
DISTRIBUTED ESTIMATIONWITH AD HOCWIRELESS SENSOR NETWORKS†

Ioannis D. Schizas, Alejandro Ribeiro, and Georgios B. Giannakis

Department of Electrical and Computer Engineering, University of Minnesota
200 Union Street SE, Minneapolis, Minnesota, USA 55455.
Phone: + (001) 612-626-7781, Fax: + (001) 612-625-4583

Email: schiz001@umn.edu, aribeiro@ece.umn.edu, georgios@ece.umn.edu

ABSTRACT
We consider distributed estimation of a deterministic parameter vec-
tor using an ad hoc wireless sensor network. The estimators de-
rived are obtained as solutions of constrained convex optimization
problems. Using the method of multipliers in conjunction with a
block coordinate descent approach we demonstrate how the resul-
tant algorithms can be decomposed into a set of simpler tasks suit-
able for distributed implementation. We show that these algorithms
have guaranteed convergence to properly defined optimum estima-
tors, and further exemplify their applicability to solving estimation
problems where the signal model is completely or partially known
at individual sensors. Through numerical experiments we illustrate
that our algorithms outperform existing alternatives.

1. INTRODUCTION

A major challenge in wireless sensor networks (WSNs) is the com-
putation of parameter estimates based on distributed observations
collected at individual sensors. Severe energy and bandwidth lim-
itations call for the design and implementation of distributed algo-
rithms that are efficient in terms of reducing communication over-
head and computational cost.

A recently introduced class of distributed estimation algorithms
is based on successive refinement of local estimates maintained at
individual sensors. These approaches rely on communication with
one-hop neighbors only, to develop iterative algorithms that even-
tually converge to the desired estimate. In a nutshell, each iteration
comprises a transmission step in which sensors communicate cer-
tain information to their neighbors, and an update step in which the
information collected from all neighbors is used to update the lo-
cal estimate. The notion of consensus averaging for the estimation
of deterministic unknown parameters using linear data models was
introduced in [1, 7, 8], whereby each sensor updates its local esti-
mate by appropriate weighting the estimates of its neighbors. A
more elaborate approach entailing distributed computation of the
sample average estimator with the aid of dual decomposition tech-
niques was studied in [4]. For distributed estimation of a Gaussian
random parameter in a scalar linear model, [2] applied the Jacobi
iteration. The same scalar linear model in a dynamical system was
also considered in [6]. While different in focus, these works share
the common thread of being successive refinement algorithms based
on communicating information with one-hop neighbors only.

In the present paper, we deal with estimation of unknown deter-
ministic parameters of linear (but not necessarily) Gaussian obser-
vation models. We further consider cases where the signal model is
completely or partially known at individual sensors. Our approach
amounts to recasting estimators of interest as minimizers of convex
functions under a set of linear constraints. Quite surprisingly, we
are able to formulate these convex optimization problems in a form
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that is amenable to parallel – i.e., distributed – computation. We first
consider estimation when the observation model is known at each
sensor; in some sense generalizing the work of [8] on distributed
consensus (Section 3). To solve this problem we utilize the method
of multipliers to find the optimal solution as the minimum of the
augmented Lagrangian function. We then use a block coordinate
descent algorithm to decompose the minimization of the augmented
Lagrangian into simple separable tasks [1] leading to a distributed
successive refinement algorithm (Section 3.1). Subsequently, we
consider the sensors having partial knowledge of the signal model
(Section 4). While inherently more complicated, the same steps of
i) recasting the estimator as the minimum of a convex function; ii)
applying the method of multipliers; and iii) separating the problem
with a block coordinate descent algorithm, lead to a distributed suc-
cessive refinement algorithm with guaranteed convergence to the
optimal estimate. We provide corroborating simulations in Section
5 and conclude the paper in Section 6.

2. PROBLEM FORMULATION
Consider an ad-hoc WSN with M sensors. Communication links in
the WSN are represented by a graph whose vertices are the sensors
and its edges are formed by the available communication links; see
Fig. 1. The set of sensors having an active link with the j-th sensor
comprise the neighborhood N j. The WSN is deployed to estimate
a p× 1 parameter vector s based on distributed observations x j ∈

R
Lj×1 with x j taken at the j-th sensor. Observations are related to

the unknown vector by the linear model

x j = H js+n j, j ∈ [1,M] (1)

where H j ∈ R
Lj×p, and the zero-mean noise n j ∈ R

Lj×1 has
covariance Σn jn j := E[n jn

T
j ]. Defining x := [xT1 . . .xTM ]T , H =

[HT
1 , . . . ,HT

M ]T and Σnn = E[nnT ], the minimum variance (best)
linear unbiased estimator (BLUE) is [3]

ŝ :=
(

H
TΣ−1nn H

)−1
H
TΣ−1nn x := Cx, (2)

where C :=
(

HTΣ−1nn H
)−1

HTΣ−1nn and H is assumed to be full
rank. Linear estimators are particularly attractive given the limited
computing capabilities of the sensors. If the {n j}

M
j=1 are normally

distributed, ŝ in (2) is also the minimum variance unbiased estimator
(MVUE) among all (not necessarily linear) estimators.

Notice that the information contained in x is scattered around
the sensor network. One approach to computing the desired ŝ is to
transmit x j for j= 1, . . . ,M to a fusion center (FC) and then directly
compute ŝ using (2). Besides being communication costly, this ap-
proach is also prone to FC failures. In this work, we will develop
decentralized algorithms for solving (2) with different degrees of
knowledge aboutC. Specifically, we consider two scenarios:
(s1) With C := [C1, . . . ,CM ], we assume that sensor j has avail-

able its corresponding part C j . This may be the case when
H and Σnn are known to every sensor. Moreover, if H j = Ip



Figure 1: An ad-hoc wireless sensor network.

is the p× p identity matrix and Σn jn j = σ2Ip, we have that
C j = Ip/M. The latter is assumed by the vector consensus av-
eraging setup in [8].

(s2) The j-th sensor has available its corresponding part of the sig-
nal model; i.e.,H j and Σn jn j . This problem is considered in [7].
Matrices Σn jn j can be found in sensor j by sample averaging,
whileH j can be obtained via model estimation.
Our approach is to write the estimators as the solution of an ap-

propriate optimization problem, and then use convex optimization
techniques to split the original problem into simpler subtasks that
can be implemented in parallel [1]. As in e.g., [2, 7, 8], we assume
that: i) the communication channels between neighbor sensors are
ideal; and ii) the communication graph of the WSN is connected.

3. GENERALIZED CONSENSUS AVERAGE
We begin by considering scenario (s1) whereby we want to compute
the BLUE estimator in (2) when C j is available at sensor j. It
follows easily that the quantity ŝ =∑Mj=1C jx j is the solution of the
following minimization problem:

ŝ = arg min
s∈Rp×1

M

∑
j=1

‖s−MC jx j‖
2
2. (3)

Notice that (3) is formulated in terms of the variable s making it an
unlikely candidate for distributed implementation. This prompt us
to define a subset of nodes A ⊆ [1,M] and modify (3) as

{ŝ j}
M
j=1 :=min

M

∑
j=1

‖s j−MC jx j‖
2
2

s.t. s j = s̄l , l ∈ A , j ∈ Nl (4)

where we associate the variable s j with the j-th sensor. We can
interpret ŝ j as the local estimate and ideally we would like to have
ŝ j = ŝ for all j.

The latter would be the case if we impose the constraint s1 =
. . . = sM which amounts to setting A = [1,M] in (4). Indeed, if
s1 = . . . = sM then the arguments in (3) and (4) coincide and so do
the optima. It turns out, that a relaxed requirement on A suffices
to guarantee the equivalence of (3) and (4). This requirement is
introduced in the following definition.

Definition 1 We say that A is a bridge sensor set if and only if,
(a) ∀ j ∈ [1,M] there exists at least one l ∈ A so that l ∈ N j; and
(b) for every sensor l1 ∈ A there exists a sensor l2 ∈ A such that

the shortest path between l1 and l2 has at most two edges.

As an example, consider the WSN in Fig. 1 where the black
sensors represent a possible selection of the set A to be a bridge
set of sensors. The set of bridge neighbors j will be denoted as
M j := N j ∩A .

The equivalence between (3) and (4) when A is a bridge set of
sensors is claimed in the following proposition.

Proposition 1 If A is a bridge set of sensors, the optimization
problems (3) and (4) are equivalent in the sense that

ŝ = ŝ j, ∀ j ∈ [1,M] (5)

with ŝ the solution of (3) and {ŝ j}
M
j=1 the solution of (4).

Proof: We will show first that the constraints s j = s̄l for l ∈ A and
j ∈ Nl are equivalent to s j1

= s j2
. To this end, consider l1, l2 ∈ A

with l1 ∈ N j1
and l2 ∈ N j2

, with the existence of l1, l2 guaranteed
by A ’s definition [c.f. Def. 1-(a)]. From the constraints in (4) we
know that,

s ji
= s̄li

, for i= 1,2. (6)

On the other hand, for a connected graph there exists a path of nodes
P that connects l1, l2 ∈ A . Moreover, from Def. 1-(b) we know
that every sensor i ∈ P must have at least two neighbors l′1, l

′
2 ∈

A ∩P , otherwise there would be sensors inP∩A for which there
is no sensor inA at a distance of at most 2 edges from them. We can
thus build a path from l1 to l2 of the form l1→ i1→ l′1→ i2→ l′2→
. . . → l′J → iJ → l2, for which s̄l1

= si1
= s̄l′1

= . . . = s̄l′J
= sJ = s̄l2

.
Combining the latter with (6), it follows that s j1 = s j2

for arbitrary
j1, j2 ∈ [1,M]. Thus, any feasible point of (4) is such that s j = s, for
all j ∈ [1,M] implying that the arguments of (3) and (4) are equal,
which completes the proof. !

The j-th sensor in (4) is associated with s j ∈ Rp×1. If l is a
bridge sensor, i.e., l ∈ A , it is also associated with s̄l ∈ Rp×1. The
variables {s̄l}l∈A

appear only in the constraints of (4) and guar-
antee that s1 = . . . = sM imposing in that way the “consensus” re-
quirement across all the sensors. Different from (3), (4) can be im-
plemented in a distributed fashion as we describe in the next section.

3.1 A coordinate descent algorithm
To solve (4), we will use a coordinate descent algorithm combined
with the method of multipliers [1]. Consider the augmented La-
grangian of the optimization problem in (4), that is given by

La[u, s̄,v] =
M

∑
j=1

‖s j−MC jx j‖
2
2 (7)

+ ∑
l∈A

∑
j∈Nl

(vlj)
T (s j− s̄l)+

c
2 ∑l∈A

∑
j∈Nl

‖s j− s̄l‖
2
2,

where we defined u := {s j}
M
j=1, s̄ := {s̄l}l∈A

and v :=
{vlj}

l∈M j
j∈[1,M]

. The constant c> 0 is arbitrary and vlj is the Lagrange
multiplier associated with the constraint s j = s̄l , for j ∈ [1,M] and
l ∈ M j. The multiplier v

l
j is located at the j-th sensor.

The process that relies on (7) to yield a distributed implemen-
tation is described in the following proposition.

Proposition 2 Consider the iteration defined for each sensor j ∈
[1,M] by:

s j(k+1) =
1

2+ c|M j|



2MC jx j− ∑
l∈M j

v
l
j(k)+ c ∑

l∈M j

s̄l(k)



 ,

(8)

s̄l(k+1) =
1

c|Nl |
∑
j∈Nl

v
l
j(k)+

1
|Nl |

∑ j∈Nl
s j(k+1), l ∈ A ,

(9)

v
l
j(k+1) = v

l
j(k)+ c[s j(k+1)− s̄l(k+1)], l ∈ M j (10)



Algorithm 1 : C j known at each sensor

Initialize{s j(0)}
M
j=1,{s̄l(0)}l∈A

and {vlj(0)}
l∈M j
j=1,...,M to zero

for k = 0,1,. . . do
Bridge sensors l ∈ A : transmit s̄l(k) to its neighbors inNl
All j ∈ [1,M]: update {vlj(k)}l∈M j

by (10)
All j ∈ [1,M]: update s j(k+1) using (8).
All j ∈ [1,M]: transmit c−1vlj(k)+s j(k+1) to each l ∈ M j
Bridge sensors l ∈ A : compute s̄l(k+1) using (9)

end for

where |M j| and |Nl | denote the cardinality of the sets M j and Nl
respectively. Then, as k→ ∞ the network reaches consensus; i.e.,

lim
k→∞

s j(k+1) = lim
k→∞

s̄l(k+1) = ŝ, ∀ j ∈ [1,M]. (11)

Proof: We wish to show that (8)-(10) generates a succession that
converges to the solution of the optimization problem in (4). This
follows from using the method of multipliers [1] to minimize the
augmented Lagrangian in (7) and update appropriately the corre-
sponding Lagrange multipliers. Let vlj(k) denote the Lagrange mul-
tipliers at the k-th iteration. The (k+ 1)-st iteration of the method
of multipliers consists of the following two steps:
[S1] Set vlj = vlj(k) and define v(k) := {vlj(k)}

l∈M j
j∈[1,M]

, to min-
imize the augmented Lagrangian function in (7) and obtain
s j(k+1) and s̄l(k+1) as:

[u(k+1), s̄(k+1)] = argmin
u,s̄

La[u, s̄,v(k)] (12)

with s̄(k) := {s̄l(k)}l∈M j
and u(k) := {s j(k)} j∈[1,M]

[S2] Update the Lagrange multipliers {vlj(k)}
l∈M j as

v
l
j(k+1) = v

l
j(k+1)+ c[s j(k+1)− s̄l(k+1)], j ∈ [1,M].

(13)
It is known that if La[u, s̄,v]) is the augmented Lagrangian of a
convex optimization problem, then [S1]-[S2] converge to the unique
global minimum for any constant c> 0.

Notice though that [S1] requires joint minimization of (7) with
respect to (u, s̄) and as such it is not amenable to distributed imple-
mentation. A customary turn around is to apply a block coordinate
descent method, where we minimize L [u, s̄,v(k)] wrt to one vari-
able at a time, effectively replacing [S1] with
[S1-a] For fixed vlj = vlj(k), and s̄l = s̄l(k) minimize (7) wrt u to

obtain
u(k+1) = argmin

u
La[u, s̄(k),v(k)]. (14)

Since we have from (7) that the u j variables are decoupled in
La[u, s̄(k),v(k)], the optimization in (14) is equivalent to the
M separate optimizations

s j(k+1) = argmin
s j

La[u, s̄(k),v(k)]; j ∈ [1,M]. (15)

[S1-b] Setting s j = s j(k+1) we minimize wrt to {s̄} to obtain

s̄(k+1) = argmin
s̄

La[u(k+1), s̄,v(k)]. (16)

As in [S1-a], the s̄l variables are decoupled in La[u(k +
1), s̄,v(k)] and (16) is equivalent to [c.f. (7)]

s̄l(k+1) = argmin
s̄l

La[u(k+1), s̄,v(k)]; l ∈ A (17)

The algorithm formed by [S1-a], [S1-b], [S2] belongs to the
class of the so called alternative multipliers methods which as [S1]-
[S2] also converge to the unique global minimum for any constant
c > 0 [1, Chpt. 3]. However, note that (10), (15) and (17) entail
local variable updates hinting to the possibility of distributed im-
plementation as we show later; see also Algorithm 1.

To conclude the proof it suffices to show that (8)-(10) are equiv-
alent to (13), (15) and (17). But since the cost functions involved in
(15) and (17) are convex, the optimal solution can be obtained by
applying the first order optimality conditions

∇s j
La[u(k+1), s̄(k),v(k)] = 0, j ∈ [1,M] (18)

∇
s̄l

La[u(k+1), s̄(k),v(k)] = 0, j ∈ A . (19)

The gradients involved in (18) and (19) can be easily computed after
differentiating (7) and are given by:

∇s j
La = 2s j−2MC jx j + ∑

l∈M j

v
l
j(k)+ c ∑

l∈M j

[

s j− s̄l(k)
]

,

∇
s̄l

La = c ∑
j∈Nl

[

s̄l −s j(k+1)
]

− ∑
j∈Nl

v
l
j(k). (20)

Substituting (20) into (18) and (19), equations (8) and (9) follow
readily; and thus, (10) coincides with (13). !

The iteration (8)-(10) can be implemented with a distributed al-
gorithm whereby all sensors j ∈ [1,M] keep track of the local esti-
mate s j(k) and the Lagrange multipliers {v

l
j(k)}l∈M j

. The sensors
that also belong to A keep track of these variables and the con-
sensus enforcing variables s̄l(k). The resulting coordinate descent
scheme is summarized as Algorithm 1; see also Fig. 2. At the k-
th iteration, sensor j receives the consensus variables s̄l(k) from
all its bridge neighbors l ∈ M j. It uses this information to update
its Lagrange multipliers {vlj(k)}l∈M j

using (10) and the result to
compute s j(k+1) through (8). After completing this iteration step,
sensor j transmits to each of its bridge neighbors l ∈ M j the vec-
tor c−1vlj(k)+ s j(k+ 1). The bridge sensor l receives the vectors
c−1vlj(k)+s j(k+1) from all its neighbors j ∈ Nl and proceeds to
compute s̄l(k+1) using (9). This completes the k-th iteration, and
the bridge sensors proceed to transmit s̄l(k+ 1) to all their neigh-
bors j ∈ Nl starting the (k+1)-st iteration.

During the kth iteration, a sensor j ∈ [1,M] sends to all its
bridge neighbors in M j the vectors c

−1vlj(k) + s j(k+ 1) s̄l(k) ∈
Rp×1; thus, it transmits p|M j\( j)| scalars. Notice, that for a sen-
sor j ∈ [1,M]\A it holds that |M j\( j)| = |M j|; but for a sensor
l ∈ A it holds that |Ml\(l)| = |Ml |− 1, since a bridge sensor l
does not have to transmit s̄l(k+1) to itself. Based on the previous
discussion we can readily infer that each sensor in the WSN has
to transmit p|M j| scalars per iteration. Thus, the amount of infor-
mation that each sensor has to communicate per iteration is in the
order O(p), which is intuitively reasonable since each sensor wants
to compute ŝ ∈ Rp×1.

4. DISTRIBUTED BLUE
We now consider scenario (s2) in which sensors have available only
their corresponding part of the signal model, namelyH j and Σn jn j .
As in e.g., [7], we assume that the noise is uncorrelated across sen-
sors which means that Σnn = diag(Σn1n1 , . . . ,ΣnMnM ). The BLUE
estimator can then be written as

ŝblue =

(

M

∑
j=1

H
T
j Σ

−1
n jn jH j

)−1 M

∑
j=1

H
T
j Σ

−1
n jn jx j. (21)



Figure 2: Distributed implementation of Algorithm 1

We assume in (21) that x j , H j and Σn jn j are known only to the j-
th sensor. In this sense, the estimation algorithm needs not only to
disseminate the observations but also the signal model. Even though
this problem is seemingly more difficult than the one in Section 3,
we will develop a similar algorithm. We start by writing ŝblue in (21)
as the solution of a convex optimization problem in the following
proposition1.

Proposition 3 The BLUE estimator in (21) is given by:

arg min
u∈Rp×1

M

∑
j=1

∥

∥

∥
Σ−1/2n jn j H js−Σ−1/2n jn j x j

∥

∥

∥

2

2
. (22)

Similar to (3), the minimization problem in (22) does not lead to
distributed implementation motivating the introduction of the fol-
lowing alternative formulation.

Proposition 4 If A is a set of bridge sensors, the minimization
problem in (22) is equivalent to

{ŝ j}
M
j=1 := argmin

M

∑
j=1

∥

∥

∥
Σ−1/2n jn j H js j−Σ−1/2n jn j x j

∥

∥

∥

2

2

s.t. s j = s̄l , l ∈ A , j ∈ Nl , (23)

in the sense that ŝ = ŝ j ∀ j ∈ [1,M].

The j-th sensor in (23) maintains the local estimate s j, with the l-th
bridge sensors also maintaining s̄l . The augmented Lagrangian of
the optimization problem in (23) can be written as

La(u, s̄,v) =
M

∑
j=1

∥

∥

∥
Σ−1/2n jn j H js j−Σ−1/2n jn j x j

∥

∥

∥

2

2
(24)

+ ∑
l∈A

∑
j∈Nl

(vlj)
T (s j− s̄l)+

c
2 ∑l∈A

∑
j∈Nl

∥

∥

∥
s j− s̄l

∥

∥

∥

2

2
.

Proceeding as in Section 3.1, we minimize (24) using an alternating
multipliers approach to obtain the following proposition.

Proposition 5 Consider the iteration given by:

s j(k+1) = B
−1
j



2HT
j Σ

−1
n jn jx j− ∑

l∈M j

v
l
j(k)+ c ∑

l∈M j

s̄l(k)



 ,

(25)

s̄l(k+1) =
1

|Nl |
∑
j∈Nl

[

c−1vlj(k)+s j(k+1)
]

, l ∈ A , (26)

v
l
j(k+1) = v

l
j(k)+ c[s j(k+1)− s̄l(k+1)], l ∈ M j, (27)

1Proofs of claims in this paper can be found in [5].

Algorithm 2 : H j and Σn jn j known at each sensor

Initialize {s j(0)}
M
j=1,{s̄l(0)}l∈A

and {vlj(0)}
l∈M j
j=1,...,M to zero.

Perform Cholesky factorization {B j = L jL
T
j }

M
j=1.

for k = 0,1,. . . do
Bridge sensors l ∈ A : transmit s̄l(k) to its neighbors inNl ;
All j ∈ [1,M]: update {vlj(k)}l∈M j

using (27);
All j ∈ [1,M]: update s j(k+1) using (25);
All j ∈ [1,M]: transmit c−1vlj(k)+s j(k+1) to each l ∈ M j;
Bridge sensors l ∈A : compute s̄l(k+1) by solving lower and
upper triangular systems in (29) and (30).

end for

with B j = 2HT
j Σ

−1
n jn jH j + c|M j|Ip. Then, as k→ ∞ the network

reaches consensus in the sense that

lim
k→∞

s j(k+1) = lim
k→∞

s̄l(k+1) = ŝblue, ∀ j ∈ [1,M]. (28)

From (25)-(27) we obtain the distributed Algorithm 2. Interestingly,
the matrix inversion in (25) can be avoided. Indeed, the matrix B j
is time invariant, symmetric and positive definite because |M j| > 0
for j ∈ [1,M]. Thus, the jth sensor can perform, during the start-up
period of the WSN, Cholesky factorization of B j, to find a lower
triangular matrix L j such thatB j = L jL

T
j . Then during iteration k

of the distributed algorithm, u j(k+1) can be computed by solving
the lower triangular system

L jz j(k+1) = 2HT
j Σ

−1
n jn jx j− ∑

l∈M j

v
l
j(k)+ c ∑

l∈M j

s̄l(k), (29)

and then obtaining s j(k+1)with backward substitution in the upper
triangular system

L
T
j s j(k+1) = z j(k+1). (30)

The computational cost for obtaining s j(k+1) is thus O(p2).
Since each sensor j ∈ [1,M] has available the vectorHT

j Σ
−1
n jn jx j

and the Lagrange multipliers {vlj(k)}l∈M j
, and it receives the con-

sensus variables s̄l(k) from all its bridge sensor neighbors l ∈M j it
is able to update the Lagrange multipliers {vlj(k)}l∈M j

through (27)
and compute s j(k+1) using (25). Next, sensor j transmits to all its
bridge neighbors the vectors c−1vlj(k)+s j(k+1) for l ∈M j . Then,
every sensor l ∈A receives the vectors {c−1vlj(k)+s j(k+1)}l∈Nl
and forms s̄l(k+1) through (26). The communication cost for each
sensor is as in Section 3.1, i.e, p|M j| scalars per sensor.

Remark 1 Another scheme for computing the BLUE estimator
in a distributed fashion was developed in [7] where separate
consensus algorithms are run to determine the matrix Fblue =

∑Mj=1H
T
j Σ

−1
n jn jH j and vector fblue = ∑Mj=1H

T
j Σ

−1
n jn jx j. With re-

spect to [7], our method has the same computational complexity
O(p2) while the communication cost is reduced from O(p2) for the
method in [7] to O(p) for Algorithm 2. Also, as we verify in Sec-
tion 5 our can approach exhibit a considerably faster convergence
ratio.

5. NUMERICAL RESULTS
In this section, we provide numerical results comparing the perfor-
mance of Algorithm 2 in Section 4 against the consensus averaging
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Figure 3: Randomly generated 50-sensor WSN.

scheme in [7]. The metric used for comparison is the Euclidean
norm of the error between the local estimates and the BLUE esti-
mate. The total normalized error is thus given by

Enorm(k) =
M

∑
j=1

‖s j(k)− ŝblue‖
2

‖ŝblue‖
2 , (31)

where s j(k) is the local estimate at the jth sensor for the k-th itera-
tion.

We consider a sensor network consisting of 50 sensors; see Fig.
3. The WSN is generated by randomly placing nodes according to
a uniform distribution in the unit square [0,1]× [0,1]. We assume
that two sensors are able to communicate – and are thus connected
with an edge in Fig. 3 – if their Euclidean distance is less than 1/4.
With respect to the signal model we assume that each sensor has
10 observations; i.e., L1 = . . . = L50 = 10, and that s incorporates
p= 5 parameters. The entries of the observation matrices {H j}

50
j=1

contain independent random variables uniformly distributed in the
set [−0.5,0.5]. The noise is unit power white Gaussian implying
that Σn jn j = I10×10, for j = 1, . . . ,50. The bridge sensor set A

contains sensors selected such that |M j|≤ 5= p for j = 1, . . . ,50.
The parameter c in Algorithm 2 is set equal to 6. For the algorithm
in [7], we test both the max-degree and the Metropolis weights.

In Fig. 4 we plot the normalized total error [c.f. (31)] ver-
sus iteration index. We compare the convergence rate of Algo-
rithm 2 with the rate exhibited by the consensus averaging approach
in [7] using the max-degree and Metropolis weights. Clearly, Al-
gorithm 2 outperforms the consensus averaging approach. Also,
recall that the communication costs per iteration in our approach
have been reduced, since each sensor has to transmit |M j|p scalars
with |M j|≤ p compared to the consensus averaging approach. In-
tuitively, presence of the consensus constraints in (23) and the uti-
lization of the “consensus” variables s̄l for l ∈ A help the sensors
to reach agreement faster. The choice of the constant c is important
for the speed of convergence of the algorithm and future work will
consider ways of determining c based solely on local information.

6. CONCLUDING REMARKS
We developed distributed algorithms for estimation using ad hoc
WSNs based on successive refinement of local estimates. Per trans-
mission cycle, information is communicated to one-hop neighbors
only; the information received from these neighbors is then used to
improve the local estimate. The approach follows after expressing
the best linear unbiased estimator (BLUE) as the solution of judi-
ciously designed convex optimization problems, and relies on the
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Figure 4: Normalized total error vs iteration index k for Algorithm
2 and the consensus averaging scheme in [7].

method of multipliers, coordinate descent and other optimization
techniques to enable parallel/distributed implementation. The resul-
tant algorithms are guaranteed to converge to the (optimal) BLUE
estimate. Numerical results corroborated the asserted convergence
claims and indicated that our algorithms attain faster convergence
rates than existing alternatives.

Future research topics include generalizing our approach to es-
timation of random parameters as well as a better understanding of
the convergence rate.2
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