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Abstract- Estimation and tracking of generally nonstationary
Markov processes is of paramount importance for applications such
as localization and navigation. In this context, ad hoc wireless sensor
networks (WSNs) offer distributed Kalman filtering (KF) based
algorithms with documented merits over centralized alternatives.
Adhering to the limited power and bandwidth resources WSNs must
operate with, this paper introduces a novel distributed KEF estimator
based on quantized measurement innovations. The quantized obser-
vations and the distributed nature of the iteratively quantized KF
algorithm are amenable to the resource constraints of the ad hoc
WSNs. Analysis and simulations show that KF-like tracking based
on m bits of iteratively quantized innovations communicated among
sensors exhibits MSE performance identical to a KF based on
analog-amplitude observations applied to an observation model with
noise variance increased by a factor of [1-( - 2/7)-]-l. With
minimal communication overhead, the mean-square error (MSE)
of the distributed KF-like tracker based on 2-3 bits is almost
indistinguishable from that of the clairvoyant KF.

Keywords: wireless sensor networks, distributed state estimation,
Kalman filtering, quantized observations, limited-rate communication

I. INTRODUCTION

Consider an ad-hoc wireless sensor network (WSN) deployed
to track a Markov stochastic process. Each sensor node acquires
observations which are noisy linear transformation of a common
state. The sensors then transmit observations to each other in
order to form a state estimate. If observations were available
at a common location, minimum mean-square error (MMSE)
estimates could be obtained using a Kalman filter (KF). However,
since observations are distributed in space and there is limited
communication bandwidth, the observations have to be quantized
before transmission. Thus? the original estimation problem is
transformed into distributed state estimation based on quantized
observations.

Quantizing observations to estimate a parameter of interest, is
not the same as quantizing a signal for later reconstruction [3].
Instead of a reconstruction algorithm, the objective is finding,
e.g., MMSE optimal, estimators using quantized observations [7].
Furthermore, optimal quantizers for reconstruction are, generally,
different from optimal quantizers for estimation.

State estimation using quantized observations is a non-linear
estimation problem that can be solved using e.g unscented
(U)KFs [4] or particle filters [2]. It was shown in [8] that if
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quantized observations are generated as the sign of the innovation
(Sol) sequence, a filter with complexity and performance very
close to the clairvoyant KF based on the analog-amplitude ob-
servations can be derived. Even though promising, the approach
of [8] is limited to a particular 1-bit per observation quantizer.

This paper builds on and considerably broadens the scope
of [8] by addressing the middle ground between estimators
based on severely quantized (1-bit) data and those based on un-
quantized data. The end result is a quantizer-estimator that offers
desirable trade-offs between bandwidth requirements (dictating
the number of quantization bits used for inter-sensor communi-
cations) and overall tracking performance (assessed by the mean-
square state estimation error).

II. MODELS AND PROBLEM STATEMENT

Consider an ad-hoc WSN whose K sensor nodes {Sk k=1
estimate a multivariate real-valued random process x,(t) C RP,
wherec denotes continuous-time. The state equation is given as

XC (t) = Ac (t)xc (t) + uc (t' (1)
where AC(t) e RP P denotes the state transition matrix and u,(t)
is assumed zero-mean white Gaussian process with covariance
matrix E{uc(t) UT(T)} = C, (t)6c(t-T).

The k-th sensor Sk records scalar observations

Yc.k(t) = hTC k (t)Xc (t) + Vc,k (t) (2)
where hl,k(t) C RP denotes the regression vector, and Vt,k(t)
is a temporally and spatially white zero-mean Gaussian noise
process with covariance EF{V k (t) V,(T)} = Ct (t)h (t -T)hkl
It is further assumed that u,(t) is independent of both V,,k(t)
and x,(to) where to is an arbitrary initial reference time.

The discrete-time counterpart of (1) is obtained using the def-
initions 4(t2,tl) := exp [iti Ac(t)dtj, x(n) := xc(nTI), and

u(n) [T @(nT,LT)Uc(T)dT where T, is the sampling
period. From [6, Section 4.9] the discrete-time state is

x (t) =A (t) x(n- 1) + u(n) (3)
where u(n) is zero-mean white Gaussian with covariance ma-
trix C0(n) = r,Ts (nl', T)CU (T) ( T r,t T)dT; and
A(n) :P=(nTs n -l)Ts). The discrete-time counterpart of
the observation equation (2) is obtained as

Yk() =h (n) x(rrn) + (t ) (4)
where Yk(n) := YC,k(ftIT) is obtained by uniform sampling
of (2) followed by low- or band-pass filtering with bandwidth TI
leading to zero-mean white Gaussian discrete-time noise vk (n)
with variance c, (ti) cc (niV /) [6, Section 4.9].

Supposing that A(na C((n hk(n and c0(n) ate available
V n,k, the goal of the WSN is for each sensor Sk to form
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an estimate of x(n). Estimating x(n) necessitates each sensor
Sk to communicate yk(n) to all other sensors {S}' k
Communication takes place over the shared wireless channel
that we assume can afford transmission of a single packet of m
bits per time slot n. This leads to a one-to-one correspondence
between time n and sensor index k and allows us to drop the
sensor argument k in (4).

A. AMMVSE estimation with quantized observations

Let the quantization at time index n be defined as b(n)
qn[y(n)], then given current and past messages b1ln
{b()Ib(2),.... b(n)} we are interested in estimates x(n1b:n)
of the state x(n) using the information in bl :. The mean-square
error (MSE) of the estimator is obtained as the trace of the
error covariance matrix (ECM) M(nlb1 n) :LEx[x(n b1 n)-
x(n)][x(n bn) -x(n)]T}, i.e., tr{M(njbj:n)j. The MMSE
estimator is the conditional mean, see e.g., [6, Chapter 5],

x(nIbi1Un) B x(n)lbi1 :=J x(n)p[x(n)jbj n]dx(n) (5)
P

To obtain a closed-form expression for x(nb1 n), the posterior
distribution p[x(n) lb,:,] has to be known and the integral in (5)
needs to be computed. In principle, p[x(n)Ib n can be obtained
recursively using Bayes' rule as follows:

p[x(n) JbI -- p[x(n) bl Pr{fb(n)x(n), bi } (6)Pr{b(n) bj:n-}

where Pr{b(n) lx(n), bj n1} and Pr{b(n) lbi ni} depend on
the quantization rule qn[y(n)]. If p[x(n -) bi rn1 is known,
the prior pdf p[x(n) Ibj:n-11 can be obtained as

p[x(n)lbj n-1] (7)

= [x(n) x(n-1), bl rI]p[x(rT-1) lbl: ]dx(n-1)
where due to Gaussian and Markov properties of the random
process x(n) in (3), p[x(n) x(n-1), b1l] =p[x(n) x(n-1)]
AS[x(Ti); A(n)x(n-1), C,, (n)]

If b(n) = y(n), i.e., un-quantized observations are used, both
conditional pdfs in (7) and (6) are Gaussian and it suffices to
propagate their means and covariance matrices only. This leads
to the following Kalman filter recursions [6., Chapter 5.3]:

[PI] KF prediction step. Given the previous estimate
x(n - lyil_-) and its ECM M(n - lyl:.-1),
the predicted estimate x:(nlyl:.-I)
E{fxn2lyl }_l and its ECM M(nlyl:i,-I)

E fx(nyl n-1) -x(rT)] x(ny ) x(n)]T}
are obtained as

x(njyjYi ) A(n)x(n- I Y ':-1) (8)
M(nr jyji ) A(n)M(n-1 yj:,)AT(Tn)+ C (n). (9)

IClI KF correction step. Consider the predicted data
E{y(n)YUn-1} -y TIYI:n-yl -) h nT)x(nYl )-1) and
their innovation p(nlyl:,) y(n) -y(njyl :nl). Then

x(nlyl ) in (5) and its ECM M(nll:n) are given as

:k(njYl:n2) = XtnjYl:n-l)+
x(nyin)~ ~ ~y(lyXflYI IM(nlYl:nI)h(n) fnYln1(

M(nlyl n) = M(nlyl:n_l)-
M(nlylni )h(Tn)hT (T1)M(TIYI:n-1 )
hT(n)M(nlYl:n)h(n) + vjn)

10)

1 )

Computations for the KF iteration in [P1] [C1] require a few
algebraic operations per time-step n whereas (6) - (7) require: (i)
multi-dimensional numerical integration to obtain the predicted
pdf p[x(n) lb, r,- in (7) and to evaluate the expectation in (5),
and (ii) numerical update of the posterior pdf p[x(n)lbl:n]
in (6). This high computational cost is inherent to non-linear
models (non-linearity in this paper is due to quantization of the
observations) and motivates lower complexity approximations.
By using a Gaussian approximation for the prior pdf

p[x(n)lb:n1, see e.g., [5], tracking of the potentially in-
tractable pdf p[x(n )lbj n-1 simplifies to keeping track of its
mean and covariance matrix. This leads to iterations similar to
[P1]-[C] as detailed in the next section.

III. DISTR BUTED ITERATIVELY QUANTIZED KALMAN FILTER

To design the iteratively quantized Kalman filter (IQKF), let
sensors rely on rn-bit binary messages b(n) b(l )(n):m
[b() (r), . . b(n) (T1)], with the i-th bit b0) (Ti) defined as the sign
of innovations [cf. (13)] conditioned on the previous messages
bln := [b(1), b(n -1] and previous bits b")(n)
[6) (r), b-)n of the current (n-th) message. Specifi-
cally, let

y(° (nbl ) y(rlbl ) L{=Ey(rT) lbln-1 }

I(') (nb1:n- ) :=E {y(n) lbl:n-l, b(': ) (n)} , for 1 (12)

stand for MMSE estimates of y(n) using past messages bl:n-I
and the first i bits of the current message denoted as b(1i) (n).
The i-th bit of the current message, b) (n), is defined as

b()(n):=sign[y(n)- (nlbl:,-,)] := sign[y( -1 (nbl: i-)].
(13)

Our goal is to iteratively compute the estimates

x(i) (Tbnb -) : E {x(r) Irb : b( (TI) (14)

based on x( -1)(nlb1j:_j) and b) (n). When using rn bits,
b(1 m) (n), we will refer to the resulting algorithm as m-IQKF.
A possible option for defining the quantizer would be to

set yt/(n bj 1-l equal to hTn xc()(njbj r ). However,
y( ( :n-b1) hT(n)x (n bl:n-1) if i as explained
next. Using the observations (4), the definitions of p(') (n b ln-1)
in (12), and x()(n bj :n-1 in (14), we obtain

y (nIb _) =E {hT(n)x(n) +v(n) b1:n-1, b (n)}
T ^(i)(lih_rb)x,nbA,1) L{v(r)b:,b1 b (n)}. (15)

The noise estimate Ev(n) lb, b *(n)is not necessarily
zero - see also (22). Therefore, in order to obtain y' (ri b1 )
we need x ()nlh jn 1) as well as E{v(n)b I 1n,b ')(n)}
which is achieved by augmenting the state vector x(n) with the
noise term v(n) as described in the next section.
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A. State augmentation
Through state augmentation the estimates

E Lv(n)I b1 n 1, b(()(n)} can be obtained so that the predicted
observation y(n)(abj r_) in (15) can be evaluated. Specifically,
let x~r(n) xT(n), v(n)T, Uf(T) : [UT(rT), v(n)]T,
hl r) [hT(n), and A(n) defined with A(n) as the
leading p x p submatrix and with zeros in all other entries; then
model in (3)-(4) can be rewritten as

x(n) = r(n) x(T -1) + u(aT) (16)

y(n) = hT(n) a(n) + v(n) (17)
where the new observation noise v(nT) = 0, Vr (by construc-
tion). Note that the covariance matrix of the augmented driving
noise is a block-diagonal matrix Cu(n) c R(P+k)x(P+l) with
[C11 (Ta)] jp,jp = C, (n) and [C1, (Ta)]p+ ,p+1 =c1 (Ta).
The augmented state formu:lation (lL6)-(17) increases the di-

mension of the state vector but is otherwise equivalent to (3)-(4).
However, it has the appealing property that MMSE estimates
of the augmented state x(n) contain MMSE estimates of the
original state x(n) and of the observation noise v(n) which
allows computation of y()(nabj r _) in (12) as follows. Since
y(n) = T(n)x(n) hT(n)x(n) + v(T) = y(n), it follows
that y bj)(b ) y(T(rbj _) = hT (T)x( (njbj:_ )
where x(')(njbj:r_ ) LE{x(n)jbj rn1 b(1 i)(T)} and
yp()(nlb1l_n1) = ELy(n)jbj:n_1,b(1)(Ti)}. Using the aug-
mented state model, we obtain the MMSE estimates in (114) using
the algorithm detailLed in Proposition 1.

Proposition 1 Consider the aiugmented state space
nodel in (16)-(17). Define the augmented state
estimnates x(nabl rn1) LE{xr()Ibl rI} and
x(&- )(nlbl n-1) {Ex(n) Ib1 bn-1, 1b () Let
iMVi(nlbl:n_l)r := L{x(njb1ji -x(n)a [x(ab1_jj-(r)x-rij1'}
and M (nabl n-1) E{[x( -')(nabj n-1) -

x(n)] x(i-1)(nrbj n ) -x(n)]T denote the corresponding
ECAMs for i = I,... m. Construct the messages b(h1 )
in (13) as b( )(n) sign [y(n) hT(n)x(-l )(nIb 1:n

The estimate x(')(Tibj:n-1) is obtalinedfrom the recursion?:

1P21 Given the previouis estimate x(n 1-bn1) and its EC.M
M(n- Ibi n1),form

x(nlbl: ,)=A(n)x(n-r Ibl: i-) (18)

M(njbjnh )=A(n)M(ri- I1 in-)AT(n)+Cj(n) 1L9)
[C2] Assuming that p[x(n)Ibnb , b I(n)

Af[x(n); x(-1) (nlbl n1), M('-1) (ritbi n-0)1 the MMSE
estimate x( )(nlb1 n1) Ef{x(n)jb1 rn ,b(1 i)(n)}
and the corresponding ECM M( )(nab1 n) are obtained
iteratively from

x(r)(nlb n-1) xt -1)(nlbln-1) +
2 M(-')(r lblnI)h(a) b(a)
YT hT(rT) (i-1) (allbj,_l)h(n)

(20)

M( J (nlb -XAv/l:n-1) --= M(vs /n b:,t-,) -

2 M('-l)(a bj h(a hT a)M(i-1)t Ib )
7T hT(n)Mil (n 1b1 ,)h(n)

where we used the definitions x(°) (n bl 1)
x(njbj r1) and M1()(njbj n-1) M(nlbln-1)
For time index na (20) and (21) are repeated rn-times.

The MMSE estimate of x(n) given bl n iS X(nlbl r,)
E{x(n) Ibl I Efx(rn)bj n-I, b(1iT)(n)}
x(T)(njbj:n-1)- The corresponding ECM is MI(n bl n)
M(M)(njbjn1)i
The state estimates xk()(njbj n-1) in (14) are the first p com-
ponents of the augmented state estimate x()(njbj:n1), i.e..
x() (njbj:n1) = [x(i)(njbj:n1 )1 lp and the noise estimate is
the (p + I)-st component.

Corollary I For i = 1, E{v(n) lbl n-1, b(l i) (n)j} 04O.

Proof The (p+1)-st entry of x()(nrb1 ) in (20) is the
noise estimate E {v(n) bln1,, b(l i)(n)}. Thus, for i = 1

E{v(n) bj:1 ,ib(n)}

E{v(n) bl: n-l } +j/ b(n)
, h(ri)i1 0)abir1: h(n)

2 (n) _n b(n) 0 (22)
71 \//hT (ni)M(n b1 j)h(n) c n

The last equality follows since E{v(n) lb, ,I E{v(n)} = 0
and M( )(n|bj:-_)h(n) +1= c (n)
The similarity of the m-IQKF in Proposition 1 and the clair-

voyant KF based on un-quantized observations (cf. [P1]-[Cl])
is quite remarkable. The ECM updates in (21) are identical to
the ECM updates of the KF in (1) except for the scale factor
2/7. The variance penalties associated with the m-IQKF are
investigated in the following corollaries.

Corollary 2 Consider the m-IQKF algorithm in Proposition I
nd deJine the ECM redution after i = 1,.1. r.,Tn itera-

tions as AM (n) M(°) (nlbl:,-i )- MM (njbj,2_ ), where
MM (nrbln'-) =M(nbij _) With c, := 1-(I -), the
error covariance reduction after i iterations is given as

AMi(n) ci
hT (n)M(°) (nlbl ,-)h(n)

1)

(23)

Proof: We first write A\M1 (n) as a summation of differences
between successive ECM matrices

AMi(n) := MM-')(nabl n-l)-M'm (nabl n-1)
i

WM(-l lbln-1 -M ()q b 1)

2 iM-rz*-2 .....

.-
2- hT(n)M(j-l))(a bl: -)h(T()

(24)

(21) where the last equality follows from (21). Next, we multipl
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M (')(nI b1 -) from (21) by h(n) to obtain

M(i) (nabl:,-Ih(n) M 1(-l) (nabjn j)h(n)-
2 VI )(a b1 (n)hT(n)M I (a b1 )h( (25)

ThT(n)M(i-1) (nabj lh(n)

(I1 2
VI (-'1(nIb n-)h(na

71

Repeating steps (25)-(26) for M 1 (na b :n )h(n)
with decreasing index i yields M(i)(nrJbI _)h(nr)
(1_ 2) 1M(1)(na blrnlh(n) which when substituted in (24)
with j 1, results in

A\Mi (n)=
2 2( 12 ) "1M (nlr b1:n )hT(n M(1)(n bl:)
Lrj=k 7, hT(n)M() (nIb1 n-1)h(n)

Upon invoking the geometric sum identity
2 1 (1- 2) 1 (1 ), (23) follows.
From the KF's ECM in (I 1), it follows readily that the ECM re-

duction for un-quantized observations M (nb1 n_I)-M(nIbI n)
corresponds with c, = I in (23). Therefore. the ECM reduction
achieved by quantizing to m bits is c, times smaller than the one
achieved with analog-amplitude observations. Values of c, are
shown in Table I. With only 4 bits of quantization, the value of
cm is just 2% less than the value for the clairvoyant KF (cm = 1).
From Corollary 2 we can relate the predicted MSE

tr M(nabI:nI)} and the corrected MSE tr{M(nabI n)} af-
ter observing the rn-bits of n-th observation, b 1m)(n), i.e.,
M(rn bl n) (n b1 ) - AIMm(n) Substituting for
A m,(n) we obtain

M(nlbln) = M(nabln-l)-

cr hT(n)M(nlbl:n- )h(n)

Equation (27) is instructive for understanding the MSE perfor-
mance of m-IQKF since for cm 1l, (27) coincides with the cor-
rection ECM of the KF in (11). Furthermore, li a nO Cm 1,
implying that for infinite number of quantization bits we recover
the clairvoyant KF. This important consistency result is summa-
rized in the following corollary.

Corollary 3 As the nrimber of quantization bits m oo, the
correction step ECM at time n of the m-lQKF converges to the
ECM of the clairvoyant KF given that bl:y-l=- Yl:,-_ i e.,

lim M(m) nabj rn1) VIM(nayl ) (28)
moo

Proof Since lim,,, C1 m- x- [I 1 )( ml 1,
then for cr = 1, V(m)anjbj:nr1) [cf. (27)] and M(nlyl:n)
[cf. (11)] become identical, which results in (28).

Corollary 3 establishes that m-IQKF asymptotically (as the
number of quantization bits increases) achieves the per correction
step MSE performance of the clairvoyant KF. As demonstrated by
simulations in Section IV, even a small number of quantization
bits (m = 2 or m = 3) renders the MSE performance of m-IQKF
indistinguishable from that of the clairvoyant KF.

TABLE I
PER STEP FACTOR, Cm, AND NOISE PENALTY FACTOR FOR IQKF

bits,m 1 2 3 4
CM ~~0.6372/ 0.868 0952 0.983

(lcm 1)1000c 57.080o 152100 5.040o 1.770

B. Performance analysis of the m-IQKF

In the previous section, we quantified the per correction step
ECM reduction AVMr(n) in the m-IQKF as a function of the
number of bits m used for iteratively quantizing the observations
y(n). We next compare MSE performance of m-IQKF with that
of the clairvoyant KF, when both prediction and correction steps
are considered, by deriving the continuous-time Algebraic Riccati
Equations (ARE) for both filters.

Consider first the discrete time ARE for the m-IQKF [P2]-
[C2]. To simplify notation let M(n + 1) =M(n + 1b1b,)
M(a) M:(nlbl i-), M(n + 1) := M(n + I bi ), M(n) :

MV(njbj ,n), and substitute (27) in (19) to obtain the m-IQKF
AR:E for the ECM of x(n) as

M( + 1) =A(n + 1)M(n)AT(n + 1) + C0(n + 1) (29)

A(cn + 1)M(n)h(na)h" (n)M(n)A!'(n + 1)
~T (nl)M(nt)h(n)

Substituting for A(n + 1), C0(n + 1), h(n) and M(n) in (29),
and writing only the leading p x p sub-matrices of the resulting
expression, yields the ARE for the ECM of x(n) as

M(n + 1) =A(n + 1)M(n)AT(n + 1) + C1(n + 1) (30)
A(na 1)MI(n)h(n)hT(V(n)()AT(n 1)

cm hT (n)M(n)h(n) + c, (n)
Interestingly, the resulting ARE for the ECM of the m-IQKF

[cf. (30)] becomes identical to the ARE of the clairvoyarlt KF
[6, Chapter 5.11] as limmoc Cm = 1. The implication of these
relations follows from the continuous-time ARE for the m-IQKF
given in Proposition 2.

Proposition 2 The continuoas-time ECM M,(t) =Mt (ns(
Hr'T O M (n; Ts ) for the m-lQKF of (18)-(21) is the solution
of the following differential (Riccati) equation:

Mc(t) =Ac(t)Mc(t) + Mc(t)AcT(I) C(t)

(31)

Proof The derivation steps from (30) to (31) are the same
as those followed for deriving the KF Riccati equation from the
corresponding ECMs [6, pp. 259]. The only difference is that the
scale factor c in (30) equals 1 in the case of the KF U
From the clairvoyant KF ARE [6, pp. 259]

[K (t) Ac(t)MVK>(t) + MK(t)AT (t) + C(t)
-mK (t hc t) c(v)1t hfTt)VIMK(t) (32)c V CcVJJ C J c J

where MIK(t) denotes the continuous-time ECM of KF, it is
evident that the variance of the continuous-time observation
noise of the m-IKF is amplified by I/cm compared to that
of the clairvoyant KF. This is the price paid for using quantized
observations, b(n), instead of the analog-amplitude ones, y(n).
In Table I the percentage observation noi e variance increase
(1 Icm -1) OO versus number of quantization bits, m is shown.
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IV. SIMULATIONS

The two-dimensional state space model simulated is

xc( := C( 1() = ° ) (t)) + ( 0 uc(t
Noisy measurements at sensor Sk are given as yk (t) = aci (t) +
9k£c2 (t) + vk (t) where Ok is a parameter at sensor k. A discrete-

time equivalent model is used with sampling time Ts = 1.
WSN data corresponding to K= 2 sensors with [01 02=

[0.1 0.2] are simulated. The measurement and state driving noise
variances are c,(t) = I and cu(t) = 1. The MISE plots in Fig. I

and Fig. 2 illustrate the evolution of the MSEs, obtained from
the trace of the respective ECMs, against the time index n.

In the first simulation setup, Fig. 1, the MSE ofthe IQKF, given
by tr{M(nbj :)}, is compared to the MSE of the clairvoyant
KF. The simulations for IQKF are performed for 1 2 and 3 bits.
The plots demonstrate that there is a substantial MSE reduction
when going from 1 bit of quantization to 2 bits and little MSE
reduction for higher number of quantization bits. With 2 bits of
quantization the MSE of IQKF is virtually coincident with that
of the clairvoyant KF as was postulated by the analytical values
in Table I whereby C2 = 86.8%.
Model consistency checks comparing the empirically obtained

M[SEs with analytical M[SEs are shown in Fig. 2. Note that
the analytical MSE is obtained from the trace of the ECM
M(nlbl L{):= E{[x(n) -x(n1b ,) [x(n) -x rnbj )]Tlbj .

The empirical M\SE is the sample estimator of tr{M(rnbj n)
obtained as a sample average of the squared estimation errors.
The plots depict both predictor MSE tr{M(nIbj '-)} and
estimator MSE tr{M(njbj n)}. The consistency check reveals
that the empirical and analytical MSEs are nearly identical.

Fig. 3 shows alternative model consistency tests for
the IQKF using the normalized estimation error squared
(NEES) tests of [1, Ch. 5.4]. NEES r(n) := [x(n) -

x(njbjn) T [M(njbjn1)-) [x(n) -x(njb :n)] is postulated to

have ax2 pdf with p degrees of freedom (since the p-dimensional
x(n) := x(n)-x(nrbj n) is assumed zero-mean Gaussian with
covariance M(n b n) if the estimator is consistent with the
model). Under the hypothesis that the estimator is consistent, L
realizations of the NEES statistics {ri (n) IL= each x2 distributed
with p degrees of freedom? lead to a x2 distribution with Lp
degrees of freedom. This is checked by running Monte Carlo
simulations and computing the sample average NEES r(n) :=

EL ri(n) and then defining an acceptance (confidence)
region (for the consistent hypothesis). If I < r(n) < U, then
the estimator is consistent; lower and upper bounds I and u are

obtained from Pr r C [ a?u} I -a, where I -a is the
probability of acceptance region. Using L 50 realizations, 200
time samples, a state space of p 2 dimensions and a=0.

(i.e.. 95% region), we observed that indeed only 7% of the 100
time samples lie outside the 95V0 acceptance rtegion.

V. CONCLUDING REMARKS

Recursive state estimation based on quantized observations was
considered Multi bit quantization was done using iterative binary
quantizing of the measurement innovations. Joint quantization
and estimation was used to develop a Kalman-like algorithm.

Motivated by the need to find quantifiable trade offs between
estimation performance and number of quantization bits for

distributed estimation, it was shown that quantization using 2
to 3 bits improves the performance of the Kalman-like algorithm
to virtually coincide with the optimal state estimator (Kalman
filter), with only minimal increase in computation. This result
was corroborated by simulation results. It was further shown
through simulations that true filter covariances are consistent with
analytical ones
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IQKF estimator MSE tr{M\ ( lb,) from Monte Carlo data for 1-3
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Fig. 2. Conparing epirical MiSE from Mionte Carlo data and aalytical MSE,
for predictor ECM M(rjb1j: ) and estimator ECM M(nlb1ln).
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Fig. 3. Consistency test using normalized estimation error squared (NEES),
r(n), compared with the 95% probability region using 2 bits of quantization.
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