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Abstract— A novel cooperative spread spectrum random access
(CSSRA) protocol has been recently proposed. It is shown that
thanks to user cooperation the novel protocol can capture part
of the available diversity and achieve a marked increase in max-
imum stable throughput over its non-cooperative counterpart.
In this paper, we study the finite-user behavior of a one-packet-
buffering CSSRA system with Poisson packet arrivals and derive
pertinent performance metrics including throughput, packet loss
rate and average packet delay. With the proposed analysis
framework, we compare the performance of CSSRA with that of
non-cooperative SSRA for a Rayleigh fading channel to illustrate
the advantage of user cooperation in terms of throughput as well
as delay.

I. INTRODUCTION

Cooperative networking in wireless communication has
been receiving increasing attention as a new diversity enabler,
whose advantages in fixed point-to-point and multiple access
links are well appreciated, [4], [5]. In a Random Access (RA)
setting it has been shown that due to the fact that only a frac-
tion of the users is active at any time, user cooperation is a very
well suited form of diversity providing a significant throughput
increase with negligible costs in terms of bandwidth and power
consumption [3].

Besides throughput, delay is another metric of interest in
RA networks particularly important for delay sensitive packet
communications. Thus, the purpose of the present paper is
to study the delay metric of the cooperative spread spectrum
random access (CSSRA) protocol introduced in [3]. Unfortu-
nately, the throughput analysis in [3] is based in a dominant
system approach that while being a powerful tool for studying
such metric cannot be used to study the delay performance, [7].

Moreover, delay analysis requires considering a finite-user
RA system leading to intractable mathematical descriptions
due to queue interactions that arise in such setting, [8], [10],
[11], [12], [13]. A possible approach to avoid this intractable
models is to consider one-packet buffers as introduced in [9].
Consequently, the present paper considers a finite-user one-
packet-buffering CSSRA system. Assuming the packet arrival
process for each user node is Poisson, we analyze the system
with a embedded Markov chain and derive the performance
metrics including throughput, packet loss rate and average
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packet delay. With this results in hand we compare the
performance of CSSRA with that of non-cooperative SSRA
for a Rayleigh fading channel to illustrate the advantage of
user cooperation in terms of throughput and delay.

II. COOPERATIVE SPREAD SPECTRUM RANDOM ACCESS

Consider a set of J users, J = {Uj}J
j=1

, communicating
with an access point (AP) in a wireless RA network. User
j and its position in a coordinate system centered at the AP
will be denoted by Uj . The average power received at the AP
from a source Uj transmitting with power P (Uj) is given by
an exponential pathloss model

PR(Uj) =
ξ P (Uj)

‖Uj‖α
, (1)

with ξ, and α ≥ 2 constants.
Each of the J users has a one-packet buffer for storing L-bit

fixed length packets that arrive at a rate of λ packets per packet
duration. The packet arrival processes are independent identi-
cally distributed (i.i.d.). The L bits of each packet are spread
by a factor S (a.k.a. spreading gain) to construct a transmitted
packet of T := SL chips. Spreading is implemented using
a long PN sequence c := {c(t)}t∈Z with period P = T . If
dUj := {dUj (l)}L−1

l=0
denotes a data packet of user Uj , and

xUj := {xUj (t)}T−1

t=0
the corresponding transmitted packet we

have

xUj
(Sl + s) =

√
P (Uj) dUj (l)c(Sl + s − τUj ), (2)

where c is a common long PN sequence shared by all users,
τUj is a user-specific shift applied to c and P (Uj) is the power
transmitted by node Uj .

We are now ready to define the CSSRA protocol considered
in this paper by the following rules:

[R0] Users are paired so that elements in a pair have agreed
to cooperate with each other. This pairs are denoted
(Uj , Rj) with Rj denoting the user cooperating with
Uj . Users generate random quantities using a random
number generator with seed s(Uj).

[R1] Time is divided into slots, each comprising T chip
periods. If users decide to transmit, they do so at the
beginning of a slot. Let ti denote the ith time slot.

[R2] If a given user’s queue is not empty, the user transmits
the first queued packet in the next slot with probability
p.

[R3] First-try: Packets are spread for transmission according
to (2). The shift τUj = τf is selected at random by each
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user; and P (Uj) = P0‖Uj‖α/ξ effects average power
control so that all users are received at the AP with
the same average power PR(Uj) = P0 [c.f. (1)]. The
random number generator seed s(Uj) is included in the
packet header to assist cooperation in a later stage.

[R4] Relay-assisted: If the first-try packet is not successfully
decoded, the packet is retransmitted by Uj and Rj with
shift τUj

= τRj
= τr chosen at random and powers

P (Uj) = P0/2‖Uj‖α/ξ, P (Rj) = P0/2‖Rj‖α/ξ so
that they are received at the AP with power PR(Uj) =
PR(Rj) = P0/2. Note that Uj and Rj will choose to
transmit in the same slot with the same shift if Rj uses
the seed s(Uj) in its random number generator.

Note that at any time slot ti the users are in one of three
states; Fi of them are first-try active users (FAU); Ui −Fi are
relay assisted active users (RAU) so that the total number of
active users is Ui; and J − Ui are idle users (IU).

The details of how the CSSRA protocol just described
achieves diversity and the throughput increase relative to non-
cooperative SSRA are studied in [3]. For our purposes suffices
to note that CSSRA consists of a first-try in which the packet
is transmitted by the user alone and a relay assisted phase in
which the transmission attempt benefits from user cooperation.
Defining ρ(x) :=

√
x/(1 + x), this diversity benefit translates

into a reduction of the bit error probability from

q(0)(S,Ui + 1) =
1

2
[1 − ρ(S/Ui)] , (3)

during the first try, to

q(1)(S, Ui+1)=
1

2

[
1−ρ

(
S

Ui + 1/2

)]2[
2+ρ

(
S

Ui + 1/2

)]

(4)
during the relay assisted phase.

In the remaining discussion we will consider packet error
probabilities, that are determined by q(k)(S, Ui + 1) k =
1, 2 and the Forward Error Correcting (FEC) code used. For
illustration purposes, we consider block codes capable of
correcting ε errors; e.g., BCH codes [1, p.437]. In this case,

P (k)

e (S,Ui) = 1−
t∑

k=0

(
L

k

)
q(k)(S, Ui)

k[1−q(k)(S, U, i)](L−k).

(5)

III. PERFORMANCE ANALYSIS OF CSSRA

It is well known the queueing behaviors of the users in a
finite-user slotted ALOHA system are interacting [8], [10],
[11], [12], [13]; i.e., the activity of one user will affect the
queueing behaviors at other users, giving rise to a statistical
dependence among queues in the system. To mathematically
describe the J-interacting queues with a Markov chain, as
many as bJ states may be needed, where b could be, e.g., in
[8], one plus the buffer size of a single user if all the users
have the same buffer sizes for their incoming packets. Then to
analyze the queueing of the slotted ALOHA system with such
a Markov chain, the eigenvalue decomposition of a bJ × bJ

state transition matrix may be involved, which is practically
untractable except for very small J . In the interacting queues,
the major reason for the prohibitive size of their states is that

the buffer status of each user has to be tracked to guarantee
the queueing a Markovian process. By assuming each user has
only one-packet buffer, Tobagi bypassed this difficulty and
analyzed the resultant J-user one-buffering slotted ALOHA
system with a Markov chain of only J states [9]. Tailoring
the framework of [9] for our CSSRA protocol, we analyze the
delay performance of CSSRA in this section.

To simplify the analysis, we make the following assump-
tions:

AS1) The relay Rj can always successfully decode the corre-
sponding source’s packet xUj .

AS2) Each user has a one-packet buffer. When the buffer is
loaded, subsequently arriving packets are dropped.

AS3) User’s packets are generated according to a Poisson
source with intensity λ packets/slot.

AS4) The probability Pr{τUj1
= τUj1

} for j1 �= j2 is
negligible.

The key to performance analysis is the steady state distribu-
tion of users between FAU, RAU and IU. Let (Ui, Fi) denote
the state of the network with 0 ≤ Ui ≤ J and 0 ≤ Fi ≤ Ui and
note that the time evolution from state (Ui, Fi) to (Ui+1, Fi+1)
can be modelled with a Markov chain since the state transitions
are independent of the past states. We can, thus, define the
stationary distribution vector of the state pairs (Ui, Fi) at ti
as

π :=
[
π(0,0), π(1,0), π(1,1), · · · , π(J,0), · · ·π(J,J)

]
(6)

where π(u,f) denote the stationary probability of the queueing
state pair being (u, f) at ti.

The distribution π in (6) can be computed by standard
techniques. For that matter we let c := (u1 − f1)− (u2 − f2)

and B(u,U, s) :=
(

U
u

)
su(1 − s)U−u denote the probability

mass of a Binomial random variable with U trials and success
probability s, evaluated at u and establish the following claims.

Proposition 1 The stationary state distribution vector π can
be computed from the equation:

π = πPt,

J∑
u=0

⎡
⎣ u∑

f=0

π(u,f)

⎤
⎦ = 1 (7)

where the non-zero entries of the state transition matrix Pt are
specified by (8) with imin := max{0, f1 − f2,−c}, imax :=
min{f − 1, J − u1 + f1 − f2}, jmin := max{0, c}, jmax :=
J − u1, emin := max{0,−c}, and emax := min{i, j − c}.

Proof: Following our CSSRA protocol, a user transits
between different statuses at ti as in Fig. 1:

1) A FAU keeps silence in current slot and stays as
a FAU in the next slot with probability 1 − p; or
it transmits, and accordingly transits to an IU with
probability pP

(0)

e (N/n) or an RAU with probability
p(1 − P

(0)

e (N/n)).
2) An RAU transits to an IU upon a successful packet trans-

mission with probability p(1 − P
(1)

e (N/n)); otherwise,
it stays as an RAU in the next slot.

3) An IU stays as an IU in the next slot if no packets
arrive at it during current slot, with probability e−λ, and
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Pr((u1, f1) → (u2, f2)) =

imax∑
i=imin

jmax∑
j=jmin

emax∑
e=emin

B(i, f1, p)B(f2 − f1 + i, J − u1, 1 − e−λ)

×B(j, u1 − f1, p)B(e, i, P (0)

e (N/(i + j)))

×B(c + e, j, 1 − P (1)

e (N/(i + j))); (8)

for 0 ≤ f2 ≤ J − u1 + f1, f2 ≤ u2 ≤ min{J, u1 + f2}.

FAU IU

RAU

p(1-P
e
(0)(N/n)) e-

p(1-P
e

(1)(N/n))

1-p(1-P
e

(1)(N/n))

pP
e
(0)(N/n)

1-p

1-e-

Fig. 1. User status transition in CSSRA protocol.

transits to a FAU upon packet arrival with probability
1 − e−λ (under Poisson arrival assumption AS3)).

If we just look at the set of ti time points, the queueing
process of state pair (Ui, Fi) is Markovian1. To start with, we
suppose that the Markov chain is always stable and investigate
the transition probability from state pair ((Ui, Fi) = (u1, f1))
at ti to state pair ((Ui+1, Fi+1) = (u2, f2)) at ti+1. In the
ALOHA protocol, an active user can opt to transmit or defer
with probabilities p and 1 − p. Let integers i, j and a (all of
which are random variables) denote the number of transmit
FAUs, the number of transmit RAUs and the number of IUs
with packet arrivals in the i-th slot, respectively, with 0 ≤
i ≤ f1, 0 ≤ j ≤ u1 − f1 and 0 ≤ a ≤ J − u1. Moreover,
given i and j, let integers e and s denote the failed transmit
FAUs (whose transmitted packets fail at the destinations) and
the successful transmit RAUs, respectively, with 0 ≤ e ≤ i
and 0 ≤ s ≤ j. Then according to the user statuses transition
in Fig. 1, the investigated pair transition follows

f2 = f1 − i + a; (9)

u2 − f2 = u1 − f1 + e − s. (10)

From (9) and (10), given a state pair (u1, f1) (0 ≤ u1 ≤ J
and 0 ≤ f1 ≤ u1), the feasible state pair (u2, f2) must satisfy:

0 ≤ f2 ≤ J − u1 + f1, f2 ≤ u2 ≤ min{J, u1 + f2} (11)

where the lower bound 0 for f2 is imposed when i = f1 and
a = 0 while the upper bound J − u1 + f1 for f2 is imposed
when i = 0 and a = J −u1; and the upper bound u1 + f2 for
u2 is imposed when e = f1 and s = 0.

As shown in (9) and (10), a state pair transition (u1, f1) →
(u2, f2) can be realized through different paths specified by
different i, a, e and s. Note that the probability mass functions
of e and s depend on the number of total transmit users
n = i + j. Given (u1, f1) and (u2, f2), a is coupled with

1Since the number of state pairs in this Markov chain is equal to (J +
1)(J + 2)/2, the resultant queueing analysis is tractable for non-huge J .

i by (9) while s is coupled with e by (10). Therefore, a
particular transition path for (u1, f1) → (u2, f2) can be
specified by a triplet (i, j, e). Let Pr(x) and Pr(x|y) denote
the probability mass of x and conditional probability mass
of x given y, respectively. Using the notation B(u,U, s), we
have the probability P1 := Pr((u1, f1) → (u2, f2), (i, j, e))
of a particular transition path (i, j, e) for (u1, f1) → (u2, f2)
as

P1 = Pr(i) Pr(a = f2 − f1 + i) Pr(j)

×Pr(e|(i, j)) Pr(s = c + e|(i, j)) (12)

where

Pr(i) = B(i, f1, p),

Pr(a = f2 − f1 + i) = B(f2 − f1 + i, J − u1, 1 − e−λ),

Pr(j) = B(j, u1 − f1, p),

Pr(e|(i, j)) = B(e, i, P (0)

e (N/(i + j))),

Pr(s = c + e|(i, j)) = B(c + e, j, 1 − P (1)

e (N/(i + j))),

with c := u1−f1− (u2−f2). Note that in (12), we implicitly
define P

(0)

e (N/0) := 0, 00 := 1 and
(

0

0

)
:= 1.

To calculate the overall transition probability Pr((u1, f1) →
(u2, f2)), we need to count all the possible transition paths,
thus calling for the ranges of i, j and e.

1) We first look at the range of i: i) From (9), we have
i = a+f1−f2; since 0 ≤ a ≤ J −u1, we subsequently
have f1 − f2 ≤ i ≤ J −u1 + f1 − f2. ii) From (10), we
have e = s + u2 − f2 − (u1 − f1) := s− c; since e ≤ i
and s ≥ 0, we subsequently have i ≥ −c. Using i) and
ii) along with the natural bounds 0 ≤ i ≤ f1, we arrive
at

imin := max{0, f1 − f2,−c} ≤ i

≤ min{f1, J − u1 + f1 − f2} := imax.(13)

2) From (10), we have s = e+u1−f1−(u2−f2) := e+c.
Since s ≤ j and e ≥ 0, we subsequently have j ≥ c.
Together with 0 ≤ j ≤ u1 − f1, we further have

jmin := max{0, c} ≤ j ≤ J − u1 := jmax. (14)

3) From (10), we have e = s+u2−f2−(u1−f1) := s−c.
Using 0 ≤ s ≤ j, we have −c ≤ e ≤ j − c. Then along
with 0 ≤ e ≤ i, we obtain

emin := max{0,−c} ≤ e ≤ min{i, j − c} := emax.
(15)

With (12), (13), (14) and (15), we obtain the non-zero state
transition probability (8). Considering the overall queueing
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process, the stationary state distribution vector π can then be
computed from the equation (7). By mimicking the proof of
[14, Appendix, Theorem 1], we can establish that a stationary
distribution π exists and is unique. This justifies our assump-
tion that the stability of this Markov chain is guaranteed, and
the proof is completed. �

From equation (7) we can obtain π as the left eigenvector of
Pt corresponding to the eigenvalue 1; and from there derive
the steady-state performance metrics of interest as we detail
next.

Proposition 2 Let D̄, S̄ and ξ̄ denote average packet delay
(in slots), throughput (in packets/slot), and packet loss rate
respectively. Then, we have

ξ̄ = 1 − J − ū

J
e−λ ; (16)

S̄ = Jλ(1 − ξ̄) =
J − ū

λ
e−λ ; (17)

D̄ =
ū

S̄
+ 1 − 1

1 − e−λ

(
1

λ
(1 − e−λ) − e−λ

)
; (18)

where ū =
∑J

u=0

∑u
f=0

π(u,f)u.

Proof: Packet loss in the one-buffering system occurs from
blockage due to buffer overflow; i.e., the packet loss rate ξ̄ is
given by

ξ̄ =
N̄b

Jλ
(19)

where N̄b denote the expected number of blocked packets
during one slot, and Jλ is the average number of arriving
packets in a slot. Since except the first arriving packets of idle
users, all the remaining packets are blocked, we have

N̄b = Jλ −
J∑

u=0

u∑
f=0

π(u,f)(J − u)λe−λ (20)

where π(u,f) are the entries of π computed from (7). Define
the average number of active users

ū =

J∑
u=0

u∑
f=0

π(u,f)u. (21)

Then (20) can be rewritten as

N̄b = Jλ − (J − ū)λe−λ. (22)

And subsequently,

ξ̄ = 1 − J − ū

J
e−λ. (23)

Given the packet loss rate ξ̄, it is clear that we can express
the throughput S̄ as

S̄ = Jλ(1 − ξ̄) =
J − ū

λ
e−λ. (24)

As in [15], the total average delay D̄ (in slots) for a packet in
this system can be broken into two parts: the average buffering
delay D̄b, which stands for the time the packet has to wait in
buffer from when it arrives until the beginning of the next slot,
and the average service delay D̄s; i.e.,

D̄ = D̄b + D̄s. (25)
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Fig. 2. Comparison of analytical and simulated results.

By Little’s result [2, Chapter 2], the average service delay is
given by

D̄s =
ū

S̄
. (26)

And we show in the appendix that

D̄b = 1 − 1

1 − e−λ

(
1

λ
(1 − e−λ) − e−λ

)
. (27)

Substituting (26) and (27) into (25), we can obtain the average
packet delay D̄. �

IV. SIMULATION RESULTS AND COMPARISONS

In this section we set L = 1024, S = 16, and block codes
capable of correcting ε = 5 errors for FEC coding. Simulations
were carried out for three different sets of parameters i) total
number of users J = 6 and transmit probability p = 0.1;
ii) J = 6 and p = 0.05; and iii)J = 10, p = 0.05.
Buffers were fed with independent Poisson sources having
intensity λ packets/slot for different values of λ and in each
case the result shown is the average of 10 independent runs
encompassing 106 slots. Fig. 2 compares analytical results for
average delay, throughput and packet loss rate in Proposition 2
with corresponding simulated results. It can be seen that the
simulated behavior is accurately predicted by the results in
Proposition 2.

The delay analysis of the non-cooperative SSRA (NSSRA)
can be done with a similar framework as in Sec. III. Since
no relay cooperations are available, all transmit active users
have the same packet error probabilities given by P

(0)

e (N/n).
Therefore we only need the number of active users u (0 ≤ u ≤
J) to capture the queueing. Let i, s and a denote the number
of transmit active users, the number of successful transmit
active users and the number of IUs with packet arrivals in
the i-th slot, respectively, with 0 ≤ i ≤ u1, 0 ≤ s ≤ i and
0 ≤ a ≤ J − u1. Then the state transition follows

u2 = u1 − s + a. (28)
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Fig. 3. Comparison between CSSRA and non-cooperative SSRA.

The transition probability Pr(u1 → u2) can be similarly
derived as

Pr(u1 → u2) =

u1∑
i=imin

smax∑
s=smin

B(i, u1, p)B(s, i, 1 − P (0)

e (N/i))

×B(u2 − u1 + s, J − u1, 1 − e−λ)

where imin = max{0, u1 − u2}, smin = max{0, u1 − u2}
and smax = min{i, J − u2}. With Pr(u1 → u2), we can
then construct the state transition matrix and in turn calculate
the stationary state probability vector π′ := [π′

0
, π′

1
, · · · , π′

J ]
where π′

u denote the stationary probability of the queueing
state being u at ti. Similarly, the average packet delay, along
with the throughput and packet loss rate for the one-buffering
NSSRA can be derived as in Sec. III.

Comparison of analytical results for CSSRA and non-
cooperative SSRA are shown in Fig.3 where it can be seen
the significant improvement of CSSRA with respect to non-
cooperative SSRA in terms of delay, throughput and packet
loss rate.

V. CONCLUSIONS

In this paper, we proposed an analysis framework for a
finite-user one-packet-buffering CSSRA network. This frame-
work can serve as a complement to the dominant throughput
analysis in [3], analyzing and demonstrating the performance
gain of CSSRA when the total packet arrival rate is less than
the dominant throughput. By comparing the derived perfor-
mance metrics of CSSRA with those of NSSRA under certain
simplifying assumption, we established that diversity provided
through user cooperation largely enhances the throughput as
well as packet delay performance for long PN-spread ALOHA
random access network.2

2The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.

APPENDIX I
PROOF OF (27)

According to the Poisson distribution, the probability that
the first packet is generated before tg is given by

Pr(t < tg) = 1 − e−λtg . (29)

Therefore, given that at least one packet is generated in a slot,
the conditional probability density of the first packet being
generated at tg is given by

p(tg) =
d

dtg

Pr(t < tg)

1 − e−λ
=

λe−λtg

1 − e−λ
. (30)

Then we in turn have

D̄b = E{1 − tg} = 1 −
∫

1

0

tgp(tg) dtg

= 1 − 1

1 − e−λ

∫
1

0

tgλe−λtg dtg

= 1 − 1

1 − e−λ

(
1

λ
(1 − e−λ) − e−λ

)
.
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