of the parameter to be estimated, quantization to a

single bit per observation can lead to a minimal increase in vari-

ance. Recent studies in [13, 14] show that this holds true for a large
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class of estimation problems pertaining to different signal models

and different degrees of knowledge about the additive noise statis-

tics corrupting the observations.

Going a step forward, this paper introduces a dynamical model

for the parameter to be estimated. This is a challenging generaliza-

tion since the customary Kalman Filter (KF) that is known to offer

the Minimum Mean-Squared (MMSE) estimator cannot be directly

applied because of the required quantization step. Considering this

fact, our first contribution in this paper is a Kalman-like filter (that

we abbreviate as Dymbo filter) to closely approximate the MMSE

estimator based on binary observations. We further study the Mean-

Squared Error (MSE) achieved by the Dymbo filter, and establish

the surprising result that for almost all cases of practical interest

the MSE of the Dymbo filter is within a factor of 2 of the Kalman

filter’s MSE based on the analog observations. To appreciate the

importance of this result, recall that the Dymbo filter requires trans-

mission of only a single bit per observation.

The rest of the paper is organized as follows. Section 2 presents

ad-hoc and hierarchical WSN topologies and describes the trans-

mission protocol used by the sensors to recursively estimate the

state of the dynamical system under consideration. In Section 3,

we review the clairvoyant KF, emphasizing the fact that for a KF

to be worth implementing the variance of the driving input should

be smaller than the variance of the measurement noise. The core

of the paper is in Section 4, where the Dymbo filter based on the

sign of the difference between the current estimate and the current

prediction is introduced and shown to exhibit asymptotic variance

very close to that of the KF for most cases of practical interest. No

matter how useful the asymptotic variance is, the convergence rate

of the Dymbo filter can be slower than the convergence rate of the

clairvoyant KF. To alleviate this problem, we study initialization

issues of the Dymbo filter in Section 5, where we show that the

proposed initialization requires a different message only in the first

step thus having a minimal effect in the overall bandwidth require-

ments. Section 6 demonstrates two implementations of the Dymbo

filter, and Section 7 concludes the paper.

Notation: We will use Px(x) to denote the probability density

function (pdf), of the random variable x taking the value x. The

notation Px|y(n),...,y(0)(x) will stand for the conditional pdf of x

given y(n), . . . , y(0). The notation Px = N (µ, σ2) abbreviates

the fact that x is normally distributed with mean µ and variance σ2;

i.e., Px(x) = 1/(
√

2πσ) exp[−(x − µ)2/σ2].

2. NETWORK SETUP AND SYSTEM MODEL

Two different WSN architectures characterized by the presence or

absence of a Fusion Center (FC) are considered. When an FC is

present, the WSN is termed hierarchical in the sense that sensors

act as information gathering devices for the FC that is in charge of

processing this information; see Fig. 1. Sensor Sn sends the mes-

sage m(n) to the FC through a multiple access channel, and the FC
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Fig. 1. A hierarchical WSN is used to track the plant parameter

θ(n) that follows an AR-1 model. Based on the observation x(n) a

message m(n) is constructed and sent to the FC, which broadcasts

it back to all sensors.

broadcasts feedback information f(k) to be used for the recursive

parameter or state estimation. In ad-hoc WSNs, the network itself

is responsible for processing, and to this end sensors communicate

with each other through the shared wireless medium; see Fig. 2. We

assume that the message m(n) sent by sensor Sn is received by all

other sensors, using a forwarding mechanism the details of which

go beyond the scope of the present paper.

An important distinction between ad-hoc and hierarchical ar-

chitectures pertains to the amount of information available to each

sensor. In ad-hoc WSNs, the messages m(n) percolate through all

sensors, and information of their original observations is thus avail-

able at each sensor. In hierarchical WSNs, on the other hand, the

information at each sensor becomes available through the feedback

messages f(k). In order to make the two architectures identical

from the perspective of the problem at hand, the FC must broadcast

back the last received message; i.e., we require f(k) = m(k). It

will also become clear later on that as far as communications re-

sources are concerned, this feedback is the optimum strategy for

the FC.

With either one of these network models, the WSN is deployed

to monitor a dynamically evolving physical phenomenon, θ(n),

that will be referred to as the plant. Although generalizations to

matrix-vector models are possible, for simplicity in exposition, we

will consider here an AR-1 process for the plant

θ(n) = aθ(n − 1) + u(n), (1)

whose driving input u(n) is an independent identically distributed

(i.i.d.) random process with Pu = N (0, σ2

u). For the AR-1 process

to be stable, we require |a| < 1. Notice that n here denotes both the

sensor index as well as the time (or space) evolution of the plant.

At time n, when the parameter takes the value θ(n) the sensor

Sn collects a noisy observation,

x(n) = θ(n) + w(n), (2)

where w(n) denotes additive white Gaussian noise with pdf Pw(n) =

N (0, σ2).

For digital transmission, x(n) has to be quantized to yield the

message m(n) = q[x(n)]. Thus, our WSN-based tracking problem

can be posed as the problem of estimating θ(n) given the messages

m(0), . . . , m(n) sent respectively by sensors S0, . . . , Sn. Adopt-

ing the MMSE as our optimality criterion, the estimator we are after

is given by the conditional expectation

θ̂(n) = E[θ(n)|m(n), . . . , m(0)]. (3)
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Fig. 2. Ad-hoc WSN architecture deployed to track θ(n). The

messages m(n) percolate through all sensors in the network.

Our first objective is to find the estimator in (3) for properly de-

signed messages m(n). Clearly, the MSE of the obtained estimates

will depend on how the messages are designed. To this end, we will

exploit the implicit information that previous estimates carry about

the current observation, seeking quantization functions of the form:

m(n) = q[x(n), θ̂(n − 1)]. (4)

That is, we look for quantization functions that depend on the value

of the observation and the previous parameter (or state) estimate.

In summary, given the plant-observation model (1)-(2) we want

to design the quantizer function in (4) and find the MMSE optimum

estimator as in (3). Before tackling this problem, let us review the

clairvoyant KF from a WSN angle.

3. THE KF BENCHMARK

We begin by considering the case in which m(n) = x(n). Note

that this scheme is not realizable, since with x(n) being analog, its

digital transmission requires infinite bandwidth. However, the esti-

mator based on x(n) is a proper clairvoyant estimator to benchmark

the loss associated with the quantized messages to be introduced in

the next section.

When m(n) = x(n), we deal with a classical estimation prob-

lem. It is known that the MMSE estimator and corresponding vari-

ance, given by

θ̂KF (n|n) := E[θ(n)|x(n) . . . x(0)],

MKF (n|n) := var[θ(n|n)|x(n) . . . x(0)], (5)

can be computed recursively by means of a KF [6, Chap.13].

The KF is derived by considering a prediction phase in which

θ(n) is predicted from past observations {x(k)}n−1

k=0
, followed by

a correction phase in which the current observation x(n) is incor-

porated to correct the prediction.

Specifically, consider the estimate θ̂KF (n − 1|n − 1) and its

variance MKF (n− 1|n− 1) at the (n− 1)st
step, and assume that

the conditional distribution of θ(n − 1) is Gaussian:

Pθ(n−1)|x(n−1),...,x(0) =

N [θ̂KF (n − 1|n − 1), MKF (n − 1|n − 1)]). (6)

Under this assumption, it follows immediately that all the infor-

mation from past observations is contained in θ̂KF (n − 1|n − 1)
and MKF (n − 1|n − 1). By using the plant model (1), the 1-step

prediction, θ̂KF (n|n − 1) := E[θ|x(n − 1) . . . x(0)], is given by

θ̂KF (n|n − 1) = aθ̂KF (n − 1|n − 1), (7)

MKF (n|n − 1) = a
2
MKF (n − 1|n − 1) + σ

2

u, (8)
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where MKF (n|n − 1) := var[θ(n|n − 1)|x(n − 1) . . . x(0)].
An important consequence of the linearity of (1), is that θ(n)

given past observations is also normally distributed:

Pθ(n)|x(n−1),...,x(0) = N [θ̂KF (n|n − 1), MKF (n|n − 1)]. (9)

Thus, the problem of estimating θ(n) after observing x(n) is a

simple Gaussian prior – Gaussian noise problem whose solution

is known to be given by:

θ̂KF (n|n) = θ̂KF (n|n− 1) +
MKF (n|n − 1)

MKF (n|n − 1) + σ2
x̃(n), (10)

where x̃(n) := x(n) − θ̂KF (n|n − 1). The estimation variance

also follows readily as

MKF (n|n) = MKF (n|n − 1) −
M2

KF (n|n − 1)

MKF (n|n − 1) + σ2
. (11)

The last property of the Gaussian prior – Gaussian noise problem

is that the posterior probability is Gaussian Pθ(n)|x(n),...,x(0) =

N [θ̂KF (n|n), MKF (n|n)]. This justifies the previous assumption

about the distribution Pθ(n−1)|x(n−1),...,x(0) and completes the KF

derivation.

A particularly important performance indicator for KFs is the

asymptotic (steady state) variance defined as

MKF∞
:= lim

n→∞

MKF (n|n), (12)

that can be easily obtained by taking MKF (n|n) = MKF (n −

1|n − 1), which in the limit obeys the so called Ricatti equation

[c.f. (8) and (11)]:

a
2

(
MKF∞

σ2

)
2

+

(
σ2

u

σ2
+ (1 − a

2)

) (
Mk∞

σ2

)
−

σ2

u

σ2
. (13)

The asymptotic MSE given by the positive solution of (13), is seen

to depend on γ := σ2

u/σ2
, and is proportional to σ2

. Quantity

MKF∞
/σ2

can be interpreted as the variance reduction achieved

by the KF with respect to the crude observations x(n).

This reduction is plotted in Fig. 3 as a function of γ, for three

representative values of a. It is apparent that for γ > 1, the variance

reduction achieved by the KF is small (MKF∞
/σ2) ≈ 0.5; an ex-

pected behavior, since for large σu subsequent states are essentially

independent. Apart from intuition, the important point is that KF is

practically effective only when γ < 1. Having brought this point

to the reader’s attention, we are set up to prove that in a WSN setup

1-bit messages m(n) lead to a Kalman-like filter whose asymptotic

variance is almost identical to the variance of the clairvoyant KF

reviewed in this section.

4. KF WITH SEVERELY QUANTIZED DATA

As noted in Section 1, quantization is integral to the distributed na-

ture of WSNs. This section considers estimation based on severely

quantized data, and for that matter we define the binary observa-

tions

b(n) = sign[x(n) − θ̂(n − 1|n − 1)]

:=

{
+1, if x(n) ≥ θ̂(n − 1|n − 1)

−1, if x(n) < θ̂(n − 1|n − 1)
, (14)

and consider messages m(n) = b(n). This implies that at step n,

sensor Sn compares its observation x(n) with the previous estimate

and transmits the sign of the difference. Note that this setup re-

quires a single bit per sensor –hence the name binary observation–
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Fig. 3. Variance reduction achieved by a KF versus γ := σ2

u/σ.

The smaller σ2

u is relative to σ2
, the more effective KFs are.

and quantization amounts to taking the sign of x(n)−θ̂(n−1|n−1)
–hence the name “sign-differential” quantization.

The first goal of this section is to find an approximation to the

MMSE estimator based on the binary observations b(n) and the

corresponding MSE:

θ̂(n|n) := E[θ(n)|b(n) . . . b(0)],

M(n|n) := var[θ(n|n)|b(n) . . . b(0)]. (15)

A second, more ambitious goal, is to establish that the asymptotic

MSE

M∞ := lim
n→∞

M(n|n), (16)

is very close to the MKF∞ obtained from (13) for γ < 1. This

will establish that except for a transient behavior, quantization to a

single bit per observation leads to an estimator whose variance is

almost equal to the variance of the estimator based on the original

(analog) observations for practically all cases of interest.

4.1. Dymbo filter

As a first step, let us consider the problem of MMSE estimation

of a Gaussian random variable when a single binary observation is

given. For this case, the integration required by the MMSE esti-

mator is computable in closed form, as we prove in the following

proposition.

Proposition 1 Consider a normally distributed random variable θ,

with Pθ = N (µθ, σ
2

θ); an observation of this random variable

x = θ+w, with Pw = N (0, σ); and define the binary observation

b = sign(x − µθ). Then,

(a) the MMSE estimator of θ given b, and the corresponding

MSE are given by:

θ̂ := E[θ|b] = µθ +

√
2

π

σ2

θ√
σ2

θ + σ2
b, (17)

var[θ|b] = σ
2

θ −

2

π

σ4

θ

σ2

θ + σ2
. (18)

(b) when σ → ∞, the distribution of θ given b converges uni-

formly to a Gaussian distribution:

lim
σ→∞

Pθ|b
u
= N [θ̂, var(θ)|b]. (19)
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Proposition 1 can be used to construct an approximation to

the MMSE estimator in (15). Towards this objective, let us as-

sume as we did in Section 3 that at the (n − 1)st
step the estimate

θ̂(n − 1|n − 1) and its MSE M(n − 1|n − 1) are known, and the

conditional distribution is Gaussian; i.e., Pθ(n−1)|b(n−1),...,b(0) =

N [θ̂(n− 1|n− 1), M(n− 1|n − 1)]. If this is the case, it follows

from the signal model (1) that the 1-step prediction θ̂(n|n − 1) :=
E[θ(n)|b(n − 1), . . . , b(0)] is given by

θ̂(n|n − 1) = aθ̂(n − 1|n − 1), (20)

M(n|n − 1) = a
2
M(n − 1|n − 1) + σ

2

u, (21)

where M(n|n − 1) := var[θ(n|n − 1)|b(n − 1) . . . b(0)].
Moreover, the corresponding distribution is also Gaussian; i.e.,

Pθ(n)|b(n−1),...,b(0) = N [θ̂(n|n − 1), M(n|n − 1)]. Thus, Propo-

sition 1 applies and allows one to conclude that

θ̂(n|n) = θ̂(n|n − 1) +
(
√

2/π) M(n|n − 1)√
M(n|n − 1) + σ2

b(n), (22)

M(n|n) = M(n|n − 1) −
(2/π) M2(n|n − 1)

M(n|n − 1) + σ2
. (23)

To complete our argument, we should establish that the posterior

distribution Pθ(n)|b(n),...,b(0) is also Gaussian, which unfortunately

is not the case. Notwithstanding, invoking Proposition 1-(b) this is

asymptotically true as σ → ∞. This implies that the filter given

by (20)-(23) offers asymptotically an approximation to the MMSE

for small values of γ. This filter estimates the state of a DYnam-

ical Model based on Binary Observations; hence the abbreviation

Dymbo.

It is fair to comment that Proposition 1 is not as revealing

with regards to error propagation and eventually error accumula-

tion which could lead to considerable deviation from the actual

MMSE. Using extensive simulations we have verified that errors

do not propagate, and that Pθ(n)|b(n),...,b(0) is very well approxi-

mated by a Gaussian distribution.

4.2. Asymptotic MSE

The striking similarities between (11) and (23) prompt one to com-

pare the corresponding MSEs. Towards this objective, the asymp-

totic MSE defined by (16) can be obtained by setting M(n|n) =
M(n − 1|n − 1) to obtain the slightly more cumbersome Ricatti

equation [c.f. (21) and (23)]:

M∞

σ2
= a

2 M∞

σ2
+ γ −

(2/π) [a2(M∞/σ2) + γ]2

a2(M∞/σ2) + γ
, (24)

where as before γ = σ2

u/σ2
and M∞/σ2

is the asymptotic vari-

ance reduction achieved by the Dymbo filter.

While it is possible to plot M∞/σ2
versus γ to obtain curves

similar to those of Fig. 3, it is more informative to plot the asymp-

totic loss associated with the Dymbo filter

ℓ :=
MKF∞

M∞

. (25)

A contour plot of ℓ as a function of a and γ is depicted in Fig. 4,

revealing the surprising result that ℓ < 2 when γ < 1, for all values

of a. This result combined with the comments at the end of Sec-

tion 3 establish the even more surprising conclusion that when a KF

is worth implementing, it can be implemented with the transmission

of a single bit per observation.
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Fig. 4. The asymptotic MSE increase associated with the Dymbo

filter, ℓ := (MKF∞/M∞). Surprisingly, the asymptotic loss is

very small for the region of interest (γ < 1). Note that the largest

penalty is paid for systems close to instability |a| ≈ 1.

5. INITIALIZATION

As with KFs, Dymbo filters require a Gaussian prior distribution

Pθ(−1) = N (µθ, σθ) to initialize the recursions using θ̂(−1| −

1) = µθ , and M(−1| − 1) = σ2

θ .

While we just proved that after reaching steady state there is

no practical difference between Kalman and Dymbo filters, a quick

comparison of (11) and (23) shows that the rate of convergence of

the latter is slower, a particularly important problem when M(−1|−
1) ≫ σ2

. To alleviate this problem, we can allow transmission of

a different message in the first step

m(0) = xτ (0) := τround(x(n)/τ) . (26)

Specifically, we quantize the first observation to a grid of resolution

(size) τ . If we select

θ̂(0) := m(0), (27)

then it is straightforward to show that the MSE of this first estimate

is bounded as specified in the following proposition.

Proposition 2 The MSE of the first step estimator, (27) satisfies

E[(θ̂(0) − θ(0))2] ≤ σ
2

(
1 +

τ

σ
+

τ2

4σ2

)
. (28)

Proof: See Appendix B.

By selecting τ ≪ σ, we can bring the variance of θ̂(0) close to the

noise variance σ2
, thus alleviating the slow convergence problem of

the Dymbo filter. The effect on the overall bandwidth requirement

is, of course, negligible.

6. SIMULATIONS

Including the initialization step, the messages transmitted by the

Dymbo filter are given by

m(n) = xτ (0) n = 0,

m(n) = sign[x(n) − θ̂(n − 1|n − 1)] n ≥ 1.
(29)

The first step estimate θ̂(0) is given by (27), and subsequent esti-

mates are obtained by iterative application of (20)-(23).
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Fig. 5. Two implementations of the Dymbo filter compared with the

corresponding KF. There is practically no difference in the behavior

of both filters.

For the simulations we took σ = 1, and considered a = 0.9
since from Fig. 4 larger values of a lead to a larger loss of the

Dymbo filter when compared to the KF. The initial quantization

step was set to τ = σ. Simulation results are shown in Fig. 5 for

γ = 0.5, and γ = 0.05 confirming that in both cases the asymp-

totic MSE as given by (16) is a good prediction of the experimental

results. This very fact also testifies that the approximate MMSE

estimator defined by (20)-(23) is, indeed, a good approximation to

the MMSE.

It can also be seen that the convergence of the Dymbo filter

with proper initialization is very fast and virtually indistinguishable

from the Kalman filter.

7. CONCLUSIONS

In order to enable distributed Kalman filtering for tracking appli-

cations with sensors transmitting severely quantized observations,

we introduced the Dymbo filter which is based on the sign of the

difference between the current observation and the prediction based

on past observations. Even if single-bit quantization is most severe,

we established that for virtually all cases of practical interest trans-

mission of a single bit per observation (the sign of the difference)

leads to a filter whose steady-state estimation variance is within a

factor of 2 relative to the corresponding Kalman filter variance. The

convergence rate of the Dymbo filter was observed to be a potential

drawback, but we showed that by modifying the first (and only the

first) estimation step it is possible to ameliorate it. The impact of

this initialization in the overall bandwidth requirement is negligi-

ble.

In a nutshell, the conclusion of this paper is that when a KF

is worth implementing it can be implemented with the transmission

of a single bit per observation, which is very attractive for WSN-

based tracking applications
1
.
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