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Abstract— Combining multi-source cooperation and link-
adaptive regenerative techniques, we develop a novel protocol
capable of achieving diversity up to the number of cooperating
users and larger coding gains without incurring the overhead of
cyclic redundancy check (CRC) codes. The resulting protocol can
be further optimized to take advantage of the information provided
by CRC when available. Simulations confirm our theoretical
assessments.

I. INTRODUCTION

In distributed virtual antenna arrays (VAA) created by user
cooperation, there is a distinction depending on how users relay
information packets within the VAA. In a broad sense we can
classify most relaying techniques as either analog forwarding
(AF) or selective forwarding (SF) [1], [2]. In SF, prospective
cooperators decode each source packet and, if correctly decoded,
they cooperate by relaying a possibly re-encoded signal. In AF,
cooperating terminals amplify the analog waveform they receive
(transmitted signal plus noise). Both strategies achieve full
diversity equal to the number of users forming the VAA, and in
some sense their advantages and drawbacks are complementary.
One of the major limitations of AF is that it requires storage
of the analog-amplitude received waveform, implying that AF
strains resources at relaying terminals, whereas SF implemen-
tation is definitely simpler. However, relaying decisions in SF
are necessarily done on a per packet basis possibly leading to
the dismissal of the entire packet because of a small number
of erroneously decoded symbols. This drawback is sometimes
obscured in analyses because it does not affect the diversity gain
of the VAA. It does affect the coding gain, though, and in many
situations SF does not improve performance of non-cooperative
transmissions because the diversity advantage requires too high
signal-to-noise ratios (SNR) to “kick-in” in practice.

Simple implementation with high diversity and coding gains
are possible with link-adaptive regenerative (LAR) cooperation,
whereby cooperators repeat packets based on the instantaneous
SNR of the received signal [3]. In the LAR protocol of [3]
relays re-transmit estimates of received symbols with power
proportional to the instantaneous SNR in the source-to-relay link
– available through, e.g., training – but never exceeding a given
function of the average SNR in the relay-to-destination link
– available through, e.g. low-rate feedback. With LAR-based
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cooperation, it suffices to perform maximum-ratio-combining
(MRC) at the destination to achieve full diversity equal to the
number of cooperators.

In the present paper we considerably broaden the scope
of LAR cooperation to general distributed coding strategies,
including as particular cases (LAR based) repetition coding,
distributed complex field coding (DCFC) and distributed error
control coding (DECC). For that matter, we consider a multi-
source cooperation (MSC) setup relying on joint coding of
multiple sources [4]. We show that assuming slow block fad-
ing Rayleigh channels with binary transmission, the maximum
achievable diversity order d effected in LAR-MSC networks
with N users is: i) d = 2 for repetition coding; ii) d = N
for DCFC and iii) d = dC , where dC is the diversity achieved
by the ECC over a N point-to-point block-faded channels. As
explained before, SF-MSC techniques require all cooperating
terminals to correctly decode the transmitted information signal.
Thus, while the diversity order of SF-MSC for different coding
functions coincides with the ones summarized in i)-iii) for LAR-
MSC, [5], the latter has a larger coding gain and can spare the
overhead of CRC bits altogether.

In Section II we introduce the LAR-MSC protocol with
a general coding function. We then move on to Section III
where we present the main result of the paper characterizing
the diversity gain in terms of the Hamming-distance properties
of the distributed coding function. This general result is later
specialized to repetition coding, DECC, and DCFC in Section
IV. Section V presents corroborating simulations.

Notation: Upper (lower) bold face letters will be used for
matrices (column vectors); [·]k the kth entry of a vector; IN

denotes the N × N identity matrix; 1N is the N × 1 all-one
vector; ⊗ denotes Kroneker product; ‖·‖ is the Frobenius norm;
R⋃S denotes the union of sets R and S; R⋂S denotes the
intersection of sets R and S; |S| is the cardinality of a set S; ∅
is the empty set; and CN (µ, σ2) denotes the complex Gaussian
distribution with mean µ and variance σ2.

II. DISTRIBUTED COHERENT MODULATIONS

Consider a set of sources {Sn}N
n=1 willing to communicate

with a common access point or destination (D). Information
bits of each source are modulated and carried over constellation
symbols. Let xn denote the K×1 block of symbols drawn from
a constellation As to be transmitted by source Sn, n ∈ [1, N ].
The protocol entails two phases. In Phase-1, {Sn}N

n=1 transmit
their symbols to D in separate time slots to avoid interference.
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Fig. 1. Time-division multiplexing of N sources during Phase-1 and Phase-2

Thanks to the broadcast nature of wireless transmissions, sym-
bols transmitted by Sn are received by the N − 1 remaining
sources {Si}N

i=1,i �=n. After Phase-1, all sources have an estimate
of other sources’ blocks. Using these estimates, sources will
jointly re-encode the received symbols and transmit again to the
destination part of the re-encoded block in Phase-2.

We let y(d,1)
n denote the K×1 block received at D when Sn

transmits xn in Phase-1. Likewise, we let y(s)
n,m represent the

K × 1 block received at any Sm, m �= n. Blocks y(d,1)
n and

y(s)
n,m are given by

y(d,1)
n = h(d)

n xn + w(d,1)
n , n ∈ [1, N ], (1)

y(s)
n,m = h(s)

n,mxn + w(s)
n,m, n,m ∈ [1, N ], n �= m (2)

where h(d)
n ∼ CN (0, (σ(d)

n )2γ̄) and h
(s)
n,m ∼ CN (0, (σ(s)

n,m)2γ̄)
are the fading coefficients corresponding to the Sn − D and
Sn − Sm links; and w(d,1)

n , w(s)
n,m are the noise terms, nor-

malized to be CN (0, IK). For convenience, we define here the
instantaneous output SNRs of each link γ

(d)
n := |h(d)

n |2 and
γ

(s)
n,m := |h(s)

n,m|2; with expected values γ̄(d)
n = (σ(d)

n )2γ̄ and
γ̄

(s)
n,m = (σ(s)

n,m)2γ̄, respectively.
Let x̂i,n denote the estimate of the source block i formed at

source n. Due to unavoidable communication errors, x̂i,n may
differ from xn or x̂i,m (estimated block at Sm), with i �= m;
also notice that x̂n,n = xn. Source Sn, n ∈ [1, N ] collects all
estimates in the super vector x̂n := [x̂T

1,n, . . . , x̂
T
N,n]T of size

NK × 1 and constructs a new vector v̂n of size L × 1, to be
sent in Phase-2 based on the mapping

v̂n = ψn(x̂n). (3)

Because no new information is conveyed during Phase-2, the
bandwidth efficiency is K/(K + L). Different from the MSC
strategies in [6] and [4], we are encoding error-corrupted blocks
x̂n. The main challenge in this work is to show that through
a suitable transmission protocol diversity is still enabled as in
error-free MSC retransmissions. Toward this objective, we will
resort to the LAR techniques in [3] to adjust the transmitted
power of block v̂n at Sn according to the available channel
knowledge. Specifically, if we define αn to be the transmit
power-weighting coefficient at Sn, we select

αn :=
min{mini�=n{γ(s)

i,n}, γ̄(d)
n }

γ̄
(d)
n

. (4)

Source Sn computes αn using the instantaneous SNR of the
links through which blocks y(d,1)

1,n , . . . ,y(d,1)
N,n arrived (available

e.g., by appending a training sequence) and the average SNR
of its link to the destination, which is assumed to slowly
fade at long scale, and thus is feasible to be fed back. These
same conventions have also been adopted in the context of DF

protocols in [3] and [7]. In [7], the average channel is assumed
to be known for decoding at the destination, whereas in [3]
average knowledge is assumed to be known at the relays; the
latter has proved to be full-diversity achieving.

Considering (4), the received signal from Sn at D in Phase-2
is

y(d,2)
n =

√
αnh

(d)
n v̂n + w(d,2)

n , n ∈ [1, N ], (5)

where y(d,2)
n has size L × 1 and h

(d)
n is the same fading

coefficient as in the first phase, assumed to remain invariant
for at least N(K + L) symbols (coherence time). After Phases
1 and 2, the destination has N(K + L) symbols, that we
collect in two blocks y(d,1) := [(y(d,1)

1 )T , . . . , (y(d,1)
N )T ]T and

y(d,2) := [(y(d,2)
1 )T , . . . , (y(d,2)

N )T ]T , to form[
y(d,1)

y(d,2)

]
=

[
(D(d)

h ⊗ IK) 0NK×NL

0NL×NK ((DαD(d)
h ) ⊗ IL)

][
x
v̂

]
+

[
w(d,1)

n

w(d,2)
n

]
,

(6)
where x := [xT

1 , . . . ,x
T
N ]T , v̂ := [v̂T

1 , . . . , v̂
T
N ]T , have

size NK × 1 and NL × 1, respectively; and the diagonal
channel matrices D(d)

h := diag([h(d)
1 , . . . , h

(d)
N ]) and Dα :=

diag([
√
α1, . . . ,

√
αN ]) have sizes NK ×NK and NL×NL,

respectively.
Assuming only knowledge of the Sn − D links at D, we

employ the following ML detection rule for decoding

x̂(d) =arg min
x∈AKL

s

{
‖y(d,1)−D̄(d)

h x‖2+‖y(d,2)−D̄αD̄(d)
h v‖2

}
,

(7)
where D̄(d)

h := D(d)
h ⊗ IK and D̄α := Dα ⊗ IK . Upon

recalling that v is constructed from x as v = [vT
1 , . . . ,v

T
N ]T =

[(ψ1(x))T , . . . , (ψN (x))T ]T , se deduce that the search in (7)
is performed over the set of constellation codewords x of
size |As|KN . We also notice that this is a general detector
for performance-analysis purposes. Its complexity does not
necessarily depend on the size of the codeword x and can
be reduced depending on the specific coding function (3) that
source Sn employs.

Looking closer into (6) and (7), we notice that this detector
is actually looking for the Euclidean distance-minimizing vector
x assuming the pair {x,v} was sent. As we can infer from
(6), errors at {Sn}N

n=1 drive the pair {x, v̂} to be the actual
block that was sent. Because v̂ is a concatenation of correct
and erroneous estimates, it can happen that v̂ is confused to be
a block built from a codeword different from x, or it simply
does not correspond to any codeword x in the constellation so
that v̂ = [(ψ1(x))T , . . . , (ψN (x))T ]T . Moreover, since D lacks
knowledge of the probability of estimation error at {Sn}N

n=1, the
error performance of the detector (7) is undoubtedly degraded.
The objective of the ensuing section is to show that the coef-
ficients {αn}N

n=1 chosen in (4) can improve this performance,
and for a judicious re-encoding function ψn, it is surprisingly
possible to collect diversity order up to the number of users N .

III. PAIRWISE ERROR PROBABILITY ANALYSIS

The conditional pairwise error probability (PEP) between any
two distinct transmitted blocks x, x̃ is denoted as

Pr(x → x̃|H(s),H(d)), (8)

where H(s) := {h(s)
i,n}N

i,n=1,i �=n and H(d) := {h(d)
n }N

n=1 are the
sets of all fading coefficients in our set-up.
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Let x̂ := [x̂T
1 , . . . , x̂

T
n ]T denote the N2K × 1 vector that

concatenates the NK×1 vectors containing all estimated blocks
by all sources. We emphasize that if no errors occur at the
relays, then x̂ = 1N ⊗ x. Further, let Pr((1N ⊗ x) → x̂|H(s))
represent the conditional probability for decoding x̂ at {Sn}N

n=1

and Pr(x → x̃|H(s),H(d), v̂) the conditional probability of de-
coding x̃ �= x at the destination given that v̂ := [v̂T

1 , . . . , v̂
T
n ]T

was sent. The conditional PEP in (8) can be expanded as

Pr(x → x̃|H(s),H(d)) =∑
∀ x̂

Pr((1N ⊗ x) → x̂|H(s))Pr(x → x̃|H(s),H(d), v̂).(9)

For single-input single-output (SISO) block-fading chan-
nels, the diversity order depends on the Hamming dis-
tance between constellation codewords [8]. To make use
of this fact, we will cast our VAA set-up in a SISO
form. Given x and x̃ in (8) and the corresponding
coded blocks v = [(ψ1(x))T , . . . , (ψN (x))T ]T and ṽ =
[(ψ1(x̃))T , . . . , (ψN (x̃))T ]T , we define

X := {n|xn �= x̃n},
V := {n|vn �= ṽn} (10)

as the sets of distinct pairwise sub-block elements between x and
x̃, v and ṽ, respectively. With reference to Fig. 1, if we assume
v̂n = vn, the equivalent system can be seen as a SISO block-
faded transmission and the achievable diversity order is the
minimum Hamming distance |X ⋃V| over all possible pairs. We
are now challenged to establish similar diversity claims when
v̂n �= vn. The pertinent result is summarized in the following
theorem.

Theorem 1 Consider two distinct blocks x, x̃ sent in Phase-1
along with the corresponding coded blocks v, ṽ sent in Phase-
2 and the power-weighting coefficients {αn}N

n=1 defined in (4)
employed for transmissions in Phase-2. Given the sets X and
V defined in (10), the average PEP in (8) behaves as

− lim
γ̄→∞

log Pr(x → x̃)
log γ̄

= |X
⋃

V|, (11)

meaning that diversity order d := min∀x̃�=x{|X
⋃V|} is

achieved.

Proof. Let
E := {n|x �= x̂n} (12)

be the set of sources that failed to correctly estimate x. Notice
that because v̂n = ψn(x̂n), the set E can be equivalently defined
as E := {n|vn �= v̂n}. Obviously, the complementary set Ē
contains all sources with correct estimates. Let also

C :=
(
X
⋃

V
)⋂

Ē , (13)

be the set of distinct pairwise sub-blocks with correct estimates,
and cardinality |C| ≥ |X ⋃V| − |E|. Notice that C⋂ E = ∅.
Based on these facts, the following lemma1constructs suitable
bounds for the products on the right-hand-side of (9).

Lemma 1 Let E and C respectively denote the sets of terminals
that failed to correctly decode the Phase-1 packets and the set
of distinct pairwise sub-blocks restricted to correct estimations

1Omitted due to space limitations, proofs for all the lemmas in this paper can
be found in [9].

in Phase 1, as defined in (12) and (13), respectively. Let γ(s)
i,n =

|h(s)
i,n|2 and γ

(s)
n = |h(d)

n |2 be the instantaneous SNRs in the
Si − Sn and Sn −D links, respectively, and denote by αn the
power scaling constant in (4). We then have that:

[1a] the probability of incorrect detection, Pr((1N ⊗ x) →
x̂|H(s)) in (9) can be bounded as

Pr((1N⊗x) → x̂|H(s)) ≤ κ1 exp

(
−κ2

∑
n∈E

min
i�=n

{γ(s)
i,n}

)
,

(14)
for some finite constants κ1, κ2; and

[1b] the conditional error probability at the destination, Pr(x →
x̃|H(s),H(d), v̂) in (9) can be bounded as

Pr(x → x̃|H(s),H(d), v̂) ≤

Q


 κ3

∑
n∈C αnγ

(d)
n − κ4

∑
n∈E αnγ

(d)
n√

κ3

∑
n∈C αnγ

(d)
n + κ4

∑
n∈E αnγ

(d)
n


 , (15)

for some finite constants κ3, κ4.

Before proceeding with the proof, we illustrate the roles of
Lemmas 1a and 1b. If we bound Pr(x → x̃|H(s),H(d), v̂) ≤ 1
in (9), Lemma 1a demonstrates that the average probability of
|E| errors in (14) can be bounded by k1γ̄

−|E|, for some constant
k1. On the other hand, when E = ∅, we can bound Pr((1N ⊗
x) → x̂|H(s)) ≤ 1, and Lemma 1b takes the form of the error-
probability of a multi-antenna scenario and (ignoring for now
αn) it is not difficult to prove that in this case (15) is bounded
by k2γ̄

−|C| = k2γ̄
−|X ⋃ V|, for some constant k2.

Unfortunately, the aforementioned bounds are only useful
when either E = ∅ or |E| ≥ |X ⋃V|. When 0 < |E| < |X ⋃V|,
these bounds are too loose and we need to consider the joint
expectation of

Pe(γ) := κ1 exp

(
−κ2

∑
n∈E

min
i�=n

{γ(s)
i,n}

)

×Q

 κ3

∑
n∈C αnγ

(d)
n − κ4

∑
n∈E αnγ

(d)
n√

κ3

∑
n∈C αnγ

(d)
n + κ4

∑
n∈E αnγ

(d)
n


 ,(16)

with Pe(γ) ≥ Pr((1N ⊗x) → x̂|H(s))Pr(x → x̃|H(s),H(d), v̂)
and γ := {{γ(s)

i,n}N
i,n=1,i �=n, {γ(d)

n }N
n } denoting the set of all

instantaneous SNRs.
Notice that the difficulty in taking expectation over γ lies in

that αn in (4) depends on mini�=n{γ(s)
i,n} and is present in both

factors. The next lemma helps us to address this challenge.

Lemma 2 For some error probability P ′
e(γc, γe, ηc, ηe) satisfy-

ing

P ′
e(γc, γe, ηc, ηe) ≤ exp(−γe)Q

[
γcηc − γeηe√
γcηc + γeηe

]
, (17)

where γc ∼ Gamma(|C|, 1/γ̄), γe ∼ Gamma(|E|, 1/γ̄); γc, ηc,
γe, and ηe are nonnegative and independent of each other, if the
probability density functions p(ηc) and p(ηe) do not depend on
γ̄, the expectation over γc, γe, ηc and ηe is bounded as

E[P ′
e] ≤ kγ̄−|C|−|E|, (18)

with k := E[k(ηc, ηe)] a constant not dependent on γ̄.
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It is possible to derive bounds for Pe(γ) in (16) to match
the requirements of (17) [9]. In this process, the definition of
αn in (4) plays an instrumental role. Finally, because |C| ≥
|X ⋃V| − |E|, we have

Pe ≤ kγ̄−|C|−|E| ≤ kγ̄−|X ⋃ V|+|E|−|E| = kγ̄−|X ⋃ V|. (19)

Because (19) holds ∀ v̂ in (9), the proof is complete.

IV. DISTRIBUTED CODING STRATEGIES

Theorem 1 not only quantifies error performance bounds
for our system, but also provides insight on how to design
diversity-enabling re-encoding functions ψn(·). To illustrate this
fact, we present next three coding paradigms and outline their
corresponding diversity performance in view of Theorem 1.

A. Repetition Coding

Assume K = 1 (one symbol is only transmitted from each
source per transmission phase). The block of estimated symbols
at Sn reduces to x̂n = [x̂1,n, . . . , x̂N,n]T and ψn(·) codes a
scalar v̂n (L = 1) as

v̂n = ψn(x̂n) = [x̂n]ñ, (20)

where ñ := mod [n,N ] + 1. We can re-write the optimum
receiver in (6) as:

[x̂(d)]n =

arg min
x∈As

{
|[y(d,1)]n−h(d)

n x|2+|[y(d,2)]ñ−√
αñh

(d)
ñ x|2

}
. (21)

Assume the worst-case event in which, x differs from x̃ in one
unique position, say the nth. In this case, we clearly have X =
{n}. If we permute symbols in one position, V = {ñ} with
ñ �= n, then the union of X and V has at least two elements
and the proposed system achieves diversity 2.

Because information is forwarded without modification, this
scheme can be interpreted as a relaying scenario similar to the
ones proposed in [1], [2], [3]; thus, Theorem 1 demonstrates
diversity for classical relaying scenarios based on repetition
coding. In [3], the diversity order of such a scheme has also
been shown to be 2. The diversity order of these protocols can
be improved without decreasing bandwidth efficiency. As an
example, consider the next two distributed coding strategies.

B. Distributed Complex Field Coding

Assume again K = 1 and use a space-time CFC matrix Θ
as in [10]. This matrix is used as the mapping function for a
scalar v̂n (L = 1) as

v̂n = ψ(x̂n) = θT
n x̂n, (22)

where θT
n is the nth row of matrix Θ and guarantees that θT

nx �=
θT

n x̃ for any x �= x̃. The receiver now becomes

x̂(d) =arg min
x∈AN

s

{
‖y(d,1)−D(d)

h x‖2+‖y(d,2)−DαD(d)
h Θx‖2

}
.

(23)
Using the maximum distance separability (MDS) property of

CFC schemes, for any x �= x̃, the difference vector v − ṽ =
Θ(x− x̃) has all entries different from zero [10], meaning that
V = {1, . . . , N}. According to Theorem 1, the latter implies
that the system achieves diversity order N .

Since L = 1, CFC maintains the same bandwidth efficiency as
repetition coding while increasing diversity because each symbol
v̂n carries information from all N sources.

C. Distributed Error Control Coding

Consider the general transmission scheme in (3) and suppose
that v̂n now carries parity check bits of the block x̂n. In this
case, we are basically implementing the distributed channel cod-
ing strategies in [4] and [6]. As depicted in Fig. 1, the complete
sequence sent to the receiver is [x1, . . . ,xN , v̂1, . . . , v̂N ] with
size N(K+L). The first NK symbols sent during Phase-1 then
correspond to the systematic symbols and the NL symbols sent
during Phase-2 comprise the parity-check portion of a generic
ECC scheme.

Theorem 1 establishes the diversity order as a function of the
Hamming distance between codewords x = [xT

1 , . . . ,x
T
N ]T and

v = [vT
1 , . . . ,v

T
N ]T . To illustrate that this result is applicable

over coded transmissions, assume xT and vT are, respectively,
the NK log2 |As| systematic bits and NL log2 |As| parity bits
of a coded system over a (SISO) block-faded channel as drawn
in Fig. 1. Suppose this system is designed to enable diversity
order dC . Then, for any two blocks x and x̃, this system obeys
dC = |X ⋃V|, [8]. Using Theorem 1, we can thus conclude
that the proposed coded transmission enables diversity dC in
the distributed set-up.

Notice that in order to achieve diversity dC , one has to
judiciously design interleavers provided that systematic and
parity bits are sent as shown in Fig. 1. For this purpose, we
resort to those designed in [6] for error-free MSC transmissions.

We further remark that the diversity order of coded systems
over block-fading channels is limited by the Singleton bound
[8] as

dC ≤ min
{
dmin, 1 +

⌊
N

(
1 − K

(K + P ) log2 |As|
)⌋}

(24)

where dmin is the minimum Hamming (free) distance of the
ECC. Eq. (24) implies that the code rate and the constellation
employed affect the maximum achievable diversity order.

V. SIMULATIONS

In this section we present numerical simulations to test
error performance of the novel protocols. We employ binary
phase-shift-keying (BPSK) and suppose that all inter-source
and source-destination links have the same average output SNR
γ̄

(s)
m,n = γ̄

(d)
n = γ̄. The CFC matrix in (22) is chosen from [10].

A. Distributed coding strategies

We will compare the diversity order achieved by the encoding
schemes in subsections IV-A, IV-B and IV-C for different
number of cooperating sources N . As already mentioned, repe-
tition coding can be seen as the well-known DF-relaying. This
motivates us to also include comparisons with the coherent
piecewise-linear (PL) detector of [7], which assumes that the
average inter-source SNR is known at D.

Fig. 2 shows bit-error-rate (BER) as a function of the average
SNR γ̄ when employing distributed CFC, repetition coding and
the PL detector in [7] for N = 1, 2, 3 cooperating sources.
For CFC and repetition-based transmissions, we employ the
detectors in (23) and (21). For reference, we also depict the
BER when sources are not cooperating. We can verify that,
as established in Theorem 1, the slope of the BER varies
with N when employing CFC and remains fixed at 2 when
employing repetition coding (two curves coincide for N = 2).
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Fig. 2. BER of CFC vs. repetition and PL relaying strategies for N = 2, 3
sources.
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Fig. 3. BER of DCC for N = 2, 4 sources.

As a byproduct, we also outline the advantages of repetition-
based link adaptation compared to [7]; whereas the former
achieves diversity 2 in any scenario, the latter loses diversity
when sources are sufficiently separated.

Fig. 3 illustrates BER performance when employing the
distributed convolutional codes (DCC) of [6] for N = 2 and
N = 4 users. We employ blocks of size K = 52 bits encoded
through a rate 1/2 convolutional code (K = L) with generator
in octal form with Hamming (free) distance dfree = 5 [6], [8].
According to (24), the achievable diversity orders are dC = 2
for N = 2 and dC = 3 for N = 4. Fig. 3 confirms that diversity
orders are achieved as predicted by Theorem 1. From the same
figure we can also observe that coding gain is reduced. This is
due to the fact that highly-corrupted frames pass through the
Viterbi decoder degrade its optimality.

B. CRC-aided re-transmissions vs. adaptive techniques

The advantages of MSC schemes hinge upon the assumption
of either error-free links between sources or, as is the case in
practice, on correct error-detection decoding per frame. In this
practical case, frames with errors are discarded and no signal is
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Fig. 4. CRC-aided retransmissions with packet length K = 1024 bits.

re-transmitted. This strategy, however, can be inefficient at low
SNR and/or when the CRC block size is large, because a single
erroneous bit leads one to discard the entire block. To delineate
this assessment, we set both strategies to use the same error-
correction strategy. For the LAR-MSC, we set αn = 1 if no error
is detected at user n; otherwise, the block is transmitted with αn

as in (4). This slight modification of our protocol, although not
proven here, can be reasonably expected to achieve full diversity.
On the other hand, and for the sake of a fair comparison, we
increase the average power of SF to match that of adaptive
transmissions.

Fig. 4 compares the BER of these strategies for a block
size K = 1024 bits. As expected, both systems achieve full
diversity. Moreover, link-adaptive transmissions exhibit larger
coding gain, which corroborates the fact that discarding large
packets renders SF strategies inefficient.
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