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ABSTRACT

We introduce distributed algorithms to find rate-optimal routes based on
local knowledge of the pairwise error probability (reliability) matrix. The
distributed algorithms are built by (re)-formulating optimization prob-
lems amenable to application of dual decomposition techniques. Con-
vergence of our algorithms to the optimal routing matrix is guaranteed
under mild conditions. Many rate-optimality criteria of practical inter-
est can be casted in our framework including maximization of: i)worst
user’s rate; ii) weighted sum of rates; iii) product of rates; and iv) relay
network rate. We test robustness of our algorithms to node mobility.

Keywords: Communication systems routing, Wireless networks, Opti-
mization methods, Linear programming, Distributed computing.

1. INTRODUCTION

Capitalizing on the potential energy savings of multihop wireless net-
works requires solving the challenging problem of finding multihop routes
according to properly defined optimality criteria. Existing routing pro-
tocols/algorithms are built on our accumulated knowledge of routing in
wired networks. Consequently, the usual approach is to i) define a com-
munication radius for each node; ii) draw the corresponding connectivity
graph; and iii) utilize network optimization tools to find pertinent routes.
While definitely valuable as a first approach, a graph is not an accu-
rate model of a wireless network [3]. In a recent paper we introduced
a framework to design stochastic routing algorithms/protocols using the
reliability matrix R whose (i, j)-th entry Rij represents the probability
that a packet transmitted from the j-th user Uj is correctly received by
the i-th user Ui [6]; see also Fig. 1.

While offering a more accurate model of the broadcast and unreli-
able wireless channel, the usefulness of a model based onR depends on
the algorithmic complexity of finding optimal routes. Enticingly, many
interesting optimality criteria lead to routing algorithms in the form of
convex optimization problems [6]. Even though this ensures manageable
complexity, it requires R to be available at a central location. This en-
tails: i) a large communication cost to collectR and percolate the optimal
routing matrix; ii) considerable delay to compute the optimal routes; and
iii) lack of resilience to changes in R, a problem particularly important
in mobile scenarios.

Distributed algorithms, whereby nodes iteratively interchange vari-
ables only with one-hop neighbors tackle precisely these problems. The
goal of this paper is to show that the optimal routing problems in [6] can
be solved by an iterative distributed algorithm whereby i) node Uj has
access only to link reliabilities for transmission to and from other nodes
(the j-th row and column ofR); ii) Uj interchanges messages only with
one-hop neighbors, defined as the set of terminals with non-zero proba-
bility of decoding Uj’s packets; and iii) as time progresses Uj computes
its optimal routing probabilities.

1.1. Stochastic routing in wireless multihop networks

Consider a wireless network with J + 1 user nodes {Uj}J+1
j=1 in which

the first J users {Uj}J
j=1 collaborate in routing packets to the destination

D ≡ UJ+1. The physical and medium access layers are such that if a
packet is transmitted by Uj it is correctly received by Ui with probability
Rij that we arrange in the matrix R. Packets are stochastically routed
according to probabilities Tij arranged in the matrix T. When a user
terminal Uj decides to transmit a packet it selects a random terminal
as the intended destination with Ui chosen with probability Tij . If the
transmission is successful the packet moves to Ui’s queue, if not it is kept
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Fig. 1. Connectivity graph for a network with J = 40 user terminals.
The color index represents the value of Rij .

by Uj that attempts transmission, possibly to a different node, at a later
time. To capture the evolution of packets through the network we define
a matrix K whose elements Kij represent the probability that a packet
moves from Uj’s queue to Ui’s queue. For i �= j a packet moves from
Uj to Ui if and only if it is routed towards Ui and is correctly decoded at
Ui. Since these two events are independent,

Kij = TijRij for i �= j, KT1 = 1, TT1 = 1. (1)

The last two constraints are becauseK and T are stochastic matrices.

Also, let ρ := [ρ1, . . . , ρj ]
T denote the vector of packet arrival rates

and α := [α1, . . . , αJ ]
T the rate of departures that we constraint by

0 � α � 1. Defining K0 as the J × J upper left submatrix of K it is
not difficult to see that we can relate ρ and α by [6]

ρ = (I−K0)α (2)

WithR available at the AP, we look for routes maximizing a measure of
the arrival rate vector ρ. Letting f(ρ) : RJ → R be the function used
to compare arrival rate vectors ρ, the optimal routing matrix T∗ is given
as the solution of the generic optimization problem (symbols � and �
denote componentwise inequalities between vectors):

(K∗,T∗) = argmax f [(I−K0)α]

s.t. Kij =RijTij for i �=j, KT1=1, TT1=1

0 � α � 1. (3)

Finding efficient methods to solve (3) is challenging for general f(ρ).
However, for any f(ρ) that is concave and monotonically non-decreasing
in each component1 (3) can be transformed to an equivalent convex op-
timization problem. Indeed, [6] establishes that for functions that are
monotonically non-decreasing in each component there exists an opti-
mal solution of (3) with α = 1, thus implying that (3) can be rewritten
as

(K∗,T∗) = argmax f [(I−K0)1] (4)

s.t. Kij =RijTij for i �=j, KT1=1, TT1=1.

1We say g(v) is monotonically non-decreasing in each component if for vec-
tors v1,v2 with v1j ≤ v2j and v

1
i = v2i for i �= j, g[v1] ≤ g[v2].
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Fig. 2. Optimal routes for the max-min criterion.

Concavity of f(ρ) further implies that the argument in (4) is concave,
implying that (4) is a convex optimization problem solvable in polyno-
mial time using interior point methods.

2. A SEPARABLE PROBLEM

To design distributed algorithms we introduce optimization problems that
can be implemented in a distributed fashion and whose solution coincides
with (4). For simplicity of exposition we adopt as optimality criterion the
rate of the worst user f(ρ) = minj∈[1,J] ρj leading to

(K∗,T∗) = argmax min
j∈[1,J]

[(I−K0)1]j (5)

s.t. Kij =RijTij for i �=j, KT1=1, TT1=1.

To reduce the number of variables we eliminate some constraints in (5).
To this end, define the set c(j) := {i : Rij > 0; i �= j, i ∈ [1, J + 1]}
containing the indices of terminals Ui that can decode Uj’s transmission
with non-zero probability. Likewise, define r(j) := {i : Rji > 0; i �=
j, i ∈ [1, J + 1]} as the set of nodes that Uj decodes with non-zero
probability. We can now write the rate of the j-th user as

ρj = [(I−K0)1]j = 1−Kjj−
X

i∈r(j)

Kji =
X

i∈c(j)

Kij−
X

i∈r(j)

Kji (6)

where in the second equality we used the constraint KT1 = 1. Upon
substitutingKij = RijTij , (6) becomes

ρj =
X

i∈c(j)

RijTij −
X

i∈r(j)

RjiTji. (7)

For a more compact notation define the vectors tj := Tc(j)j and t
r
j =

TT
jc(j) containing the non-zero elements of the j-th row and column of

T, respectively. We also define rj := Rc(j)j and sj := RT
jc(j) so that

ρj = rTj tj − sTj trj . (8)

Vectors rj , and sj are constant and known at node Uj . Indeed, sj :=
RT

jc(j) contains the probabilities of Uj decoding other nodes Ui �= Uj

that Uj can easily estimate. The probabilities rj := Rc(j)j of other
nodes decoding Uj’s packets are fed-back from its one-hop neighbors.

Using (8) and noting that the constraint TT1 = 1 is equivalent to
the set of constraints {tTj 1 = 1}J

j=1, we can rewrite max-min in (5) as

T∗ = argmax w

s.t. w � rTj tj − sTj trj = ρj , t
T
j 1 = 1, 0 � tj . (9)

Even though (9) is written in terms of local variables (rj), local constants
(tj , sj), and neighboring variables (t

r
j ), it is not yet in a separable form.

Indeed, note that i) the variable w is constrained to be smaller than the
rates ρj of the J terminals and in that sense its optimization requires
access to all the variables; and ii) computing ρj requires access to the
local variables tj and neighboring variables t

r
j .

We thus introduce local variables wj and uj that we regard as Uj’s
estimates of (the global variable) w and (the neighboring variable) trj ,
and introduce equality constraints uj = trj and w = wj , ∀j ∈ [1, J ].
Using these (local) variables we can write the constraint in (9) as

wj � ρj = rTj tj − sTj uj ; uj = trj , w = wj . (10)

Finally, replace w in (9) by w = (
PJ

j=1 wj)/J . If we further assume
that there is a non-zero probability for a multi-hop route connecting any
pair of nodes, the set of constraints {wj = wi ∀i ∈ c(j)}J

j=1 is equiva-
lent to requiring wi = wj , ∀ i, j ∈ [1, J ]. We thus recast (9) as

T∗ = argmax
1

J

JX
j=1

wj

s.t. wj � rTj tj − sTj uj , t
T
j 1 = 1, 0 � tj ,

trj = uj , wj = wi ∀i ∈ c(j) (11)

where the maximization is over T, {uj}J
j=1, andw := [w1, . . . , wJ ]T .

Note thatwj � rTj tj−sTj uj , t
T
j 1 = 1, and 0 � tj involve the vari-

ables xj := (wj , tj ,uj) only, and can thus be locally enforced, meaning
that it is possible for Uj to find values of xj satisfying these constraints.
The equality constraints trj = uj and wj = wi for all i ∈ c(j) cannot
be enforced locally but it is important to note that they relate neighbor-
ing variables only. Readers familiar with dual decomposition techniques
– see, e.g., [2, Sec. 3.4.2] and [4] – may notice that the form of (11)
lends itself to distributed optimization of the type we will elaborate on in
Section 3.

2.1. Generic problem formulation

Equivalence of (5) and (11) is not unique to max-min optimal routing
since the same steps can be applied to reformulate many optimization
problems. Indeed, for a given convex set Xj define the routing problem

T∗ = argmax
X

wT1 (12)

s.t. xj := (wj , tj ,uj) ∈ Xj ; t
r
j = uj ; vj = wj1,

where vj := wc(j) contains the variables wj of Uj’s neighbors. The
formulation in (12) encompasses all the routing problems defined in in
[6], with the set Xj specifying the corresponding optimality criterion:

Max-min optimal rate. This is the problem considered in detail in Sec-
tion 2 and can be obtained from (12) by defining the set

X 1j =
n
xj : wj ≤ rTj tj − sTj uj , 0 � tj , tTj 1= 1

o
. (13)

Additional convex constraints can be added to the definition of Xj . Since
we know thatuj is a vector of probabilities using the setXj = X 1j ∩{xj :

0 � uj � 1} is equivalent to using X 1j . Preventing the components of
uj to become too large improves numerical stability.

Optimal weighted sum-rate. To maximize a weighted sum of rates, i.e.,
f(ρ) = βTρ with β := [β1, . . . , βJ ]

T � 0, we define the set

X 2j :=
n
xj : wj = βj(r

T
j tj − sTj uj), 0 � tj , tTj 1 = 1

o
(14)

and consider the optimization problem

T∗ = argmax wT1

s.t. xj := (wj , tj ,uj) ∈ X 2j , trj = uj (15)

which amounts to dropping the constraint vj = wj1 in (12). For this
criterion wj = βjρj [cf. (8) and (14)]. Extra constraints can be dealt
with by modifying the set X 2j as before; e.g., a minimum acceptable rate
ρminj for terminal Uj can be ensured by Xj := X 2j ∩ {wj/αj ≥ ρminj }.
Optimal product of rates. Maximizing the product of rates prevents
solutions in which some users receive very small rates. The function to
be maximized in this case is f(ρ) =

QJ
j=1 ρj . Since the logarithm is

monotonically increasing the concave function f(ρ) =
PJ

j=1 log(ρj)
can be used instead. To cast this problem it suffices to define

X 3j :=
n
xj : wj ≤ log[rTj tj − sTj uj ], 0 � tj , tTj 1 = 1

o
(16)
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and replace X 2j by X 3j in (15). The local components of the argument
wj denote the logarithm of the local rate.

Optimal rate with relays. In a relay network a group of terminals col-
laborate in relaying traffic on behalf of a designated active user Uj0 . The
relay network maximizing ρj0 can be found by solving (12) with

X 3j =
n
xj : 0 = rTj tj − sTj uj , 0 � tj , tTj 1 = 1

o
, j �= j0

X 3j0 =
n
xj0 : wj0 = rTj0tj0 − sTj0uj0 , 0 � tj0 , tTj01 = 1

o
. (17)

Here, wj is the local estimate of the source’s rate ρj0 at terminal Uj .

3. DISTRIBUTED ROUTING ALGORITHMS

Since Xj is convex we optimize the dual function that, as we will show
in this section, exhibits a separable structure; see also [2, Sec. 3.4.2]
and [5]. Associate, thus, Lagrange multipliers λj with the constraints
trj − uj = 0 and μj with vj − wj1 = 0 to form the Lagrangian

L(X,Λ,M) =−wT1+

JX
j=1

h
(trj−uj)

Tλj + (vj−wj1)
Tμj

i
(18)

which is defined in the feasible set of primal variables {xj ∈ Xj}J
j=1.

Matrices Λ andM are defined to have the same sparsity pattern of T;
the dual variables in (18) are respectively given by λj = Λjc(j) and
μj =Mc(j)j . We assume that λj and μj are kept by terminal Uj .

The Lagrangian in (18) is used to obtain the dual function

g(Λ,M) = min
{xj∈Xj}Jj=1

L(X,Λ,M) (19)

which in turn leads to the dual problem defined as the unconstrained
maximization of g(Λ,M). Since strong duality holds, we have

1Tw∗ = −max
Λ,M

g(Λ,M). (20)

The problem in (20) is an unconstrained optimization problem that can be
solved with a gradient ascent algorithm. However, since the dual function
g(Λ,M) is not always differentiable a generalization of the gradient, the
so called subgradient is used instead.

Definition 1 We say that ∇Λ(Λ) is a subgradient of the concave func-
tion f(Λ) at Λ if and only if

f(Λ̃) ≤ f(Λ) + ∇Λ(Λ)(Λ̃−Λ) (21)

Given a subset of components λ of Λ we denote as ∇λ(Λ) the corre-
sponding components of∇Λ(Λ).

A subgradient of g(Λ,M) is presented in the next proposition (see [7]).

Proposition 1 For given multipliers Λ and M, let X†(Λ,M) denote
the optimal argument of the Lagrangian, i.e.,

X†(Λ,M) := arg min
{xj∈Xj}Jj=1

L(X,Λ,M) (22)

with L(X,Λ,M) given by (18). Then, a subgradient∇Λ,M of g(Λ,M)
has components,

∇λj (Λ,M) = trj
†(Λ,M) − u†j(Λ,M)

∇μj (Λ,M) = v†j(Λ,M) − w†
j (Λ,M)1. (23)

Proposition 1 tells us that for general multipliers (Λ,M) the values of the
primal variables that optimize the corresponding Lagrangian can be used
to obtain a subgradient of the dual function. A important property of the
optimal arguments of the Lagrangian is that they can be computed locally
at each node. To be precise define the vectors λr

j = Λc(j)j and μ
r
j =

Mjc(j) containing the dual variables of the one hop neighbors {Ui :
i ∈ c(j)}, and construct the local Lagrangian Lj(xj ;λj ,μj ,λ

r
j ,μ

r
j ) by

grouping the terms that depend only on the local variable xj [cf. (18)]

Lj(xj ;λj ,μj ,λ
r
j ,μ

r
j)=−wj+t

T
j λ

r
j−uT

j λj+wj1
T (μr

j−μj). (24)

Algorithm 1 Dual decomposition solver
Require: Packet success probabilities to and from neighborsRc(j)j and

Rjc(j)

Ensure: Optimal multipliers λ∗j and μ∗
j

1: for n = 1 to∞ do {repeat for the life of the network}
2: Receive multipliers λij(n) and μji(n) from {Ui : i ∈ c(j)}
3: Min. Lagrangian [cf. (26)]: xj(n) = argminxj∈Xj Lj(xj , n)
4: Transmit wj(n), tij(n), and uji(n) to Ui; for {Ui : i ∈ c(j)}.
5: Receive wi(n), tji(n), and uij(n) from {Ui : i ∈ c(j)}
6: Subg. iter. λj [cf. (27)]: λj(n+1)=λj(n)+cn[t

r
j (n)−uj(n)]

7: Subg. iter. μj [cf. (27)]: μj(n+1)=μj(n)+cn[vj(n)−wj(n)1]
8: Transmit λji(n + 1) and μij(n + 1) to Ui; for {Ui : i ∈ c(j)}
9: end for

By construction L(X,Λ,M) =
PJ

j=1 Lj(xj ;λj ,μj ,λ
r
j ,μ

r
j ) [cf. (18)

and (24)]. If we further note that primal variables xj appear only in
Lj(xj ;λj ,μj ,λ

r
j ,μ

r
j ) we conclude that the optimal arguments in (22)

can be found as

x†j := arg min
xj∈Xj

Lj(xj ,λj ,μj ,λ
r
j ,μ

r
j ). (25)

The reasons enabling a distributed implementation of subgradient as-
cent can be read out from Proposition 1 and (25): i) a subgradient of
the dual function is obtained from the arguments optimizing the La-
grangian L(X,Λ,M) [cf. (23)]; ii) the subgradients ∇λj (Λ,M) and
∇μj (Λ,M) depend only on local and neighboring primal variables [cf.
(23)]; and iii) the optimization of the Lagrangian L(X,Λ,M) separates
into the optimization of J local Lagrangians Lj(xj ,λj ,μj ,λ

r
j ,μ

r
j ),

furthermore, these local Lagrangians depend only on local and neigh-
boring dual variables [cf. (24) and (25)].

Consequently, subgradient ascent for g(Λ,M) can be implemented
by the following distributable iteration:

[I1] Compute subgradient. Given local multipliers λj(n) and μj(n),
and neighboring multipliers λr

j (n) and μr
j (n), minimize the local

Lagrangian with respect to the local primal variables,

xj(n) = arg min
xj∈Xj

Lj(xj , n) (26)

where Lj(xj , n) := Lj [xj ,λj(n),μj(n),λr
j (n),μr

j (n)].

[I2] Subgradient ascent step. Using local [wj(n), tj(n),uj(n)] and
neighboring [vj(n), trj (n),ur

j (n)] primal variables update local
multipliers

λj(n + 1) = λj(n) + cn[t
r
j (n) − uj(n)]

μj(n + 1) = μj(n) + cn[vj(n) − wj(n)1] (27)

where cn is a properly selected step size.

Algorithm 1 details the distributed implementation of [I1]-[I2]. Given
the local multipliers λj(n) and μj(n), and the one-hop-neighbors’ mul-
tipliers λr

j (n) and μr
j (n), user terminal Uj solves a (local) convex op-

timization problem to find the primal variables xj(n) that optimize the
(local and global) Lagrangian; step 3. In turn, these primal variables are
used in the gradient ascent steps 6 and 7 to obtain the updated multipliers
λj(n+1) and μj(n+1). Steps 6 and 7 represent the subgradient ascent
step for the dual function g(Λ,M) and as such are the steps guarantee-
ing convergence of the iterates {λj(n)}J

j=1 and {μj(n)}J
j=1 obtained

from (26)-(27) to {λ∗,μ∗}J
j=1 := argmax g(Λ,M) as n → ∞ (con-

vergence of (26)-(27) requires some qualifications that we discuss in the
next subsection). The remaining steps ensure that the variables are prop-
erly communicated. Steps 8 and 2 ensure that the updated multipliers are
sent to and received by the corresponding neighboring node, while steps
4 and 5 guarantee the same for the primal variables.

3.1. Convergence issues

Since the iteration (25)-(27) implements subgradient ascent for the dual
function, convergence is characterized in terms of the dual variables λj

and μj . We now summarize relevant convergence properties of subgra-
dient ascent. Let λ∗j , μ

∗
j denote the optimal solution of the dual problem

in (20). We then have that (see e.g., [2]):
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Fig. 3. Convergence of Algorithm 1 to the max-min optimal routes in Fig. 2 (left), and its response to user mobility (middle) and (right). After 70
iterations the rate of the most compromised user is within 90% of the optimal rate. The algorithm is fast to respond to changes inR.

(a) if the step size is constant, i.e., cn = c ∀n, then

lim
n→∞

1

n

∞X
n=0

λj(n) = λ∗j (28)

implying that the average value of the dual iterates converges to
the optimal dual variables; and

(b) if the step size sequence is non-summable,
P∞

n=0 cn = ∞, but
square summable,

P∞
n=0 c2n < ∞, then

lim
n→∞

λj(n) = λ∗j (29)

implying that the sequence of dual iterates converges to the opti-
mal dual variables.

Convergence of the dual iterates in the sense described in (a) and (b),
does not imply that the same holds true for the primal iterates xj(n),
and in practice limn→∞ tj(n) �= t∗j for many practical optimality crite-
ria. This is particularly true when (12) amounts to an LP, a category that
includes the weighted sum-rate and max-min optimality criteria. Many
regularization approaches are known to guarantee convergence of the pri-
mal iterates xj(n); see [7].

4. SIMULATIONS

We consider a network with J = 40 nodes randomly placed in a circle of
radius 1.5 km at whose center is the common access point UJ+1; see Fig.
1. The elements of the packet success probability matrix R are chosen
according to the empirical distribution in [1]. The optimality criterion is
max-min rate with corresponding optimal routes given as in Fig. 2. The
algorithm ran by individual nodes is the alternating direction method of
multipliers, a regularization of Algorithm 1.

The results of running Algorithm 1 are summarized in Figs. 3-(left)
where we show the smallest and largest value of the local variables wj .
As expected, these variables quickly approach each other due to the con-
straints vj = wj1; and the minimum rate ρj := rTj tj − sTj trj is also
closely approximated by the local variables wj . The rate of convergence
is reasonable, since after n = 150 iterations the distributed algorithm
has converged to the optimal value. Furthermore, we can see that after
70 iterations the rate of the most compromised user is within 90% of the
optimal rate. In practice, this last number can be regarded as the time
required for convergence. We also plot in Fig. 3-(left) the path followed
by the rate of 10 different representative users with similar conclusions.

Mobility. Among the main motivating reasons behind a distributed im-
plementation is adaptability to a mobile environment. To illustrate this
we modify the network in Fig. 1 by letting each node move at random
with uniform distribution in a square with 300 meter side centered at the
original position. This leads to the network in Fig. 3-(middle). The effect
of mobility can be simulated by running Algorithm 1 to find the optimal
routes for the network in Fig. 3-(middle) using the optimal routes in Fig.
2 as a initial condition. The results are depicted in Fig. 3-(right). Conver-
gence to the new optimal routes is surprisingly fast taking approximately
8 iterations. Intuitively, this happens because optimal routes are robust
with respect to modest topology changes.

5. CONCLUSIONS

Building on recent results that formulate routing problems as convex op-
timization problems based on the pairwise error probability matrix R,
this paper developed distributed routing algorithms to find rate-optimal
routes. Since routing algorithms developed in [6] cannot be implemented
in a distributed fashion we introduced equivalent problems amenable to
distributed implementations. Many problems can be cast in the latter
formulation including max-min rate, sum-rate, maximum product-rate,
and rate-optimal relay network. Additional convex constraints, e.g., a
minimum acceptable rate, can be incorporated in all of these problems.
Distributed routing algorithms were obtained via dual decomposition of
the original problem leading to an iterative algorithm based on commu-
nication with one-hop neighbors only. The algorithms were shown to
converge to the optimal routing probabilities. We further presented sim-
ulations corroborating that the distributed algorithms rapidly adjust to
changes in the pairwise error probability matrix brought in by, e.g., node
mobility.
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