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Abstract- We introduce a novel approach to routing based
on the so called pairwise packet delivery ratio matrix whose
entries represent the probability that a given user decodes the
packet transmitted by any other user. We show that this leads
naturally to a model in which routing algorithms are described
by the evolution of a Markov chain enabling the definition of
deliverability criteria in terms of absorbing states. We further
introduce optimal routing protocols by selecting the routing
matrix from a convex polygon containing all feasible routing
matrices. The criteria of optimality include minimization of
the packet error probability for a given delay bound and
the minimization of the average packet delay. These metrics
are correspondingly meaningful in the context of real time
transmissions - e.g., voice and/or video - and delay insensitive
data - e.g., file transfers.

Keywords: Routing, Wireless Networks, Markov chains, Opti-
mization

I. INTRODUCTION
The rapid decay in the received signal envelope with distance

is a unique and challenging feature of wireless networks. Multi-
hopping, entailing the division of a longer link into shorter links
leading to the destination is the traditional countermeasure. By
reducing the average distance between communicating pairs of
nodes, multi-hop routing secures, at the very least, significant
power savings, when not the feasibility of the communication link
itself, providing sufficient motivation for the study of multi-hop
routing algorithms for wireless networks.

Multi-hop routing has been widely studied in the context of
adhoc networks [5]. These infrastructureless networks rely on
peer-to-peer communications. Since the power needed for direct
communication from source to destination is usually prohibitively
large, multi-hop routing is a must in this context. Although not
as widely studied, alternative topologies such as those encountered
with collaborative multiple access channels can also benefit from
multi-hop routing. Routing algorithms for ad-hoc networks have
evolved from the accumulated knowledge about wireline networks.
The usual steps are to: i) define a communication radius for

* Work in this paper was prepared through collaborative participation
in the Communications and Networks Consortium sponsored by the U. S.
Army Research Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. Govern-
ment is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon. The work of N.
D. Sidiropoulos was partially supported by a bilateral cooperative research
grant of the Greek Secretariat for Research and Technology.

t The authors are with the Dept. of Electrical and Computer
Engineering, University of Minnesota, 200 Union Street SE,
Minneapolis, MN 55455. Tel/fax: (612)626-7781/625-4583.
Email: {aribeiro, luozq, georgios}@ece. umnr. edu.

+ N.D. Sidiropoulos is with the Dept. of Electrical and
Computer Engineering, Technical University of Crete, Chania -

Crete, Greece 731 00. Tel/fax: +30-28210-37227/+30-8210-37542.
Email: nikos@telecom.tuc.gr.

each node; ii) draw the corresponding connectivity graph; and iii)
invoke shortest path routing to find the optimal route. Most of the
differences in multi-hop routing protocols arise in the definition
of the associated link metrics. These include path reliability,
transmitted power, and mutual interference to name a few [2], [4],
[6]-[8].

In this paper, we introduce a general framework for multi-hop
routing in wireless networks. Our framework is based on a delivery-
ratio (or pairwise packet-error-probability) matrix R whose (i, j)th
entry Rij represents the probability that a packet transmitted by the
jth user Uj is correctly received by the ith user Ui. A graph model,
can be considered a special case of R in which the entries Rij
are either 0 or 1. Besides subsuming graph-theoretic models, the
delivery ratio matrix offers a more suitable model for the shared,
broadcast, and unreliable wireless channel.

The fact that our model offers a more accurate description does
not necessarily imply that it is better. The main contribution of the
present paper is to show that indeed our stochastic routing protocols
(SRP) are advantageous in many circumstances. In particular we
will show that

(i) Performance improvement. It has been observed that when
modeling the wireless network as a graph the resultant routing
matrices tend to use unreliable routes [4] with a consequent
reduction on the benefits of optimal routing. Routing matrices
obtained by SRP algorithms are based on the measured link
reliability (Section 11).

(ii) Tractability of diverse approaches. Optimization problems
on a graph usually turn out to have combinatorial complexity
effectively limiting routing algorithms to formulations that
can be solved using variations of shortest path routing.
Many optimization problems involving a matrix, however,
can be solved in polynomial time using convex optimization
techniques [3]. The latter will turn out to be the case with
some of the SRP algorithms introduced in this paper (Section
II-A).

(iii) Relation with graph approaches. It is possible to stick
to graph-network models while taking R into account; e.g.,
by defining link metrics as 1lRij [4]. Interestingly, these
algorithms appear naturally in our SRP formulation when the
optimality criterion is to minimize expected delay (Section
III).

In Section IV we present simulations corroborating our analyt-
ical claims. We conclude the paper in Section V

II. STOCHASTIC ROUTING PROTOCOLS (SRP)
Consider a wireless network with J + 1 user nodes {Uj }>ff+

in which the first J users {U }9=1 collaborate to route packets
to the destination D _ Uj+1. The physical and multiple access
layers are such that if a packet is transmitted by Uj it is correctly
received by Ui with probability Rij that we arrange in the matrix
R. We consider a per-session model of routing in which a user
node establishing a session is confronted with the routing decisions
of its peers that determine the entries Rij of R. Supposing that the
probabilities in R remain invariant over the duration of a session,
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our goal is to find a stochastic routing strategy for the session that
is optimal in a suitable sense.

Let ej(n) indicate the binary (0/1) event that the packet is
at Uj at time n whose probability we denote by fj (n)
Pr{ej(n) = 1}. Correspondingly, we define the vectors e(n)
[el(n), . . , ej+l(n)]" and f(n) := [fi(n), . .. fj+l(n)]V. If the
packet is generated at a known source Us for some s C [1, J]
we have that f (0) = 1. In general, the packets are generated at
a random source with initial distribution f(0). Regardless of the
initial condition what we want from the routing algorithm is for
the packet to be eventually delivered to the destination [(J + )-st
user]; i.e.,

lim f(n) = cj, (1)

where cj+ I [0, . . , 0, 1] is the (J+1)-st vector in the canonical
basis of IRJ+. Since it is meaningful to focus on routing algorithms
which - at least - satisfy (1), we introduce the following definition.

Definition 1 A routing algorithm ensures deliverability ifand only
if (1) holds for any initial distribution f(0).

A routing algorithm is defined by the matrix T whose ijth entry
Tij is the probability that Uj decides to transmit (i.e., route) the
packet to Ui. Likewise, we define K with Kij := Pr{ei(n +
1) ej (n)} denoting the probability that the packet moves from Uj
to Ui between times n and n + 1. Note that T and K are related
through R. Indeed, for i j the packet moves from Uj to Ui if
and only if it is routed through Ui and is correctly decoded; since
these two events are independent we have,

Kij = TijRij for i j. (2)

Since K and T are stochastic matrices, columns must sum up to
1 implying that KrT = 1 and TT,1 1. These two constraints
and (2) imply that K is completely determined by T (but not
viceversa).

Since the (J + 1)-st user is the destination it will not route the
packet, from which we infer Ti(j+i) = 0, Vi E [1, J]; and, after
taking (2) into account, we arrive at Ki(j+l) = 0, Vi C [1, J].
Arguing similarly, it follows that R(J+1)(J+1) = T(J+1)(J+1) =

K(J+1)(J+1) = 1. Summing up, with properly defined VD C RJ
and KD CE RJ j we can write

K D(K (3)VD 1

It follows easily by direct substitution that (3) holds if and only if
Kcj+i = cj+i, i.e., if and only if cj+l is an eigenvector of K
associated with the eigenvalue 1.

For future reference, we define the set of stochastic matrices in
R(J+1)2 as

'P {T C ( T = j > O Vi, j}. (4)

The constraints on K can be written as K C IC with

IC {K C P: Kij = TijRij, for i #j, T C P; Kcj+1 = Cj+1}
(5)

Note that the set IC is a convex polyhedron in R(J±l).
We can characterize the evolution of f (n) in terms of K.

Indeed, note that due to the law of total probability fi(n) =

1nI Pr{ei(n) ej(n-1)}fj(n -1) = ZnJ Kij j(n -1), that
we can write in vector-matrix form as,

f(n) = Kf(n -1) = Knf(). (6)

That is, f (n) represents the probability evolution of a Markov chain
characterized by K in which the jth state represents the presence
of the packet at user Uj. Building on (6), we can find conditions

to ensure deliverability of a SRP we describe in the following
theorem.

Theorem 1 The following statements are equivalent:
(i) The routing algorithm defined by the matrix T ensures

deliverability.
(ii) Matrix K describes the probability evolution ofan absorbing

Markov chain whose unique absorbing state is J + 1.
(iii) The spectral radius of KD is strictly smaller than one; i.e.,

with eig(KD) denoting the set of eigenvalues of KD we
have p(KD) := max leig(KD)l < 1.

(iv) The matrix KD and the vector VD in (3) satisfr vT(I
KD) 1T

Proof: Using induction we can easily show that the nfth power of
K can be written as [cf. (3)]

K K
n 0

VD k=o KD 1J (7)

Upon defining fD(n) := [fi (n),.. ., fi(n)]T we combine (6) and
(7) to obtain

fD(n) = KfD(). (8)
On the other hand, also note that (1) is true if and only if
limn-0fD(n) = 0.

To go from (i) to (ii) note that since for any K C AS, Kcj+1
cJ+1, J + 1 is by definition an absorbing state of the Markov
chain defined by K. If j J + 1 is another absorbing state then
Kcj = Cj and for f(0) = Cj we have that Knf(0) = Cj for
every n; thus limn,O f(n) = Cj cj+i. This is a contradiction
if T ensures deliverability and consequently J + 1 is the unique
absorbing state.

If (iii) is not true, then limn,O Kn n 0. Hence, there exists a
vector f(0) for which limn,O Knf(O) 00 implying that J + 1
is not an absorbing state. Thus, (ii) implies (iii).

That (iii) implies (iv) follows after noting that since 1TK = 1T,
we have that 1TKn = 1T and asymptotically limn,O 1TKn =

1T. But since (iii) also implies that Iimn, KnD = 0, we must
have 1imno TVD 'O KnD = T. To obtain (iv), note that the
geometric series is such that E K= = (I KD)T1

Finally, if (iv) is true then limn,O K = [O,...., , 1T
implying that (i) is true. U

Theorem 1 gives necessary and sufficient conditions for an
SRP to have guaranteed deliverability. None of these conditions
is difficult to achieve and, in general, simple routing algorithms;
e.g. a random walk through the network with Tij = IIJ, will do
just fine. A more interesting problem is how to obtain a matrix
which guarantees that the limit in (1) is practically achieved with
n as small as possible. This motivates different routing algorithms
that we can obtain from (6) and analyze next.

A. Fastest convergence rate routing
The rate of convergence can be either measured on average or for

the worst possible initial distribution entailing different criteria for
optimal routing. Optimal routing on an average sense is considered
in Section III. What we expect from an optimal routing matrix T is
for the convergence rate in (1) to be as fast as possible. The distance
- in some sense - between f(n) and cji+1 can be measured by the
norm IIf(n)- cj+ I IP which is to be compared with the original
distance f(°) -Cc I IP leading to the following expression for
the convergence rate:

(9)f( j=sup lim ( f(n) Cj± 1 I) n
~~p =supfliCj+
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This cannot be computed in closed-form for arbitrary p. For p =
2, corresponding to the Euclidean norm, the argument in (9) is
maximized by the eigenvector associated with the second largest
eigenvalue of K. A meaningful routing algorithm is thus to look
for the matrix K C IC such that

min Ieig2 (K)IKcl
min max eig(KD)|
IKc/

min P(KD), (10)

where eig2(K) denotes the second largest eigenvalue of K and
eig(KD) the set of eigenvalues of KD. In establishing the first
equality in (10) we used that all the eigenvalues of KD are
eigenvalues of K [cf. (3)]; in fact, eig(K) = eig(KD) U {1}.
The second equality follows from the definition of spectral radius.

Unfortunately, minimizing the spectral radius of a non-
symmetric matrix is a notoriously difficult problem, intractable
except for small-medium values of J [3]. This motivates an alter-
native measure of convergence rate based on the vector fD(n) :=

[fl(n),. . . 7 fj (n)]T containing the probabilities that the packet is
at a certain node other than the destination. The norm of fD (n)
measures the probability of the packet not being delivered at time
n. This suggests the metric

(p = max llfD (n + 1) Ip (11)

which amounts to the worst-case one-step relative reduction of the
probability vector fD (n) which we want convergent to zero [c.f.
(1)]. Similarly to (p, we can define optimal routing in terms of (p.
If we further recall that fD (n + 1) = KDfD (n) another class of
optimal SRPs can be designed to achieve

min max I|KDfD(n) lp
KE)CfD(n) llfD(n) lp

min ||KD lp,KEc/
(12)

where the equality follows from the definition of the p-norm of a
matrix. Different from (10), the optimization of (12) is a convex
problem for all p since: i) due to the triangle inequality, norms are
convex functions of their arguments; and ii) the set IC is a convex
polyhedron [c.f. (5)]. For the usual norms, p = 1, 2, oc, solving
(12) is either a simple linear program (LP) for p = 1, oc, or a
semi-definite program (SDP) for p = 2 [3].

In general (10) and (12) are optimized by different matrices T,
the pertinent comparisons are discussed in the following remark.

Remark 1 Entailing convex optimization problems - indeed,
canonical optimization problems - (12) is tractable for networks
with a large number of users J; whereas (10) is only tractable
for small-to-medium scale networks. On the other hand, (10)
is more meaningful than (12), since the former compares the
asymptotic behavior with the initial state while the latter compares
two consecutive states. In practice, (12) can be viewed as a tractable
approximation to (10).

III. MINIMUM EXPECTED DELAY ROUTING
An alternative approach to optimal routing is to consider the

packet delivery time measured in number of hops and look for the
matrix T that minimizes the average packet delay. Packet delay is
simply the time n at which the packet is received by D _ Uj+1:

00

6 = min{n ej+i(n) = 1} = E [1- ej+(n)]
n=O

(13)

where the second equality is true since 1 -eJ+1 (n) = 1 if n < 6
and 1 -eJ+1(n) = 0 for n > 6; we thus have 6 terms equal to 1
in the summation in (13). Starting from (13), the expected delay
can be computed as we show in the following theorem.

Algorithm 1 Min. expected delay routing (Dijkstra version)
Require: The packet success probability matrix R
Ensure: The routing matrix T

1: 6i 1 R(j+1)j, for j E [1, J]
2: U {Uj}j1
3: while U # 0 do
4: j arg minjX uj Eu6
5: U U -{U* }
6: foralli: Ui CUdo
7: if lRij* +±6* < Si then
8: 6i= lRi*+±*
9: Tij* = 1; Tii = O for j # j*

10: end if
11: end for
12: end while

Theorem 2 For a routing algorithm ensuring deliverability, the
expected delay is given by

6:= E(6) = I1 -KD) fD(O), (14)

where fD (O) = [f (0), . . . , fj(0)] is the initial distribution for the
first J users.

Proof: Taking expected value in (13), using the linearity of the
expected value operator and noting that fD(n) = [eDD(n)], we
obtain

00

6=E[1
n=l

00 J

fj+i(n)] =ZE fj(n),
n=l j=1

(15)

where in establishing the second equality we used that
ZJ=I fj(n) = 1 and hence 1- fj+(n) = Ej1fn). But
since the innermost summation can be written as 1TfD (n), if we
also recall that fD(n) = Knf(0), we obtain

00 00 ~~~~~~~~~00X

6 = E1TfD(n) = 1TKDfO E KD))f(0).
n=1 n=1 \n=1

(16)
For routing matrices that ensure deliverability the matrix geometric
series in (16) is convergent with n= KD (I-KD) 1
Substituting this into (16), (14) follows readily. D

The expected delay 6 is a function of the routing matrix K and
the initial distribution f(0). Using the result in Theorem 2 we can
find the matrix that minimizes the expected delay as the argument
solving the optimization problem

KD [fD (O)] = arg min 6D ~~~KEc/ arg min T(I -KD) fD(O) (17)
Kc/C

A direct attempt at solving (17) is doomed to failure. Luckily, it
turns out that (17) is equivalent to a shortest path routing algorithm
as we show in the ensuing theorem.

Theorem 3 Define the expected delay vector 6 = [61, ... 6J]:
1T (I -KD) 1 in which 6j is the expected delay when the packet
starts at Uj; i.e., when f(O) = cj; and let 6j+l = 0. If there
exists a matrix KD ensuring deliverability, the matrix Kt C IC
such that

6 {= min + 6i }, 6J+ = 0, (18)

minimizes the expected delay for any initial distribution f(O); i.e.

KD[fD(0)] = Kt for any fD(O) and KD[fD(O)] as in (17).
Proof: See appendix. .
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Fig. 1. For a simple connectivity graph (top) the minimum expected
delay routing algorithm in (17) tends to select short routes (left); fastest
convergence rate routing as per (10) selects longer routes with more reliable
hops.

Characterizing the solution as in (18) indicates that KD can be
found as the shortest path route (SPR) in a fully connected graph
with the arc between Ui and Uj having weight 1lRij. Indeed, let
i := (il, . . ., ik)with k C [2, J + 1], il = j andik= J+1 be an
arbitrary sequence starting at Uj and finishing at Uj+1. Proceeding
recursively, we find that (18) is equivalent to

#ijj l 1 '1

iniiin Rjjj1+1 (19)

where #(i) is the cardinality of i. By definition, (19) is the SPR
between j and J + 1 among all the possible routes i. In fact,
the relation in (18) is Bellman's principle of optimality, which
we know holds true for the shortest path route [1, Chap.5]. This
implies that the solution to minimum expected delay routing can
be found in 0(J2) steps using dynamic programming algorithms,
e.g. Bellman-Ford, Dijkstra, or Floyd-Warhall [1, Chap.5].

Also important, and contrary to what (17) suggested, minimum
expected delay routing does not depend on the initial distribution.
The average delays 6 [f(0)] for different initial distributions fJ(0)
are different, but there exists a matrix that minimizes 6 [f(0)] for
all f(0). Such matrix is the solution of the problem

Kargmn 1T (I -KD) (20)

that can be obtained using Algorithm 1. Note that for a given f(0)
there might be other solutions to (17), but none will outperform
K* in (20).

IV. SIMULATIONS
The fastest convergence rate SR algorithm in (10) maximizes

the packet delivery probability for a given, sufficiently large, time
index n. On the other hand, minimum expected delay routing as per
(17) minimizes the expected time elapsed until packet delivery. The
subtle differences between these two approaches are exemplified
in Figs. 1 and 2.

The resulting routing matrices for minimum expected delay
and fastest convergence rate routing are shown in Fig. 1. We
can see that the former algorithm tends to select short routes
sometimes containing unreliable hops (left) as exemplified by the
link U2 -* U5 used to route U1 and U2's packets. Whereas, the
latter uses longer routes but tends to use more reliable hops (right),

10

\ j=2
X \

6 8 10 12 14
time slot (n)

Fig. 2. Convergence rate for the network in Fig. 1. For a fixed time delay
fastest convergence rate routing yields a smaller packet error probability.

as we can see from the use of the U2 -* U3 link to route U1 and
U2's traffic. This is a manifestation of the different optimization
criteria. The expected delay for routing U2's packets is 1.67 for
minimum expected delay routing and 3.33 for fastest convergence
rate routing. The difference in convergence rate is shown in Fig. 2.
To achieve a packet error probability of 10-4, U2's delay is 7.2 for
fastest convergence rate routing and 13.1 for minimum expected
delay routing.

Similar conclusions are reached for the more realistic example
in Fig. 3 representing a randomly generated network with 20 nodes.
In this figure we depict the connectivity graph as well as the
result of the minimum expected delay, fastest convergence rate, and
minimum 2-norm SRP obtained from (12) with p = 2. In this case
it is also true that minimum expected delay prefers shorter routes,
while fastest convergence rate prefers longer routes containing
more reliable hops. Minimum 2-norm routing is the only algorithm
considered that yields routing matrices implying non-deterministic
routing; i.e. having Tij 1, 0 for some i, j.

For real time delay-sensitive applications; e.g. audio and/or
video conferencing, fastest convergence routing is a better altema-
tive. This is corroborated by Fig. 4 (top) showing the convergence
rate for the network in Fig. 3. For a delay of 14 hops, fastest
convergence rate routing yields a packet error probability of 10-4
for the least favored user; for the same delay, minimum expected
delay routing achieves a packet error probability of 10-2. For
delay-tolerant applications; e.g. file transfers, the average delay
metric is better suited since to deliver a large number of packets
the total number of required hops is significantly smaller. This
is illustrated in Fig. 4 (bottom) where we see that for minimum
expected delay routing most packets are delivered in a few hops
and a few packets take a long time to be delivered. For fastest
convergence rate routing none of the packets took more than 8 hops
to be delivered but the total number of hops required to deliver all
the packets was larger.

V. CONCLUSIONS
We introduced a general framework for stochastic routing in

wireless multi-hop networks. Deviating from the traditional graph
models we considered an approach based on the packet delivery
probability matrix and showed that different routing algorithms
can be described by the evolution of a properly defined Markov
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APPENDIX
A. Proof of Theorem 3

Given 6i for i j we solve (14) for 6j obtaining,

EJ1 -d I + Ei =,i:Aj Kij i
6i= 1-Kjj

-500 0 500
Minimum norm routing

(21)

1000 Since EJ+' Kij = 1 we have that 1 -Kjj = E1J Ki; if
we also replace Kij = TijRij valid for i 7 j we obtain

500 500

0 0

-500 -500

-1000 -1000 _
-1000 -500 0 500 1000 -1000 -500 0 500 1000

1 + Ei+Iij TijRij6i
J >1+1 TnR

li=l ,iOj lTijRij
Now, replace the 1 in the numerator by EZJ+l Tij
rearrange terms to arrive at

aEi +, (1lRij +Hi) TijRij
li=I,ij TijRij

Fig. 3. A randomly generated network with 20 nodes, the color scale
represents the elements of the matrix K. Note how fastest convergence
rate routing selects routes with large values of Kij.

Comparison of minimum delay and fastest convergence rate routing
1 ..........

.:............: : ::: ~ minimum delay routing
...-------------. ...fastest convergence rate routing

6 8 10
time slot (n)

250

It also follows by definition that (1lRij)+6i > mini ( lRij + Si)
which allows us to bound 6j in (25) by

j TijRij
tj TijRij

(24)

--............. -The matrix satisfying (18) for all j achieves the lower bound in
E (24) and thus minimizes 6j for all j. This proves that if a matrix

..........

satisfies (18) it minimizes 6j for all j. That such a matrix exists
follows from the construction in Algorithm 1 that yields a matrix

...........; satisfying (18) as long as ensuring deliverability is possible.
12 14 16 For an arbitrary initial distribution we have that

_ minimum delay routing
_ fastest convergence rate routing

J

=[f(O)] Pr{ej(O)}6j = fT(O)6.
j=l

(25)

2 4 6 8 10 12 14 16
time slot (n)

Fig. 4. Convergence rate of the least favored user for the network in
Fig. 3 (top) and histogram of packet delivery times for a randomly chosen
user (bottom). Fastest convergence rate routing is favored for time sensitive
traffic.

chain. This connection permits characterization of a properly
defined deliverability condition in terms of absorbing states of the
Markov chain and the eigenvalues of the corresponding probability
evolution matrix.
We then moved on to introduce stochastic routing algorithms

that maximize the convergence rate of the Markov chain, entailing
a maximization of the packet delivery probability for a fixed,
sufficiently large delay n. This routing approach is meaningful
in the context of delay sensitive traffic involved in, e.g voice
and/or video conferencing. We further found an expression for
the average packet delay measured by the number of hops and
defined the corresponding optimal routing problem that minimizes
it. Interestingly, we proved that the optimum routing matrix can

be obtained as the shortest path route in a fully connected graph
with the arc between users having a weight inversely proportional
to the corresponding delivery ratio.

But since all components fj (0) of f(O) are non-negative 6[f(O)] is
minimized if all components of 6 are minimum. The latter is true
if (18) is valid for all j [c.f. (24)] completing the proof. D

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, sec-

ond ed., 1992.
[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, "Routing with

guaranteed delivery in ad hoc wireless networks," ACM Wireless
Networks, vol. 7, pp. 609-616, Nov. 2001.

[3] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[4] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, "A high-throughput
path metric for multi-hop wireless routing," in Proc. of the 9th
International ACM Conference on Mobile Computing and Networking,
pp. 134-146, San Diego, CA, Sept. 14-19, 2003.

[5] P. Gupta and P. Kumar, "The capacity of wireless networks," IEEE
Transactions on Information Theory, vol. 46, pp. 388-404, March
2002.

[6] J. Kuruvila, A. Nayak, and I. Stojmenovic, "Hop count optimal
position based packet routing algorithms for ad hoc wireless networks
with a realistic physical layer," IEEE Journal on Selected Areas in
Communications, vol. 23, pp. 1267-1275, June 2005.

[7] T. Nadeem and A. Agrawala, "IEEE 802.11 fragmentation-aware
energy-efficient ad-hoc routing protocols," in Proc. of the Ist IEEE
International Conference on Mobile Ad Hoc and Sensor Systems,
pp. 90-103, Fort Lauderdale, FL, Oct. 2004.

[8] I. Stojmenovic, A. Nayak, and J. Kuruvila, "Design guidelines for
routing protocols in ad hoc and sensor networks with a realistic
physical layer," IEEE Communications Magazine, vol. 43, pp. 101-
106, March 2005.

1371

1000 _

500

-500

-1000_
-1000

1 000

(22)

1 and

(23)

t10-10
a)

-::
7F ..

10-2 -

0

n -::
2 ::

10-4-
0

Network connectivity Minimum expected delay

U. 1 0.2 0.3s 0.4 U.5 0.6 0.7 0 .8 0.9 1 .U

EJ+lI i=l,i:.6. >min + 6i ___,i+ii Rij Ei=l,i:.
I -= min + 6i

i Rij

2


