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Distributed Iteratively Quantized Kalman Filtering for
Wireless Sensor Networks

Eric J. Msechu®, Stergios I Roumeliotis?, Alejandro Ribeiro®, and Georgios B. (Hannakis* (contact author)

Estimation and {racking of generally nonstationary
i\*iarkcw processes Is of paramount imporiance for applications such
as localization and navigation. In this context, ad boc wireless sensor
networks (WSNs) offer distribuied Kalman filtering (KIN based
algorithms with documenied merits over centralized alleranatives.
Adbering to the limited power and bandwidih resources WENs must
operate with, this paper Introduces a novel distributed K¥F estimator
based on quantized mweasurement insovalions, The quantized obser-
vations and the disiributed nafure of the iferatively quantized KIY
algorithm are amenable fo the respcurce constraiats of the @f hoc
WENs, Aunalysis and simulalions show tha! KF ke tracking based
on v bits of leratively gquanéized innovations communicated among
sepsors exhibils MEE performance denlical to a KF based on
analog-amplitede observations applied {o an observation model with
noise variance increased by a factor of [I — (1 - 2/w)™] 7', With
minimal communication overhead, the mean square error (MSE)
of the distributed KWlike fracker based on 2-3 bits is almost
indistinguishable from that of the dalrvoyant KF

Keywords: wireless sensor networks, disiniboted state estimalion,

Kalman fillering, quantized observaiions, Hiled-rate commuwication.

L INTRODUCTION

Consider an ad-hoc wireless sensor network (WSN) deploved
to track a Markov stochastic process. Hach sensor node acquires
obscrvations which are noisy Hnear transformation of a cormron
state. The sensors then transmit observations to each other in
order to fomm a state estumate. IF observations were available
at a common locafion, mininmm mean-square error (MMSE)
estimates could be obtained using a Kalman filter (KF). However,
since observations are distributed in space and there is limited
commmmication bandwidth, the observations have o be quantized
before transmission. Thus, the original estimation problem is
transformed into distiibuted state eshimation based on guantized
observations.

Cuantizing observations to cstimate a paramcter of interest, is
nof the same as quantizing a signal for later reconstruction {3].
Instead of a reconstruction algorithmn, the objective 1s fnding,
e.g., MMSE optimal, estimators using guantized observations {7].
Furthermore, optimal quantizers for reconstruction are, generally,
different from optimal quantizers for estimation

State estimation using quantized obscrvations is a non-lincar
estimation problem that can be solved using eg., unscented
(INKFs [4] or particle filters [2]. 1t was shown in [8] that if
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quantized observations are generated as the sign of the innovation
(8o sequence, a filter with complexity and performance very
close fo the clairvoyant KF based on the analog-amplitude ob-
servations can be derived. Even though promising, the approach
of [8] is limited to a particular 1-hit per observation quantizer.

This paper builds on and considerably broadens the scope
of 18] bv addressing the middle ground between estimnafors
hased on severely quantized (1-bity data and those based on o
quantized data. The end result is a quantizer-estimator that offers
desirable trade-offs between bandwidth requirements (dictating
the mmmber of guantization bits wsed for inter-sensor communi-
cations} and overall tracking performance (asscssed by the mean-
square state estitnation error).

. MODELS AND PROBLEM STATEMENT

Consider an ad-hoc WEN whose K sensor nodes {8;3}1*
estimate a multivariate real-valued random process x.(t) ¢ K7,
where ¢ denoles continuous-tine. The state cquation 1s given as
(1
where A {t) & BF"? denotes the state transition matrix and u, (2)
15 assumed zero-mean whii'ﬂ Gauccsiaﬂ process with covariance
mabrix B{u. (t)u; (7} = Y. E— 7).

The k-th sensor &, r\,wrdb dei ar observations

)+
)4

R.(8) = A% () + w(t)

yer(t)=h (2)
where he z{£) € R? denotes the regression vector, and v, 1 {({)
i a temporally and spatially white zero-mean Gaussian noise
process with covariance E{v, 108 v, (03} = o, (00008 — ).
It is fiwther assumed that .02} is independent of both v, 1 {2)
and . {¢y ) where ¢, 15 an arbitrary initial reference time.

The discrete-time countcrpaﬁ' of (1} is obtained using the def

initions €y, 41} = exp { CAC( }aﬁ} () = x.(nT}), and
uln) = f, [ris

0T P (T,
period. From (5. S;,(‘il(}ﬂ 4

iy (dy where T, is the sampling
9]

the discrete-time state is

~

3

x{(n)y=ARnyxin— 11+ 3

3)

where u{n} is zero-mean white Gaussian with covariance ma-
trix C,(n) f,wf 7, ®(nT,, N)C, {T}@I(n L, TidT, and

Aln) = ®(nl, ;’T The discrete-time counterpart of
The qu\,n'smon eaﬁh!?}ﬂi] (" is obtained as

uir)

yr{n} = by (m) X)) 4 vp(r) {4
where yn(n) = y.,{n7T,) i5 obtained by miform sampling

of (2} followed by Jow- or band-pass filtering with bandwidth T3,
leading to zero-mean white Gaussian discrete-time noise vp{n)
with varlance cq,s"n‘i— co, inY/ T |6, Section 4.9].

Supposing that A{n), C.{n), hu(n) and o.{n) are available

¥ n,k, the goal of thu WSN is for cach scnsor & fo form



an estimate of x(n). Estimating x(n) necessitates each sensor
Sy to commumnicate yi({n) to all other sensors {Sg}fil,#k.
Commumnication takes place over the shared wireless channel
that we assume can afford transmission of a single packet of m
bits per time slot n. This leads to a one-to-one correspondence
between time » and sensor index & and allows us to drop the
sensor argument k in (4).

A. MMSE estimation with quantized observations

Let the quantization at time index r be defined as b(n) :=
qnly(n)), then given current and past messages by, =
{6(13,5(2), ... ,b(n)} we are interested in estimates X(n|b1..)
of the state x(n) using the information in by,,. The mean-square
error (MSE) of the estimator is obtained as the trace of the
error covariance matrix (ECM) Min|by.,,) == E{[&(r|b1..) —
x(n)][&(n|b1.,) — x(n)]T}, ie, tr{M(n|by.,)}. The MMSE
estimator is the conditional mean, see ¢.g., [6, Chapter 5],

(1) = B{x(n) b b= () plx(lb o] dx(a). - 9
To obtain a closed-form expression for X(n|bi..), the posterior
distribution p[x(n)|b1.«] has to be known and the integral in (5)
needs to be computed. In principle, p[x(n)|by.,] can be obtained
recursively using Bayes’ rule as follows:

Pr{b(n)‘x(n)a bl:n—l}
Pr{b{n)[b1n—1}

where Pr{b(n)|x(n), b1.n—1} and Pr{b(n)|b1..—1} depend on
the quantization rule g.[y(n)]. If p[x(n — 1)|b1n—1] is knowmn,
the prior pdf p[x(n)|bi.,—1] can be obtained as

[X(n)‘blzn] = [X(n)‘blznfll (6)

p[x(n)‘blzn—l] (7)

:[lgap[x(nﬂx(nf 1), brwalpx{n—1) b1 ]dx(rn—1)

where due to Gaussian and Markov properties of the random
process x(n) in (3), p[x(n)|x(n—1), br.ou|=pxn)|x(n-1) =
Nx(n); Ar)x(n—1), Cun)].

If b(r) = y(n), ie., un-quantized observations are used, both
conditional pdfs in (7) and (6) are Gaussian and it suffices to
propagate their means and covariance matrices only. This leads
to the following Kalman filter recursions [6, Chapter 5.3]:

[P1] KF prediction step. Given the previous estimate
}A((T?J — 1|y1:n71) and its ECM M(ﬂ — 1|y1:n71),
the predicted estimate X(n|yi1m—1) =
E{x{(n)|y1n— 1} and its ECM (n|y1 e a1,)

= E {
are obtained as

IR

(nly1n—1) = x(n)][X(n|y1n—1) — x(n

&(n‘yli%—l):A(n)&(n_ 1|y1:n—1)
M(n|y1:n1)=A(R)M(n—1]y1:n1) AT (n)+

&
Ciun). (9
[C1] KF correction step. Consider the predicted data

E{y(n)|y1:n—1} = yﬁ(n‘ylzn—l) — hT(n)j\((n‘ylzn—l) and
their immovation §(n|y1.,—1) = y(») — §(n|y1.n—1) Then
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X(n|y1.) in (5) and its ECM M({n|y,.,.) are given as

x(nyn) = X(n|yra-1)+
M(n|y1n—1)h(r)
hT(n)M(n]y1.a—1)h(n) + c,(n)
M(n|yi:n) = M{n|y1mn—1)—
M(n|y 1.5 1)h(n)h? (m)M(nly 1. 1)
hT (n)M{n|y 1,1 )h(n) + c.(n}

Computations for the KF iteration in [P1]-[C1] require a few
algebraic operations per time-step n whereas (6) - (7) require: (i)
multi-dimensional numerical integration to obtain the predicted
pdf p[x(n)|b1.,_1] in (7) and to evaluate the expectation in (5);
and (i) numerical update of the posterior pdf p[x{n)|b1.x]
in (6). This high computational cost is inherent to non-linear
models (non-linearity in this paper is due to quantization of the
observations) and motivates lower complexity approximations.

By using a Gaussian approximation for the prior pdf
plx(n)|b1,—1], see eg., [5], tracking of the potentially in-
tractable pdf p[x(rn)|bi.,—1] simplifies to keeping track of its
mean and covariance matrix. This leads to iterations similar to
[P1]-[C1] as detailed in the next section.

y(nfyrn—1) (10)

(11)

ITI. DISTRIBUTED ITERATIVELY QUANTIZED KALMAN FILTER

To design the iteratively quantized Kalman filter (IQKF), let
sensors rely on m-bit binary messages b(rn) := bll™)(n) =
B (n), ..., 8™ (n)], with the i-th bit ) () defined as the sign
of innovations [¢f. (13)] conditioned on the previous messages

biino1 = [b(1),...,b(n — 1)] and previous bits b{(:*1)(n) .=
B (n),..., 8 (n)] of the current (n-th) message. Specifi-
cally, let

y (ﬂ\bpn 1) —y(”|b1n 1) E{y(ﬂ)|b1:nf1}
% (n[by, ) :=E {y(n)|bm_1,b(11i3(n)} Cfori>1 (12)

stand for MMSE estimates of y{n) using past messages by,
and the first ¢ bits of the current message denoted as b{%¥) (n).
The i-th bit of the current message, b')(n), is defined as

(n‘blrn—l)]'
(13)

b (n) :=signly(n) = §¥ V(n|br1)] = signfp'™
Our goal is to iteratively compute the estimates
E{x(m)[br1,b3m)} (1)
based on %"V (n|bi,_1) and b)(n). When using m bits,

b1 (n), we will refer to the resulting algorithm as m-IQKF.
A p0551ble option for defining the quantizer would be to

j\((i)(:'ﬂbl:'.ﬂ,—l) =

set #(n|by,_1) equal to hT(n)%!9(n|by,_1). However,
@ (n|bra_1) # hT ()& (n[by ) if i > 1 as explained
next Using the observatlons (), the definitions of #*) (n|by,,_1)

in (12), and %) (n|by.,_,) in (14}, we obtain
§9(b101) = E {BT(n)x(n) + o(n)|b.at, BU(m) |
=h7 ()&% (n|b1ma) + E{v(r)|bray, bR} (15)
The noise estimate E{u(n)|bi.,._1, b¥¥(n)} is not necessarily
ZET0 - See also (22). Therefore, in order to obtain §(%)(n )bl s, )
we need X% (n|brn_1) as well as E {o(n)|bra_1, b1 (n)}

which is achieved by augmenting the state vector x(n) with the
noise term v(n) as deseribed in the next section.



A. State augmentation

Through state augmentation the estimates
E {v n)|b, ﬂ 1,b L:4) } can be obtained so that the predicted
observation ¢ (n\bl n—1) i (15) can be evaluated. Specifically,
et %(n) = & (n)o(m)7, d(n) = M@)o,
h(n) = [h"(n),1]7, and A(n) defined with A(r) as the
leading p x p submatrix and with zeros in all other entries; then
model in (3)-(4) can be rewritten as

%(n) = A(n)x(n 1)+ i(n) (16)
#n) = hY(n)x(n) +8(n) (7

where the new observation noise @#(n) = 0, Vn (by construe-
tion). Note that the covariance matrix of the augmented driving
noise is a block-diagonal matrix Cy(n) € RFFIXPHD with
[Ca{m)] 15,10 = Culn) and [Cu(n)]p41,0+1 = culn).

The augmented state formulation (16)-(17) increases the di-
mension of the state vector but is otherwise equivalent to (3)-(4).
However, it has the appealing property that MMSE estimates
of the augmented state X(r) contain MMSE estimates of the
original state x{n) and of the observation noise v(n) which
allows computation of 59 (n|bp_1) in (12) as follows. Since
¥(n) = hT(n)k(n) = hT( x(n) + vin) = ygn it follows

that (”\bln 1) = §9(nlbun_1) = BT (m)xC (”\bln 1)
where ) (n|by, 1) = E{x(n |lolﬂ 1, btk (n)} and
O(n|byn_1) = E{#(n)[brn_1, b (n)}. Using the aug-

mented state model, we obtain the MM SE estimates in (14) using
the algorithm detailed in Proposition 1.

Proposition 1 Consider  the  augmented  state  space
model in  (16)-(17).  Define the augmented stale
estimates )O((n\bl;n_l) = E{x(n )|b1n_1} and
}A((i 1 (n“:qn 1) = E{X |b1ﬂ ey b(1 1) } Let

M) = B((nfbs) 5} 5(oby B e

and M?' 1 (n\blﬂ 1) v E{[X?' 1) (n\blﬂ -
%(n)][% U (nlbya_:) — %(n)|T} denote the corvesponding
ECMs for i = 1,...,m. Construct the messages b(1™(n)

in (13) 0y bi( n) = sign{ (r) — BT ()6~ (nfby,, 1)] :

The estimate % (n\bl in—1) is obtained from the recursion:

[P2] Given the previous estimate X(?’L —1|by_1) and its ECM
M(n 1|biin—1), form
%(n\bm D=A(n)X (n=1[b1n1) (18)
M(n b s = (2) V(1 b1 )AZ() + Ci(m19)
[C2] Assummg that p[x(n)|b1:ﬂ_ 1L b ()] =
N[X( ) (= 1(?’L|b1n 1),M(i_1 (n|b1m,1)], the MMSE
estimate %% (n|bi,_1) = E{X( Vb1 1,b(11i)(n)}
and the corresponding ECM M) (n|b1.,) are obtained
iteratively from

%@ (n|byn_ 1) —xeH

\/7\/11? (-1 (| brn_1 )hi{n)

M (n‘bln 1) M(% 1(n|b1:ﬂ.71) =
2 M D(n/brn-1)h(r)hT ()M D(n|brn 1)
™ h7{(n)MCE-D{n|b1., 1)h(n)

{n|brp-1)+

~U(n|b1n_1)h(n)

b0(n) (20)

@1}
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where we used Ihe definitions )%(D)(n|b1m,1) =
x(n|b1n—1) and MO (n|b1 m—1) = Min|bi,_1)
For time index n, (20) and (21) are repeated m-times.

The MMSE estimate of %(n) given by, is %(n|bi,) =
E{x(n)bra} = E{x(n)|bin-1, b (n)} =
xu(m)(n|b1m,1). The corvesponding ECM is I\U/I(n\bl;n) =
M {(n|bipn_t1).

The state estimates %! (n\blﬂ 1) in (14) are the first p com-
ponents of the augmented state estimate %! (ﬂ\b1n 1), e,
£ (nby, 1) = [x M(n/b1m 1)1, and the noise estimate is

the (p 4 1)-st component.

Corollary 1 For i =1, E {v(n)|b1n_1, b9 (n)} £ 0.
Proof: The (p+1)-st entry ofx (n|bi,_1) in (20) is the

noise estimate It {v n)|b1ipn— 1,b } Thus, for : =1

E{v(n)[b1in, b(n)}
n\bln DB(n]pi
= E{v(n)[brma} + b{r)
\/7\/11T O) (b1 V()
2 e (n)
\/7\/hT M 1)h(n)Jr(;ﬁ(n)b(”) =k 03

The last equality follows since E {v(n)|b1.n—1} =E{v(n)} =0
and {M J(nfbyp1)ia(n )} | = eln). m
P

The similarity of the m-IQKF in Proposition 1 and the clair-
voyant KF based on un-quantized observations {cf. [P1]-[C1])
is quite remarkable. The ECM updates in (21) are identical to
the ECM updates of the KF in {11) except for the scale factor
2/w. The variance penalties associated with the m-IQKF are
investigated in the following corollaries.

Corollary 2 Consider the m-IQKF algorithm in Proposition 1
and define the ECM vreduction after ¢ = 1,...,m itera-
tions as Al\u/lz(n) = l\u/l(o)(n|b1;n,1) — I\U/I(i)(n\bl;nfl), where
MO (n|bip_1) :=M(n|bim_1). With c; == 1 — (1 — 2), the

error covariance reduction afier i iterations is given as

O)(n‘blin 1) (n ) ( ) (”|b1:n—1)‘

AM(n) = ET( )M (nlby 1)h( )

(23)

Prooft We first write Al\u/Iﬁ(n) as a summation of differences
between successive ECM matrices
AMZ(?’L) = MO

K

== Z [M(jil)(n|bl:ﬂfl) - M(j)(”‘blznfl)]
i—1

(”‘blzﬂfl) - M(ﬁ)(”‘blnfl)

)
2 5~ MY (nfbrna)h(n)h

" BT ()M

i=1

T(n)MU~Y(nfbn)
MU~ 1) (nfby .1 )h(n)

24

where the last equality follows from (21). Next, we multiply



M (n[by,,_:) from (21) by h(n) to obtain

N (o, —1 () = M D{nfby.,5)h(n) —

2 M (nfbin1)h(r) BT (R)ME Y (n[by.1)h(n) 25)
T BT (R) M1 (n[by., )h(n)
= (1 — %) M(iil)(n|b1;ﬂ71)fl(n) . (26)

Repealing  steps  (25)-(26) for MG~ 1(n|b1ﬂ h(n)
with decreasing index i yields M%) (nlby,_yh(n) =
(1-2)" MO {(nfb;,,_)h(n) which when substituted in (24)
with ¢ = § — 1, results in

AM;(n) =
EAN (12>H MO oy BT ()M (nfbr o)
= h7 ()M (n[b1.n-1)h{n)
Upon mvokmg the geometric sum identity
250 (1-2)7 =1 (1 24, (23) follows. m

From the KF’s ECM in (11), it follows readily that the ECM re-
duction for un-quantized observations M(n|by,,—1 ) —M(n|b;.,)
corresponds with ¢, = 1 in (23). Therefore, the ECM reduction
achieved by quantizing to 2 bits is ¢, times smaller than the one
achieved with analog-amplitude observations. Values of ¢,,, are
shown in Table I. With only 4 bits of quantization, the value of
o, 18 Just 2% less than the value for the clairvoyant KF (e, = 1).

From Corollary 2 we can relate the predicted MSE
tr{M(n|by,,_1)} and the corrected MSE tr{M(n|b,,)} af
ter observing the m-bits of n-th observation, ¥ (n), ie.,
M(nby,) = Mn|bi,_1) — AM,.(n). Substituting for
AM,,(n) we obtain

M(n|bi ) = M(z2|bipi)—
M(n|b1:n71)ﬁ(n)flT(n)M(n|bl:ﬂf1) (zn
" hT (n)M(n|bi.,_1)h(r)

Equation (27) is instructive for understanding the MSE perfor-
mance of m-IQKF since for ¢,,, = 1, (27) coincides with the cor-
rection ECM of the KF in (11). Furthermore, lim,,, .o ¢, — 1,
implying that for infinite number of quantization bits we recover
the clairvoyant KF. This important consistency result is summa-
rized in the following corollary.

Corollary 3 Ads the number of quantization bits m — oo, the
correction step ECM at time n of the m-IQKF converges fo the
ECM of the clairvoyant KF given that 1., 1 = Y1m_1, L€,

lim M™ (n[brn—1) = Minlyyn). (28)
Proof Since limy, oo € = limpy, oo [1 — (1 — %)m] =1,

then for ¢, = 1, M) (nlby,_:) [ef 27)] and Min|y:..)
[ef. (11)] become identical, which results in (28). [ |
Corollary 3 establishes that m-IQKF asymptotically (as the
mumber of quantization bits increases) achieves the per correction
step MSE performance of the clairvoyant KF. As demonstrated by
simulations in Section I'V, even a small number of quantization
bits (ym = 2 or m = 3) renders the MSE performance of m-IQKF
indistinguishable from that of the clairvoyvant KF.

TABLE I
PER STEP FACTOR, G, AND NOISE PENALTY FACTOR FOR IQKF

bits, m 1 2 3 4
[ 0.637=2/r | 0.868 0.952 0.983
(1 Crn — 1)100% 57.08% 15.21% 5.04% 1.77%

B. Performance analysis of the m-IQKF

In the previous section, we quantified the per correction step
ECM reduction AM,,(r) in the m-IQKF as a function of the
nmumber of bits m used for iteratively quantizing the observations
y(r). We next compare MSE performance of m-IQKF with that
of the clairvoyant KF, when both prediction and correction steps
are considered, by deriving the continuous-time Algebraic Riccati
Equations (ARE) for both filters.

Consider first the discrete time ARE for the m-IQKF [P2]-
[C2]. To simplify notation let M(r + 1) = M{n + 1|bi.),
M(n):= M(n[by,—), M(n 1 1) :=M(n + L[y ), M(n) i=
M(n|by.,,—1), and substitute (27) in (19) to obtain the m-IQKF
ARE for the ECM of x(n) as

M(n+1) =A(n+ DM(R)AT(n + 1) + Cx(n+1) (29)
A(n + HMh(rn)h” () M(n) AT(n + +h
I ()M(n)h(n)
Substituting for A(n + 1), Cq(n+ 1), h(rn) and M(r) in (29),
and writing only the leading p X p sub-matrices of the resulting
expression, yields the ARE for the ECM of x(r) as

M(n+1) =A(n+ DM)AT(n + 1) + Cu(n+1) (30)
. Aln+ DM(n)h{n)h” () M(n) AT(n + 1)

" W (n)M(n)h(n) + c.(n) '

Interestingly, the resulting ARE for the ECM of the m-IQKF

[cf. {30)] becomes identical to the ARE of the clairvoyant KF

[6. Chapter 5.11] as limy, 0o ¢ = 1. The implication of these

relations follows from the contimious-time ARE for the m-IQKF
given in Proposition 2.

Proposition 2 The continuous-time ECM M., () = M.(nT) =
limy, o M(m; 1) for the m-IOKF of (18)-(21) is the solution
of the following differential (Riccati) equation:

Mc(t) :Ac(t)Mc(t) + Mc(t)Af(t) + Cu(t)

—1

“mon =) wome. o

Proof The derivation steps from (30) to (31) are the same

as those followed for denving the KF Riccati equation from the

corresponding ECMs [0, pp. 259]. The only difference is that the

scale factor, ¢,,, in (30) equals 1 in the case of the KF. [ |
From the clairvoyant KF ARE [6, pp. 259]

ME(#) =AME () + ME AT (@) + Cult)
~ ME@Oh() e, )] BT OME®)  (32)

where M (#) denotes the continuous-time ECM of KF, it is
evident that the variance of the continuous-time observation
noise of the m-IQKF is amplified by 1/¢,, compared to that
of the clairvoyant KF. This is the price paid for using quantized
observations, b(n), instead of the analog-amplitude ones, y(n).
In Table I the percentage observation noise variance increase
(1/¢s—1)100% versus number of quantization bits, m is shown.

Cm
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IV, SIMULATIONS

The two-dimensional state space model simulated is

f(t) = (xci(t)) ( 01 )(zgg) N (0)%@).

oy (2) 0 0 1

Noisy measurements at sensor Sy, are given as yi(t) = z., (¢) +
O, () +ug(t) where 85, is a parameter at sensor k. A discrete-
time equivalent model is used with sampling time T = 1.

WSN data corresponding to K =2 sensors with [#; 5] =
[0.1 0.2] are simulated. The measurement and state driving noise
variances are ¢,(t) = 1 and ¢,(¢) = 1. The MSE plots in Fig. 1
and Fig. 2 illustrate the evolution of the MSEs, obtained from
the trace of the respective ECMs, against the time index n.

In the first simulation setup, Fig. 1, the MSE of the IQKF, given
by tr{M(n|b1.,)}, is compared to the MSE of the clairvoyant
KF. The simulations for IQKF are performed for 1, 2 and 3 bits.
The plots demonstrate that there is a substantial MSE reduction
when going from 1 bit of quantization to 2 bits and little MSE
reduction for higher number of quantization bits. With 2 bits of
quantization the MSE of IQKF is virtually coincident with that
of the clairvovant KF as was postulated by the analytical values
in Table T whereby ¢y = 86.8%.

Model consistency checks comparing the empirically obtained
MSEs with analytical MSEs are shown in Fig. 2. Note that
the analytical MSE is obtained from the trace of the ECM
M(n|b1.r) == E{[x(r) — %(n|brx)][x(n) — %(n|b1n)]" [b1n}.
The empirical MSE is the sample estimator of tr{M(n|b1..)}
obtained as a sample average of the squared estimation errors.
The plots depict both predictor MSE tr{M(n|by.,—1)} and
estimator MSE tr{M(n|b;..,)}. The consistency check reveals
that the empirical and analytical MSEs are nearly identical.

Fig. 3 shows alternative model consistency tests for
the IQKF using the normalized estimation error squared
(NEES) tests of [1, Ch. 5.4]. NEES r(n) [x{n) —
(b)) [Min|b )] 7 x(n) — %(2|by,)] is postulated to
have a x2 pdf with p degrees of freedom (since the p-dimensional
x(n) := x(n)—x(n|bi.,) is assumed zero-mean Gaussian with
covariance M(n|by,,) if the estimator is consistent with the
model). Under the hypothesis that the estimator is consistent, L
realizations of the NEES statistics {r;(n)}L_ | each x2 distributed
with p degrees of freedom, lead to a w2 distribution with Lp
degrees of freedom. This is checked by running Monte Carlo
simulations and computing the sample average NEES #(n) :=
%Ele r;(n) and then defining an acceptance (confidence)
region (for the consistent hypothesis). If { < #(n) < w, then
the estimator is consistent; lower and upper bounds { and « are
obtained from Pr{f, € [, u]} = 1 — o, where 1 — o is the
probability of acceptance region. Using L = 50 realizations, 200
time samples, a state space of p = 2 dimensions, and o = 0.05
(ie., 95% region), we observed that indeed only 7% of the 100
time samples lie outside the 95% acceptance region.

V. CONCLUDING REMARKS

Recursive state estimation based on quantized observations was
considersd. Multi-bit quantization was done using iterative binary
quantizing of the measurement innovations. Joint quantization
and estimation was used to develop a Kalman-like algorithm.

Motivated by the need to find quantifiable trade-offs between
estimation performance and number of quantization bits for
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distributed estimation, it was shown that quantization using 2
to 3 bits improves the performance of the Kalman-like algonthm
to virtually coincide with the optimal state estimator (Kalman
filter), with only minimal increase in computation. This result
was corroborated by simulation results. It was further shown
through simulations that true filter covariances are consistent with

analytical ones !
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