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Abstract— We deal with distributed parameter estimation
algorithms for use in wireless sensor networks (WSNs) with a
fusion center when only quantized observations are available due
to power/bandwidth constraints. The main goal of the paper
is to design efficient estimators when the parameter can be
modelled as random with a priori information. In particular,
we develop maximum a posteriori (MAP) estimators for dis-
tributed parameter estimation and formulate the problem under
different scenarios. We show that the pertinent objective function
is concave and hence, the corresponding MAP estimator can
be obtained efficiently through simple numerical maximization
algorithms.

I. INTRODUCTION

Characterized by small low-cost, low-power devices
equipped with limited sensing, computational and commu-
nication capabilities, wireless sensor networks (WSNs) are
well motivated for environmental monitoring, industrial instru-
mentation and surveillance applications [7]. The distributed
topology of these networks along with their limited power
budget and communication resources gave rise to the area of
collaborative signal and information processing [3].

Bandwidth-constrained distributed estimation arises when
deploying a WSN for monitoring, in which case the estimation
of certain parameters of interest necessitates collection of
different sensor estimates. As sensor observations have to be
quantized, WSN-based parameter estimators must rely on (per-
haps severely) quantized observations [4], [5]. Interestingly,
it has been shown in [6] that when the noise variance is
comparable to the parameter’s dynamic range, even quanti-
zation to a single bit per observation leads to a small penalty
in estimation variance when comparing maximum likelihood
(ML) estimators based on quantized (binary) versus original
(analog-amplitude) observations. A characteristic common to
all these works is the assumption that some prior information
is available, at least to bound the range of possible parameter
values. This suggests naturally, a connection with Bayesian
estimation.

Building on this observation, the present paper addresses
the problem of maximum a posteriori (MAP) estimation
based on binary observations, and shows that the graceful
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performance degradation of ML estimators extends to their
MAP counterparts. Moreover, we establish that while MAP
estimators cannot be expressed in closed form, they are found
as the maximum of a concave function; thus ensuring the
convergence of fast descent algorithms e.g., Newton’s method.

II. PROBLEM FORMULATION

Consider a physical phenomenon characterized by a set of P
parameters that we lump in vector form as θ := [θ1, . . . , θP ]T .
From available a priori knowledge, θ is modelled as a random
vector parameter with prior probability density function (pdf)
pθ(θ) and mean E(θ) = µθ.

For measuring θ, we deploy a WSN composed of N sensors
{Sn}N−1

n=0
, with each sensor observing θ through a linear

transformation
x(n) = Hθ + w(n), (1)

where x(n) := [x1(n), . . . , xK(n)]T ∈ RK is the measure-
ment vector at sensor Sn, w(n) ∈ RK is zero-mean additive
noise with pdf pw(w) and the matrix H ∈ RK×P . We
denote the vector formed by concatenating all the observa-
tions {x(n)}N−1

n=0
of N sensors as x0:N−1. For simplicity of

exposition, we assume that H and pw(w) are constant across
sensors, and we also assume that w(n1) is independent of
w(n2) for n1 �= n2.

A clairvoyant (CV) benchmark for estimators based on bi-
nary observations corresponds to having all analog-amplitude
observations x0:N−1 be available at the fusion center. In
this case, a possible approach to estimate θ is the MAP
estimator [2]

θ̂CV = arg maxθ {p[θ|x0:N−1]} , (2)

where p[θ|x0:N−1] is the conditional pdf of θ given x0:N−1.
As discussed earlier, power and bandwidth constraints,

dictate the need of a quantizer mapping the analog-amplitude
observations x(n) to a finite set:

b(n) := q(x(n)), with q : RK → {−1, 1}K , (3)
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with b(n) = [b1(n), . . . , bK(n)]T a K-component binary mes-
sage. Note that implicit to (3) is the fact that we are restricting
the sensors to transmit one bit per scalar observation. Similar
to x0:N−1, we define the binary observation of N sensors as
b0:N−1.

The problem addressed in this paper is the MAP estimation
of θ based on the binary messages b0:N−1, where the MAP
estimator is defined as [2]

θ̂MAP = arg maxθ {p[θ |b0:N−1]} (4)

= arg maxθ {ln p[b0:N−1|θ] + ln pθ(θ)} ,

with p[θ |b0:N−1] and p[b0:N−1|θ] are the conditional pdfs of
θ given b0:N−1 and of b0:N−1 given θ, respectively. Note that
to obtain the second equality in (4) we used Bayes’ rule, the
monotonicity of the logarithm and eliminated a normalizing
constant that does not depend on θ.

The goals of this paper are to: i) derive quantization func-
tions q(x(n)); ii) establish that in many cases of interest θ̂MAP

in (4) can be found as the maximum of a concave function;
and iii) show that the estimation variance of θ̂MAP in (4) based
on binary observations comes close to the estimation variance
of θ̂CV in (2) based on analog-amplitude observations.

III. MAP ESTIMATOR - SCALAR PARAMETERS

The MAP formulation allows us to tackle parameter estima-
tion problems in different scenarios. First simple situation is
when the parameter θ ↔ θ and the observations x(n) ↔ x(n)
are scalar. In this case, we define the message as

b(n) := sgn[x(n) − hµθ] (5)

where the function sgn(·) observes the sign of its argument.
The estimator θ̂MAP in (4) can then be written in terms of
the prior pdf pθ(θ) and the cumulative distribution function
(CDF) of the noise and can be found with robust numerical
algorithms as asserted by the following proposition.

Proposition 1 Consider a random scalar parameter θ with
prior distribution pθ(θ), an observation model as in (1), and
binary messages b0:N−1 defined as in (5). Then,

(a) if Fw(w) denotes the CDF of the noise variables w(n)
the MAP estimator of θ given b0:N−1 is

θ̂MAP = arg maxθ

[
N−1∑
n=0

lnFw[hb(n)(θ−µθ)]+ln pθ(θ)

]

:= arg maxθ [L(θ)] (6)

and;
(b) if Fw(·) and pθ(·) are log-concave functions [1, p. 104],

then L(θ) is a concave function of θ.

Proof: Writing (4) for scalar parameter θ

θ̂MAP = arg maxθ ln p(θ|b0:N−1)

= arg maxθ {ln Pr[b0:N−1 | θ] + ln p(θ)} , (7)

where we ignored the term containing Pr(b0:N−1) as it is inde-
pendent of θ. Making use of the independence among the ob-
servations, we can write Pr[b0:N−1|θ] =

∏N−1

n=0
Pr[b(n) | θ].

The value of Pr[b(n)|θ] can be obtained by explicit enumera-
tion:

Pr[b(n) = 1|θ] = Pr[w > h(µθ − θ)|θ] = Fw [h(θ − µθ)]

Pr[b(n) = −1|θ] = Pr[w < h(µθ − θ)|θ] = Fw [h(µθ − θ)] .

Combining the above two cases, we can write

Pr[b(n)|θ] = Fw [hb(n)(θ − µθ)] . (8)

Substituting (8) into (7) the result in (6) follows.
The claim in Proposition 1-[b] follows from the fact that

the sum of concave functions is also concave.
The value of Proposition 1 is not as much in giving an

expression for θ̂MAP (Proposition 1-[a]) as in establishing that
the function L(θ) is concave (Proposition 1-[b]). The latter
assures efficient numerical implementation of our algorithm
as discussed in the following remark.

Remark 1 The numerical search needed to obtain θ̂MAP

could be challenged either by the multimodal nature of L(θ)
or by numerical ill-conditioning caused by e.g., saddle points.
But when the log-concavity conditions in Proposition 1-[b]
are satisfied, computationally efficient search algorithms like
e.g. Newton’s method are guaranteed to converge to the global
maximum [1, Chap. 2].

A special case of a log-concave pdf is the Gaussian
one. Consequently, in the frequently encountered case of a
Gaussian prior pθ(θ) = [1/(

√
2πσθ)] exp[−(θ − µθ)

2/(2σ2

θ)]
and Gaussian noise pw(w) = [1/(

√
2πσw)] exp[−w2/(2σ2

w)]
the MAP estimator can be expressed as

θ̂MAP = arg maxθ

{∑N−1

n=0
lnQ

(
hb(n)(µθ−θ)

σw

)
− (θ−µθ)

2

2σ2
θ

}
,

(9)
where Q(x) :=

∫ ∞
x

(1/
√

2π) exp[−u2/2]du is the Gaussian
tail function. Moreover, descent methods e.g., Newton’s algo-
rithm are guaranteed to converge to the global maximum.

Other log-concave pdfs are the uniform distribution in a
convex set and the members of the generalized Gaussian
family.

IV. MAP ESTIMATOR - VECTOR PARAMETERS

Results in Section III can be extended to cover the gen-
eral vector parameter - vector observation model in (1).
Start by considering the case of white Gaussian noise; i.e.,
E[w(n)wT (n)] = σ2

wI. In this case, we write H :=
[h1, . . . ,hK ]T and define the components of the message b(n)
as

bk(n) := sgn[xk(n) − hT
k µθ] , (10)

for k ∈ [1,K]. The resemblance with the problem of Sec-
tion III is clear and not surprisingly the following proposition
holds true.

Proposition 2 Consider a vector parameter θ, with log-
concave prior distribution pθ(θ); an observation model
as in (1) with pw(w) white Gaussian with variance
E[w(n)wT (n)] = σ2

wI; and binary messages b0:N−1 as
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in (10). Then, if we define the per sensor likelihood Ln(θ)
as

Ln(θ) =
K∑

k=1

lnQ

(
bk(n)hT

k [µθ − θ]

σw

)
, (11)

we have that:

(a) The MAP estimator of θ based on b0:N−1 is given by

θ̂MAP = arg maxθ

[
N−1∑
n=0

Ln(θ)

]
+ ln[pθ(θ)]

:= arg maxθL(θ). (12)

(b) The likelihood L(θ) is a concave function of θ.

Let us note that the multivariate Gaussian belongs to the
log-concave class of pdfs. Indeed, if θ has a Gaussian prior
distribution with covariance matrix E[θθT ] = Cθ then

ln[pθ(θ)]=−C − 1

2
(θ−µθ)

T C−1

θ (θ−µθ) , (13)

with C := 1

2
ln[(2π)P det(Cθ)]. The expression in (13) is

a quadratic expression on θ which is concave for positive
semidefinite Cθ.

Proposition 2 establishes that at least for white Gaussian
noise the comments in Remark 1 also hold true for vector
parameters and observations. In the coming section we show
that the same result can be obtained for colored noise.

A. Colored Gaussian Noise

Consider again the model in (1) with w(n) colored Gaussian
with covariance matrix E[w(n)wT (n)] := C(n) at sensor Sn.
In this case the components of the observation x(n) are not
independent; hence, the components of b(n) are not and the
conditional probabilities in (4) are difficult to obtain in general.

Nonetheless, there is a particular definition of b(n) that
results in independent components. Consider the eigenvector
decomposition of C(n),

C(n) = V(n)diag[σ2

1
(n), . . . , σ2

K(n)]VT (n), (14)

where {σ2

k(n)}K
k=1

are the eigenvalues of C(n) and V(n) :=
[v1(n) . . . vK(n)] is the matrix of eigenvectors such that
vT

i (n)C(n)vj(n) = σ2

i (n)δij . If we define the kth component
of bk(n) as

bk(n) := sgn
[
vT

k (n){x(n) − Hµθ}
]
, (15)

the resultant binary observations are independent when θ is
given as we assert in the following lemma:

Lemma 1 Consider the model in (1) with w(n) Gaussian
with covariance matrix E[w(n)wT (n)] := C(n). Then, binary
observations defined as in (15) are independent for k1 �= k2:

Pr{bk1(n), bk2(n)|θ} = Pr{bk1(n)|θ}Pr{bk2(n)|θ} (16)

Proof: Define uk(n) := vT
k (n)w(n) and note that the

distribution of bk(n) is given by [c.f (1), (15)]

Pr{bk(n) = ±1|θ} = Pr{uk(n) ≷ vT
k (n)H(θ−µθ)}. (17)

On the other hand, note that uk1(n) and uk2(n) are indepen-
dent for k1 �= k2. Indeed, since uk(n) is normally distributed
it suffices to prove that uk1(n) and uk2(n) are uncorrelated:

E[uk1(n)uk2(n)] = vT
k1

(n)E[w(n)wT (n)]vk2(n)

= vT
k1

(n)C(n)vk2(n)

= σ2

k1
(n)δ(k1 − k2); (18)

Lemma 1 follows because bk1(n) and bk2(n) are functions of
the independent random variables uk1(n) and uk2(n) [c.f. (16)
and (18)].

The independence of the binary observations dictates that
the per-sensor log-likelihood can be written as

Ln(θ) =
K∑

k=1

lnQ

(
bk(n)vT

k H [µθ − θ]

σk(n)

)
. (19)

From where a proposition analogous to Proposition 2 follows
readily.

Proposition 3 Consider the setting of Proposition 2
with pw(w) colored Gaussian with covariance matrix
E[w(n)wT (n)] := C(n) at sensor Sn; binary messages
b0:N−1 as in (15); and per-sensor log-likelihood Ln(θ) as
in (19). Then, results [a] and [b] of Proposition 2 hold true.

Propositions 1-3 establish that for many pragmatic signal
models MAP estimation from binary observations can be
posed as a convex optimization problem with virtues sum-
marized in Remark 1.

V. MEAN-SQUARE ERROR (MSE) ANALYSIS

In this section, we study the increase in mean-square error
(MSE) when binary observations are used in lieu of the analog-
amplitude observations. For estimation of random parameters,
bounds on the MSE can be obtained by computing the
pertinent Fisher Information Matrix (FIM) J that we write
as the sum of two parts [8, p. 84]:

J = JD + JP , (20)

where JD represents information obtained from the data,
and JP captures a priori information. The MSE of the ith

component of θ is bounded by the ith diagonal element of J,

MSE(θ̂i) ≥
[
J−1

]
ii

. (21)

Also, note that for any FIM, [J−1]ii ≥ 1/[J]ii [2]. This
property yields a different bound on MSE(θ̂i),

MSE(θ̂i) ≥ 1

[J ]ii
, (22)

which is easier to compute although not tight in general.
The following proposition states a bound (exact value) on

[J]ii when binary (analog-amplitude) observations are used.

Proposition 4 Consider the signal model in (1) with w(n)
white Gaussian with covariance matrix E[w(n)wT (n)] = σ2

wI
and Gaussian prior distribution with covariance E[θθT ] =
Cθ. Write (1) componentwise as x(n) is xk(n) = hT

k θ +
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wk(n). Then, the ith diagonal element of the FIM J in (20)
satisfies:

(a) when binary observations as in (10) are used,

[J ]ii ≥
2N

πσw

K∑
k=1

h2

ki√
σ2

w + hT
k Cθhk

+
[
C−1

θ

]
ii

, (23)

(b) when analog-amplitude observations are used,

[JCV]ii =
N

σ2
w

K∑
k=1

h2

ki +
[
C−1

θ

]
ii

. (24)

Proof: See Appendix A.
For the clairvoyant FIM, JCV, the bound derived above is

essentially the same as the one obtained for MMSE estimators
in [2]. Indeed, the MSE for the Gaussian prior - Gaussian noise
considered in Proposition 4 is

MSE(θ̂i) =

[(
1

σ2
w

HT H + C−1

θ

)−1
]

ii

. (25)

Comparing (25) with (21), we see that the term inside the
parenthesis in (25) is the FIM in (24).

For the bound when binary observations are used, corrob-
orating simulations in Section VI prove that it is actually
tight. Consequently, it provides a good theoretical means to
characterize the performance of estimators based on binary
observations.

Remark 2 As a figure of merit, consider the MSEs when
estimating θi from a set of quantized observations b0:N−1 and
when using analog-amplitude observations x0:N−1. We define
the average information loss Li as

Li :=
MSE(θ̂i)

MSE(θ̂i,CV)
≈ [JCV]ii

[J ]ii
. (26)

For large N , the second terms in (23) and (24) can be
neglected and the information loss can be approximated as:

Li ≈ π

2

√
1 +

hT Cθh
σ2

w

:=
π

2

√
1 + γ, (27)

where we defined γ := hT Cθh/σ2

w which is the average
signal to noise ratio (SNR) of the observations x(n). Note
that as γ → 0 the information loss Li → π/2, corroborating
results in [6] for deterministic parameter estimation. In any
event, we stress the remarkable fact that for low to medium
SNR γ, the average information loss Li is a small factor.

VI. NUMERICAL RESULTS

Consider using the MAP estimator in (12) to estimate a
two-dimensional vector parameter. The random vector θ :=
[θ1 θ2]

T is assumed to have zero mean and diagonal covariance
matrix Cθ = σ2

θI. Our goal is to find the MSE of θ̂ as E[(θ−
θ̂)2] through simulations and compare it with the analytical
results of Section V.

We first study the effect of the number of sensors N on
the MSE with results shown in Fig. 2. Simulated MSE values
are scattered around analytical corroborating our approximate

10
2

10
−2

10
−1

Number of sensors (N)

M
S

E

MSE of θ
1

10
2

10
−2

10
−1

Number of sensors (N)

M
S

E

MSE of θ
2

Analog MAP
Theoretical
Simulation

Analog MAP
Theoretical
Simulation

Fig. 2. MSE of MAP estimator vs. number of sensors (γ = 0.3; h =
[cos ψ sin ψ] with ψ ∈ [−π, π])

10
−1

10
0

10
−2

10
−1

SNR (γ)
M

S
E

MSE of θ
1

10
−1

10
0

10
−2

10
−1

SNR (γ)

M
S

E

MSE of θ
2

Analog MAP

Theoretical

Simulation

Analog MAP

Theoretical

Simulation

Fig. 3. MSE of MAP estimator vs. SNR (N = 100; h = [cos ψ sin ψ]
with ψ ∈ [−π, π])

analysis. We also compare the results with the analog MAP
estimator finding that the performance loss in terms of in-
creased MSE is relatively small, consistent with the comments
in Remark 2.

For fixed N , results for different values of SNR γ := σ2

θ/σ2

w

are shown in Fig. 3. Note that different from the MAP based
on analog observations, the MSE of the MAP based on binary
observations increases with γ (it is constant for the former).
Figs. 2 and 3 show that the simulation results follow the
analytical results closely.

VII. CONCLUSIONS

We investigated distributed maximum a posteriori (MAP)
estimation of random parameters using wireless sensor net-
works (WSN) with severely quantized observations. For dif-
ferent pragmatic signal scenarios considered, we established
that the MAP estimators can be obtained as the maximum of
concave functions, thus ensuring convergence of e.g., interior
point methods. We also compared the MSE performance of
our estimators based on severely quantized data with estima-
tors based on analog-amplitude observations. While the MSE
performance penalty increases with the observation signal
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to noise ratio (SNR) we showed that, quite surprisingly,
the MSE increase is rather small. Future research directions
include consideration of estimation based on quantized – non-
necessarily binary – data and application of MAP to state
estimation of dynamic stochastic processes based on quantized
data.

APPENDIX

A. Proof of Proposition 3

From (20), the ith diagonal element of FIM has two parts:
[J ]ii = [JD]ii + [JP ]ii and each part is defined as :

[JD]ii := −Eθ,b

[
∂2 ln p [b0:N−1|θ]

∂θ2

i

]
(28)

[JP ]ii := −Eθ,b

[
∂2 ln pθ(θ)

∂θ2

i

]
. (29)

Note that the expectation in (28) and (29) is joint with respect
to θ and b. It can be expressed as: Eθ,b[.] = Eθ

{
Eb|θ[.]

}
.

Assuming independence among the sensors {Sn}N−1

n=0
and

each observation {bk(n)}K
k=1

of sensor Sn, we can write the
probability in (28) as:

ln p [b0:N−1|θ] =
N−1∑
n=0

K∑
k=1

ln p[bk(n)|θ]

:= F(θ), (30)

with p[bk(n)|θ] = Q
(

bk(n)hT
k [µθ−θ]

σw

)
since w(n) is Gaussian.

To facilitate the analysis, we define an observation independent
quantity qk := Q

(
hT

k [µθ−θ]

σw

)
. Since bk(n) ∈ {±1} and

Q(−a) = 1 − Q(a), an equivalent form of the log-likelihood
in (30) is given by

F(θ)=
N−1∑
n=0

K∑
k=1

[
1 + bk(n)

2
ln qk +

1 − bk(n)

2
ln{1 − qk}

]
.

(31)
Differentiating (31) twice with respect to (wrt) θi and evalu-
ating the expectation Eb|θ, we obtain

[JD]ii = Eθ

[
N−1∑
n=0

K∑
k=1

1

qk(1 − qk)

(
∂qk

∂θi

)2
]

, (32)

where we have used the fact that Eb|θ[bk(n)] = 2qk −1. Now,
differentiating qk wrt to θi, we find

∂qk

∂θi
= − 1√

2πσw

e−[hT
k (µθ−θ)]

2/2σ2
whki. (33)

Using the chernoff bound and (33), eq. (32) becomes

[JD]ii ≥
1

2πσ2
w

Eθ

[
N−1∑
n=0

K∑
k=1

h2

kie
−[hT

k (µθ−θ)]
2/σ2

w

(1/4)e−[hT
k (µθ−θ)]2/2σ2

w

]

≥ 2N

πσ2
w

K∑
k=1

h2

ki Eθ

[
e−[hT

k (µθ−θ)]
2/2σ2

w

]

≥ 2N

πσ2
w

K∑
k=1

h2

ki

∫ ∞

−∞
e−[hT

k (θ−µθ)]
2/2σ2

wpθ(θ)dθ.

Since the prior distribution of θ is Gaussian, we reach

[JD]ii ≥
2N(detCθ)−1/2

πσ2
w(2π)K/2

K∑
k=1

h2

ki

∫ ∞

−∞
e−Gk(θ)dθ, (34)

where the exponent in the integrand is given by

Gk(θ) =
1

2σ2
w

[hT
k (θ − µθ)]2 +

1

2
(θ − µθ)T C−1

θ (θ − µθ)

=
1

2
αT

[
gkgT

k + I
]
α

where we define α := C−1/2

θ (θ−µθ) and gk := σ−1

w C1/2

θ hk.
With this, the integral in (34) becomes∫ ∞

−∞
e−Gk(θ)dθ =

∫ ∞

−∞
e−

1
2α

T
(gkgT

k +I)α |detCθ|1/2
dα

= (2π)K/2 |detCθ|1/2
det(gkgT

k + I)−1/2.

The determinant can be evaluated as a product of the eigen-
values of gkgT

k + I. Since gkgT
k /(σ−2

w hT
k C1/2

θ hk) is an
idempotent matrix with eigenvalues 1 or 0, the eigenvalues
of gkgT

k are σ−2

w hT
k C1/2

θ hk or 0. Hence, the eigenvalues of
gkgT

k + I will be 1+ σ−2

w hT
k C1/2

θ hk or 1. Thus, det(gkgT
k +

I) = 1 + σ−2

w hT
k Cθhk. This finally leads to

[JD]ii ≥
2N

πσw

K∑
k=1

h2

ki√
σ2

w + hT
k Cθhk

. (35)

Similarly, the FIM for the a priori information is given by

JP = C−1

θ . (36)

From (35) and (36), we find the bound on the ith diagonal
element of FIM as given by (23).

For the Clairvoyant estimator, the conditional probability
in (28) is Gaussian such that

ln p [x0:N−1 |θ] = − 1

2σ2
w

N−1∑
n=0

K∑
k=1

[
xk(n) − hT

k θ
]2

. (37)

Differentiating (37) twice wrt to θi and computing the joint
expectation wrt b and θ we get the result as in (24).
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