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Abstract—We introduce a novel approach to multi-hop routing in
wireless networks. Instead of the usual graph description we characterize
the network by the packet delivery ratio matrix whose entries represent
the probability that a given node decodes the packet transmitted by
any other node. The model lends itself naturally to the formulation
of stochastic routing protocols in which packets are randomly routed
to neighboring nodes; and routing algorithms search for a matrix of
routing probabilities according to properly defined optimality criteria.
The goal of the paper is to show that this novel framework offers a useful
model to aid in the design of optimal routing algorithms. In particular,
it is established that: i) performance is improved with respect to graph
descriptions; and ii) optimal routes can be obtained as the solution of
optimization problems, many of which turn out to be convex and can
thus be solved in polynomial time using interior point methods.

Keywords: Routing, Wireless Networks, Markov chains, Convex Opti-
mization, Linear programming

I. INTRODUCTION

Despite the fact that energy is a scarce resource in wireless
networks it has not been until recently that it has jumped to the
forefront of design requirements [10], [11]. While energy can be
saved in different ways, multi-hopping is heralded as a promising
alternative. Considering that received power decays exponentially
with distance as d−α, with α between 3 and 4 – depending on the
environment – the numbers are staggering. Splitting for instance a
single hop in two co-linear hops saves about 10 dB in energy; and
dividing a route in ten hops consumes in the order of a thousandth
of the energy consumed by the original single hop. Even though this
rough assessment ignores the extra energy cost due to collision and
retransmission protocols and extra processing required at each node,
it is not difficult to see that by reducing the average distance between
communicating pairs of nodes, multi-hop routing secures significant
power savings, when not the feasibility of the communication link
itself.

As [10] correctly points out “we all have learned to draw a graph
to depict a communication network” and not surprisingly routing
algorithms for wireless networks have evolved from the accumulated
knowledge about these graph models. But since a link in a wireless
network does not entail a tangible connection, its definition can
be somewhat arbitrary. Nonetheless, many useful multi-hop routing
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algorithms adhere to the so called “disk routing models” which
typically proceed in three stages: i) define a communication radius
for each node; ii) draw the corresponding connectivity graph; and
iii) utilize network optimization tools, e.g., shortest path routing, to
find the optimal route. Most of the differences in multi-hop routing
algorithms arise in the definition of the associated link metrics. These
include path reliability, transmitted power, and mutual interference to
name a few; see e.g., [12], [22] and references therein.

The limitations of disk models are well documented, and by now
it has become clear that the simplistic assumption of the disk model
propagates through analysis to yield unrealistic conclusions, e.g.,
[13], [14], [24]. An implicit assumption in the disk model is that
the reliability of a link is either 0 when no packet is communicated
successfully or 1 when all packets are. However, measurements in
experimental networks have shown that many links have intermediate
loss rates [1], [17]. In order to overcome the inadequacy of disk
models different approaches have been proposed as in, e.g., [6], [9].
Of particular importance to the present paper [7] advocated a fully
connected graph model in which the weight of the arc connecting
two nodes is inversely proportional to the success probability of their
communication link.

An alternative approach is to reinterpret the graph as a matrix
and consider multi-hop routing as an optimization problem based
on the delivery-ratio (or pairwise packet-success-probability) matrix
R whose (i, j)-th entry Rij represents the probability that a packet
transmitted by the j-th user Uj is correctly received by the i-th user
Ui. This is what we introduce in this paper in the context of multi-hop
routing for a multiple access wireless channel.

The inherent uncertainty captured by R lends itself to stochastic
routing protocols (SRPs). User node Uj in an SRP transmits (i.e.,
routes) its packet through Ui with a certain probability Tij . Instead
of a routing table, a stochastic routing algorithm finds a matrix of
probabilities T – with entries Tij – according to some optimality
criteria (Section II). We first consider a per-session model of routing
in which a single node is interested in finding an optimal route to
its intended destination given the matrix R. We start showing that
the random route can be described by the evolution of a suitably
defined Markov chain allowing a characterization of deliverability
in terms of known properties of absorbing Markov chains (Section
II). Using this result we assess the merit of a routing protocol in
terms of the convergence rate to the Markov chain’s steady state
distribution, which readily suggests routing protocols that maximize
this rate (Section II-B). The latter approach optimizes the worst case
scenario since it implicitly maximizes the packet delivery probability
for a fixed (sufficiently large) delay. An alternative figure of merit
is the average convergence rate. This leads to the minimization of
the expected delay, a problem that as we will show, turns out to be
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equivalent to finding the shortest path in a fully connected graph with
arc weights equal to 1/Rij (Section II-C). This coincides with, and
thus motivates, the heuristic algorithm originally proposed in [7].

We then look at joint session optimization by considering arrival
rates at each user and designing routing protocols to maximize, in
some sense, the (vector of) arrival rates. This setup calls for finding
conditions for queue stability (Section III). Based on these conditions
we define optimal routes as those maximizing: i) the arrival rate of
the worst user (max-min routing); ii) the sum of the rates of all users
(max-sum rate); and iii) the product of all users rates (max-product).
We demonstrate that all these optimal routes can be found as solutions
of convex optimization problems via the highly efficient interior point
methods (Section III-B). As a byproduct, we also show that max-min
routing with a bound on the total network traffic is also equivalent to
finding the shortest path in a fully connected graph with arc weights
equal to 1/Rij (Section III-C).

Overall, the contribution of this paper is to establish that SRPs
based on the delivery ratio matrix R hold great potential for multi-
hop routing in wireless networks since they: i) offer a more accurate
model of the wireless network thus achieving better performance
than routing algorithms based on graph models; ii) in many cases
optimal routes can be obtained as the solution of convex optimization
problems that can be solved in polynomial time using interior point
methods [4]; and iii) they subsume some existing routing algorithms
based on graph models as particular cases.

II. STOCHASTIC ROUTING PROTOCOLS (SRP) – PER SESSION

MODEL

Consider a wireless network with J + 1 user nodes {Uj}J+1
j=1 in

which the first J users {Uj}J
j=1 participate in routing packets to the

destination D ≡ UJ+1. The physical and medium access layers are
such that if a packet is transmitted by Uj it is correctly received by Ui

with probability Rij that we arrange in the matrix R. Note that in the
presence of fading the probabilities Rij are averaged over all fading
states. We first consider a per-session model of routing in which
a user node establishing a session is confronted with the routing
decisions of its peers that determine the entries Rij of R. Supposing
that the probabilities in R remain invariant over the duration of a
session, our goal is to find a stochastic routing strategy that is optimal
in a suitable sense. Note that this model is also applicable in a low
traffic scenario, where at any time there is only one packet in the
network.

Let ej(n) indicate the binary (0/1) event that the packet is
at Uj at time n whose probability we denote by pj(n) :=
Pr{ej(n) = 1}. Correspondingly, we define the vectors e(n) :=
[e1(n), . . . , eJ+1(n)]T and p(n) := [p1(n), . . . , pJ+1(n)]T , where
T denotes transposition. If the packet is generated at a known source
Us for some s ∈ [1, J ] we have that ps(0) = 1. In general, the
packets are generated at a random source with initial distribution
p(0).

Routing is carried on according to a matrix T whose (i, j)-th
entry Tij is the probability that Uj decides to transmit (i.e., route)
the packet to Ui. If Uj receives the packet at a certain time n,
i.e., if ej(n) = 1, Uj will select a random candidate destination
from the set {Ui}J+1

i=1 such that Ui is chosen with probability
Tij . If the transmitted packet is correctly decoded by Ui we have
that ei(n + 1) = 1; otherwise, the packet is kept by Uj , i.e.,
ej(n + 1) = 1, and the random selection and transmission process
is repeated. To describe the stochastic percolation of the packet
throughout the network we define the matrix K with (i, j)-th entry
Kij := Pr{ei(n+1)|ej(n)} denoting the probability that the packet

moves from Uj to Ui between times n and n+1. Note that T and K
are related through R. Indeed, for i �= j the packet moves from Uj

to Ui if and only if it is routed through Ui and is correctly decoded;
since these two events are independent we have

Kij = TijRij for i �= j. (1)

Because K and T are stochastic matrices, columns must sum up to 1
implying that KT 1 = 1 and TT 1 = 1, where 1 denotes the all-one
column vector. These two constraints and (1) imply that since R is
prescribed by the physical layer, K is uniquely determined by T (but
not vice versa).

Since the (J + 1)-st user is the destination it will not route the
packet, from which we infer that Ti(J+1) = 0, ∀i ∈ [1, J ]; and
after taking (1) into account we arrive at Ki(J+1) = 0, ∀i ∈ [1, J ].
Arguing similarly, it follows that R(J+1)(J+1) = T(J+1)(J+1) =
K(J+1)(J+1) = 1. Summing up, with properly defined kD ∈ R

J

and KD ∈ R
J×J we can partition K as

K =

(
KD 0
kT

D 1

)
(J+1)×(J+1)

, (2)

where 0 denotes the all-zero column vector. Let cJ+1 := [0, . . . , 0, 1]
denote the (J+1)-st vector in the canonical basis of R

J+1. It follows
easily by direct substitution that (2) holds if and only if KcJ+1 =
cJ+1, i.e., if and only if cJ+1 is an eigenvector of K associated with
the eigenvalue 1.

For future reference, we define the set of transmit probability
matrices in R

(J+1)2 as

T = {T ∈ R
(J+1)2 : TT 1 = 1, Tij ≥ 0, ∀i, j}. (3)

The constraints on K can be written as K ∈ K with

K = {K ∈ T : Kij = TijRij , for i �= j,T ∈ T ;

KcJ+1 = cJ+1}. (4)

Note that the set K is a convex polyhedron in R
(J+1)2 .

We can characterize the evolution of p(n) in terms of K.
Indeed, note that due to the law of total probability pi(n) =∑n

j=1
Pr{ei(n)|ej(n − 1)}pj(n − 1) =

∑n

j=1
Kijpj(n − 1), that

we can write in vector-matrix form as

p(n) = Kp(n − 1) = Knp(0). (5)

That is, p(n) represents the probability evolution of a Markov chain
characterized by K in which the j-th state represents the presence
of the packet at user node Uj .

A. Deliverability

A basic requirement for the routing matrix T is to ensure that
packets are eventually delivered to the destination D ≡ UJ+1, i.e.,

lim
n→∞

p(n) = cJ+1, (6)

Since it is meaningful to focus on routing matrices that, at least,
satisfy (6), we introduce the following definition.

Definition 1: A routing matrix T ensures deliverability if and only
if (6) holds for any initial distribution p(0).
Building on (5), it is possible to find conditions to ensure deliver-
ability of an SR matrix as we describe in the following theorem.

Theorem 1: The following statements are equivalent:

(i) The routing matrix T ensures deliverability.
(ii) Matrix K describes the probability evolution of an absorbing

Markov chain whose unique absorbing state is J + 1.
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(iii) The spectral radius of KD is strictly smaller than one, i.e.,
with eig(KD) denoting the set of eigenvalues of KD we have
ρ(KD) := max |eig(KD)| < 1.

(iv) The matrix KD and the vector kD in (2) satisfy kT
D(I −

KD)−1 = 1T .

Proof: See [20].
Theorem 1 gives necessary and sufficient conditions for an SR

matrix to have guaranteed deliverability. None of these conditions is
difficult to achieve and, in general, simple routing algorithms, e.g.,
a random walk through the network with Tij = 1/J , can ensure
deliverability. A more interesting problem is how to obtain a matrix
which guarantees that the limit in (6) is practically achieved with n
as small as possible. This motivates different routing algorithms that
we can obtain from (5) and analyze next.

B. Fastest convergence rate routing

The rate of convergence can be either measured on average or
for the worst possible initial distribution p(0). These metrics lead to
different criteria for optimal routing. Optimal routing in an average
sense will be considered in Section II-C. What we expect from an
optimal routing matrix T is for the convergence rate in (6) to be as
fast as possible. The distance – in some sense – between p(n) and
cJ+1 can be measured by the p-norm ‖p(n) − cJ+1‖p which is to
be compared with the original distance ‖p(0) − cJ+1‖p leading to
the following expression for the worst-case convergence rate:

ξp = sup
p(0) �=cJ+1

lim
n→∞

(
‖p(n) − cJ+1‖p

‖p(0) − cJ+1‖p

)1/n

. (7)

This cannot be computed in closed-form for any p-norm. For
p = 2, corresponding to the Euclidean norm, the argument in (7)
is maximized by the eigenvector associated with the second largest
eigenvalue of K. A meaningful routing algorithm is thus to look for
the matrix K ∈ K such that

min
K∈K

|eig2(K)| = min
K∈K

max |eig(KD)| = min
K∈K

ρ(KD), (8)

where eig2(K) denotes the second largest eigenvalue of K and
eig(KD) the set of eigenvalues of KD . In establishing the first
equality in (8) we used that all the eigenvalues of KD are eigenvalues
of K [cf. (2)]; in fact, eig(K) = eig(KD)∪{1}. The second equality
follows from the definition of spectral radius.

Unfortunately, minimizing the spectral radius of a non-symmetric
matrix is a notoriously difficult problem, intractable except for small-
medium values of J [4]. This motivates an alternative measure of
convergence rate based on the vector pD(n) := [p1(n), . . . , pJ(n)]T

containing the probabilities that the packet is at a certain node other
than the destination. The norm of pD(n) measures the probability
of the packet not being delivered at time n. This suggests the metric

ζp = max
pD(n)

‖pD(n + 1)‖p

‖pD(n)‖p
, (9)

which amounts to the worst-case one-step relative reduction of the
vector pD(n) which we want converging to zero [cf. (6)]. Similarly
to ξp, we can define optimal routing in terms of minimizing ζp.

If we further recall that pD(n + 1) = KDpD(n), another class
of optimal SRPs stemming from (9) can be designed to achieve

min
K∈K

max
pD(n)

‖KDpD(n)‖p

‖pD(n)‖p
= min

K∈K
‖KD‖p, (10)

where the equality follows from the definition of the p-norm of
a matrix. Different from (8), the optimization in (10) is a convex
problem for all p since: i) due to the triangle inequality, norms are

convex functions of their arguments; and ii) the set K is a convex
polyhedron [cf. (4)]. For the usual norms, p = 1, 2,∞, solving (10) is
either a simple linear program (LP) for p = 1,∞, or, a semi-definite
program (SDP) for p = 2 [4].

In general, (8) and (10) are optimized by different matrices T, and
the pertinent comparisons are discussed in the following remark.

Remark 1: Requiring the solution of convex optimization prob-
lems – indeed, canonical optimization problems – (10) is tractable for
networks with even a large number of users J ; whereas (8) is only
tractable for small-to-medium scale networks. On the other hand,
(8) is more meaningful than (10), since the former compares the
asymptotic behavior with the initial state while the latter compares
two consecutive states. In practical protocol designs, (10) can be
viewed as a tractable approximation to (8).

C. Minimum expected delay routing

An alternative approach to optimal routing is to consider the packet
delivery time measured by the number of hops, and look for the
matrix T that minimizes the average packet delay. Packet delay is
simply the time n at which the packet is received by D ≡ UJ+1 and
is given by:

δ = min{n : eJ+1(n) = 1} =

∞∑
n=0

[1 − eJ+1(n)] (11)

where the second equality is true since 1 − eJ+1(n) = 1 if n < δ
and 1 − eJ+1(n) = 0 for n ≥ δ; we thus have δ terms equal to 1
in the summation in (11). Starting from (11), the expected delay can
be computed as we describe in the following theorem.

Theorem 2: For a routing matrix ensuring deliverability, the ex-
pected delay is given by

δ̄ := E(δ) = 1T (I − KD)−1pD(0), (12)

where pD(0) := [p1(0), . . . , pJ(0)]T is the initial distribution for
the first J users.

Proof: See [20].
The expected delay δ̄ is a function of the routing matrix K and

the initial distribution pD(0). Using the result in Theorem 2, we can
find the matrix that minimizes the expected delay as the argument
solving the optimization problem

K∗[pD(0)] = arg min
K∈K

δ̄ = arg min
K∈K

1T (I − KD)−1pD(0). (13)

Conceptually, (13) appears difficult to solve. Interestingly, it turns
out that (13) is equivalent to a shortest path routing algorithm as we
establish in the ensuing theorem.

Theorem 3: Define the expected delay vector δ̄ :=
[δ̄1, . . . , δ̄J ] := 1T (I − KD)−1 in which δ̄j is the expected
delay when the packet starts at Uj , i.e., when p(0) = cj ; and let
δ̄J+1 = 0. If there exists a matrix K ensuring deliverability, there
exists a matrix K† ∈ K such that

δ̄j = min
i

{
1

Rij
+ δ̄i

}
, δ̄J+1 = 0, (14)

which minimizes the expected delay for any initial distribution, i.e.,
K∗[pD(0)] = K† for any pD(0) and its corresponding K∗[pD(0)]
as in (13).

Proof: See [20].
Characterizing the solution as in (14) indicates that K∗

D in (13)
satisfies Bellman’s principle of optimality which is known to char-
acterize the shortest path route [2, Chap.5]. Thus, K∗

D in (13) can
be found as the shortest path route (SPR) in a fully connected graph
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Fig. 1. For a simple connectivity graph (top, R matrix shown) the minimum
expected delay routing algorithm in (13) tends to select short routes (left,
minimum expected delay K), while fastest convergence rate routing as per
(8) selects longer routes with more reliable hops (right, fastest convergence
rate K).

with the arc between Ui and Uj having weight 1/Rij . This implies
that the solution to minimum expected delay routing can be found in
O(J2) steps using dynamic programming tools, e.g., Bellman-Ford,
Dijkstra, or Floyd-Warshall algorithms; see e.g., [2, Chap.5].

Also important, and contrary to what (13) suggested, minimum
expected delay routing does not depend on the initial distribution.
The average delays δ̄[p(0)] for different initial distributions p(0) are
different, but there exists a matrix that minimizes δ̄[p(0)] for all p(0).
Among other optimization problems, such a matrix is the solution of

K∗ = arg min
K∈K

1T (I − KD)−11 (15)

obtained by making pD(0) = 1/J in (13). Note that for a given
p(0) there might exist alternative solutions to (13), but none will
outperform K∗ in (15). The matrix K∗ in (15) can be obtained as
the SPR in a fully connected graph with the arc between Ui and
Uj having weight 1/Rij , a fact that we will later exploit in making
pertinent comparisons between different routing algorithms.

D. Numerical examples and simulations

The fastest convergence rate SR algorithm in (8) maximizes the
packet delivery probability for a given, sufficiently large, time index
n. On the other hand, minimum expected delay routing as per (13)
minimizes the expected time elapsed until packet delivery. The subtle
differences between these two approaches are exemplified in Figs. 1
and 2.

The resulting routing matrices for minimum expected delay and
fastest convergence rate routing are shown in Fig. 1. We can see
that the former algorithm tends to select short routes sometimes
containing unreliable hops (left) as verified by the link U2 → U5

used to route U1 and U2’s packets. Whereas, the latter uses longer
routes but tends to use more reliable hops (right), as we can see
from the use of the U2 → U3 link to route U1 and U2’s traffic.
This is a manifestation of the different optimization criteria. The
expected delay for routing U2’s packets is 1.67 for minimum expected
delay routing and 3.33 for fastest convergence rate routing. The
difference in convergence rate is shown in Fig. 2. To achieve a
packet error probability of 1 − pD(n) = 10−4, U2’s delay is 7.2
for fastest convergence rate routing and 13.1 for minimum expected
delay routing.
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Fig. 2. Convergence rate for the network in Fig. 1. For a fixed time delay
fastest convergence rate routing yields a smaller packet error probability.
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Fig. 3. A randomly generated network with 20 nodes, the color scale
represents the elements of the matrix K. Note how fastest convergence rate
routing selects routes with large values of Kij .

Similar conclusions are reached for the more realistic example in
Fig. 3 representing a randomly generated network with 20 nodes.
In this figure, we depict the connectivity graph as well as the
result of the minimum expected delay, fastest convergence rate, and
minimum 2-norm SRP obtained from (10) with p = 2. Here it is
also true that minimum expected delay prefers shorter routes, while
fastest convergence rate prefers longer routes containing more reliable
hops. Minimum 2-norm routing is the only algorithm considered
that yields routing matrices implying non-deterministic routing, i.e.,
having Tij �= 1, 0 for some i, j.

For real time delay-sensitive applications, e.g., audio and/or video
conferencing, fastest convergence routing is a better alternative. This
is corroborated by Fig. 4 (top) showing the convergence rate for the
network in Fig. 3. For a delay of 14 hops, fastest convergence rate
routing yields a packet error probability of 10−4 for the least favored
user; for the same delay, minimum expected delay routing achieves
a packet error probability of 10−2. For delay-tolerant applications,
e.g., file transfers, the average delay metric is better suited since to
deliver a large number of packets, the total number of required hops
is significantly smaller – and consequently, the total energy required
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Fig. 4. Convergence rate of the least favored user for the network in Fig.
3 (top) and histogram of packet delivery times for a randomly chosen user
(bottom). Fastest convergence rate routing is favored for time sensitive traffic.

for the session also is. This is illustrated in Fig. 4 (bottom) where
we see that for minimum expected delay routing most packets are
delivered in a few hops and a few packets take a long time to be
delivered. For fastest convergence rate routing, none of the packets
took more than 8 hops to be delivered but the total number of hops
required to deliver all the packets was larger.

III. A SATURATED SYSTEM APPROACH

The approach in Section II ignores the effect of packet queuing at
individual terminals. To incorporate this effect for heavily loaded
networks, we consider that each user has an infinite-long queue.
Packets arrive randomly at a rate rj ∈ (0, 1] packets per packet
slot, to be delivered from terminal Uj to the destination UJ+1. The
arrival process is assumed stationary. In any slot users with non-empty
queues will transmit a packet at random with probability µj ≤ 1 as
dictated by the medium access (MAC) sub-layer. As in Section II
Rij denotes the probability that Ui decodes Uj’s packets. Because
of possible interference R = R(µ) is a function of the transmission
probabilities µ := [µ1, . . . , µJ ]T but we assume it given for the
purposes of finding the optimal routes.

If a packet is indeed transmitted it is directed towards terminal Ui

with probability Tij . Our goal is to find conditions for the arrival
rates rj to yield stable queues and to design routing matrices T that
maximize the sustainable rj in some sense. Besides its own packets,
Uj receives packets from other nodes for an aggregate arrival rate
λj . Note that the departure rate λ

(o)
j from Uj coincides with λj if

the queue is stable and is smaller than λj if the queue is not stable.
If, as in Section II, we let Kij = TijRij denote the probability that
a packet moves from Uj to Ui between times n and n + 1 we have
that (see also Fig. 5)

λi = ri +

J∑
j=1

Kijλ
(o)
j ≤ ri +

J∑
j=1

Kijλj (16)

with equality achieved when all queues are stable. Notice that the
sum in (16) includes the packets that fail to leave Ui in the term
Kiiλi. Upon defining the vectors of (external) arrival rates r :=
[r1, . . . , rJ ]T and aggregate arrival rates λ := [λ1, . . . , λJ ]T , we

�

ri

∑J

j=1
Kijλ

(o)
j

λ
(o)
i ≤ µjλi

�
�

Fig. 5. Queue balance equations.

can express (16) in vector-matrix form as

λ � r + KDλ, (17)

with KD denoting the J ×J upper left corner of K as in (2), and �
denoting componentwise inequality. The first problem of interest is
to find conditions under which pairs (T, r) of routing matrices and
arrival rates are stable in the sense that the probability of any queue
having more than an arbitrarily large number of packet is zero. Such
a condition is given by the following theorem.

Theorem 4: Consider a wireless network with reliability matrix
R = R(µ), and let K be the corresponding matrix whose entries
Kij denote the probability that a packet moves from Uj’s to Ui’s
queue. R(µ) and K are related as in (4). Assuming stationary arrival
processes with strictly positive rates r � 0 and stationary service
processes with rates µ � 1 we have that:
(i) for having a stable system, i.e., for all queues to be stable, it is

sufficient to have
(I − KD)−1r ≺ µ (18)

(ii) for having a stable system it is necessary to have invertible (I−
KD) and

(I − KD)−1r � µ. (19)

Proof: See [20].
Theorem 4 provides a condition for having stable queues and in

that sense it is the counterpart of (6). Given a routing matrix T and a
vector of arrival rates r, (18) and (19) can be used to check stability.
For any candidate routing matrix T, we can define the stability region
S of arrival rate vectors leading to stable queues as

S = {r ∈ R
J : r = (I − KD)λ, with 0 � λ � µ}. (20)

The interpretation of S in (20) is that rates strictly inside S lead to
stable queues, while points strictly outside S lead to unstable queues.
Rates in the boundary of S may or may not be stable.

A. Physical/medium-access/network layer interaction

Because the framework so far as well as the SRPs of the ensuing
section rely on knowledge of R, we delineate here how this matrix
is determined depending on the access scheme (orthogonal or non-
orthogonal) used at the physical layer.

If terminals transmit over orthogonal channels as when frequency
(F-), time (T-), or code (C-) division multiple access (DMA) is
utilized at the physical layer, R clearly depends on the power
transmitted by individual users. Furthermore, lack of contention
implies that R does not depend on the transmission probabilities
µ. Let Pj denote the power transmitted by Uj , xj its position and
L(xj − xi) a distance-dependent path loss coefficient – e.g., an
exponential path loss law for which L(d) = d−α . The signal to
noise ratio (SNR) for the Uj → Ui link is thus

SNRij =
PjL(xj − xi)

N0
(21)
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For the SNR in (21) and a given modulation and error control
code pair one can readily obtain a certain packet success probability
Rij(SNRij) = Rij(Pj) for the link Uj → Ui. Depending on how
fast fading varies with respect to packet lengths channels are classified
as fast, slow, or block fading. If fading is invariant over several packet
transmissions, Rij(Pj) is given by the instantaneous packet success
probabilities for the given fading state. If fading is fast, so that any
packet experiences a sufficiently large number of independent channel
realizations, the receiver can collect the available time diversity and
Rij(Pj) can be approximately obtained from the error probability
for additive white Gaussian noise channels. In a block fading model,
the channel changes from packet to packet, and the transmitter is
confronted with an unknown fading state. In this case Rij(Pj) can
be computed from the average of the instantaneous error probabilities
over all fading states. In all three cases, Rij(Pj) is expressible as a
function of Pj .

For contention- or interference-limited networks as is respectively
the case for random access and CDMA with pseudo-noise spreading
sequences R and µ are coupled in the sense that R is a function
of the transmitted powers p := [P1, . . . , PJ ]T and the transmission
probabilities µ. A usual practice to further simplify the problem, is
to assume that for the purposes of accounting for interference µ = 1,
which implies that the signal to noise plus interference ratio SINR is
given by

SINRij =
PjL(xj − xi)

N0 + γ
∑J

k �=i,j
PkL(xk − xi)

(22)

The SINR in (22) can be mapped to a packet success probability
Rij(SINRij). This eliminates µ, as a variable determining R(p,1)
that now depends only on p. The approximation can be justified by
noting that any rate ρ achievable in a network with reliability matrix
R(p, µ) is also achievable in a network with reliability R(p,1) and
in that sense the latter represents an upper bound on the stability
region of the former.

The important observation here is that regardless of the physical
and medium access control (sub-) physical layers from a network-
ing layer perspective the matrix R can be measured by counting
acknowledgements of correctly decoded packets. Thus, a network
layer protocol can be envisioned to select the routing matrix T that
maximizes r in some sense for a given matrix R. We pursue this
problem in the next section.

Remark 2: The stability condition in Theorem 4 was derived for
a reliability matrix R := R(µ). The reader familiar with contention
limited networks, e.g., Aloha, may realize that this is not a completely
accurate model. In fact, R = R(ν) is a function of the transmission
probabilities ν := [ν1, . . . , νJ ]T with νj denoting the probability
that Uj transmits a packet in a given slot. The vector ν is not
necessarily equal to µ due to the probability of having empty queues
but in general ν � µ. Under this model finding the stability region
becomes intractable for the same reasons it is intractable to find
Aloha’s stability region [19]. A dominant system approach as in e.g.,
[8] can be used to prove that S in (20) is an achievable stability
region as we show in [20].

B. Maximum arrival rate routing

With R available at a central location, we look for routing matrices
T ∈ T for which we have K ∈ K [cf. (3) and (4)] that maximize
a measure of the arrival rate vector r. Different optimization criteria
can be devised to obtain routing algorithms maximizing the arrival
rate vector. A first approach is to maximize a weighted sum of rates

∑J

j=1
rj = wT r with w � 0. The sum-rate optimal matrix can be

obtained as the solution of the optimization problem

K∗ = arg max
K∈K,0�λ�µ

wT r = max
K∈K,0�λ�µ

wT (I − KD)λ. (23)

A concern with the formulation in (23) is that it tends to favor
terminals close to the destination. An alternative approach is to
maximize minj rj , the rate of the least favored user. We refer to
this as max-min optimal routing; the corresponding routing matrix
can be obtained as the solution to

K∗ = arg max
K∈K,0�λ�µ

min
j

rj = arg max
K∈K,0�λ�µ

min
j

[(I − KD)λ]j .

(24)
The optimization problems in (23) and (24) are bilinear in KD and

λ, and as such, notoriously difficult to solve in general. Enticingly,
we can capitalize on the structure of the problem to reduce them to
simple linear programs. The main result allowing this reduction is
stated in the following theorem.

Theorem 5: Consider a maximization problem of the form

v∗ := max
K∈K,0�λ�µ

g[(I − KD)λ], (25)

where g : R
J → R is a function monotonically non-decreasing in

each component, i.e., for vectors v(1),v(2) with v
(1)
j ≤ v

(2)
j and

v
(1)
i = v

(2)
i for i �= j, we have that g[v(1)] ≤ g[v(2)]. Then, there

exists a matrix K ∈ K such that

v∗ = max
K∈K

g[(I − KD)µ]. (26)

Proof: See [20].
Theorem 5 establishes that routing algorithms involving

component-wise non-decreasing objective functions can be solved by
setting λ = µ in the argument function to be optimized. Clearly, this
is the case for max-min rate optimal and sum-rate optimal routing
in which the functions are g(v) = mini(vi) and g(v) = 1T v,
respectively. Furthermore, with λ = µ, the bilinear arguments in
(27) and (28) become linear functions of KD implying the following
corollary.

Corollary 1: Max-min optimal routing and sum-rate optimal rout-
ing can be obtained as solutions of linear programs (LP) in K:

(i) For max-min optimal routing

K∗ = arg max
K∈K

min
i

[(I − KD)µ]i . (27)

(ii) For sum-rate optimal routing

K∗ = arg max
K∈K

wT (I − KD)µ. (28)

Proof: The functions g(v) = mini(vi) and g(v) = 1T v are
component-wise non-decreasing in the sense considered in Theorem
5. This proves the equivalence of (27) with (24) and (28) with (23),
respectively. That (28) is an LP follows after noting that the argument
to be maximized is linear and recalling that the set K is a convex
polyhedron. To prove that (27) is an LP introduce the auxiliary
variable t ≥ [(I − KD)µ]i, for all i and rewrite the maximization
as

max t

s.t. K ∈ K, t1 ≤ (I − KD)µ. (29)

In (29), the argument and the constraints are linear entailing, by
definition, an LP.

Corollary 1 demonstrates that sum-rate and max-min optimal
routing can be efficiently solved by convex optimization techniques,
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e.g., interior point methods [4]. Solving an LP incurs roughly cubic
complexity – O(J3.5) to be precise – in the number of nodes J
and in that sense it is only moderately more complex than finding a
traditional shortest path route whose complexity is quadratic in J .

The applicability of Theorem 5 is fairly broad, implying that we
can propose different routing algorithms and expect them to yield
tractable optimization problems. As an example, consider maximum
product-rate for which the optimal routing matrix is obtained as

K∗ = arg max
K∈K,0�λ�µ

J∏
j=1

rj

= arg max
K∈K,0�λ�µ

J∑
j=1

log [(I − KD)λ]j , (30)

with the second equality following because the logarithm function is
monotonically increasing. The max-product rate in (30) constitutes a
more fair alternative to the max-sum rate in (23) since it prevents so-
lutions in which some users receive a very small packet delivery rate.
Notice that the argument in (30) is componentwise non-decreasing,
and we thus can use Theorem 5 to obtain

K∗ = arg max
K∈K,0�λ�µ

J∏
j=1

rj

= arg max
K∈K,0�λ�µ

J∑
j=1

log [(I − KD)µ]j , (31)

which, since the logarithm is a concave function, is a convex
optimization problem in KD .

C. An overall constraint in the total traffic

Imposing individual traffic constraints, the requirement 0 � λ �
µ does not impose an overall traffic constraint, something that is
sometimes reasonable and sometimes not. In certain cases we may
want to limit the total traffic in the network, e.g., to leave room for
critical traffic, or, to ensure a fixed power consumption per time unit.
In any event, the total traffic constraint can be written as λT 1 = µ0 ≤
minj∈[1,J] µj . In this context, we can consider different optimization
criteria as in Section III-B yielding routing algorithms of the form

K∗ = arg max
K,λ

g [(I − KD)λ]

s.t. K ∈ K, 0 � λ, λT 1 = µ0. (32)

The added constraint λT 1 = µ0 prevents application of Theorem
5 and, in general, problems of the form (32) will be difficult to
solve. However, for the specific case of max-min optimal routing
with an overall traffic constraint, i.e., g(v) = mini(vi) in (32), we
can establish a quite surprising connection with shortest path routing.

To study this connection note that since the constraints in λ and
KD are decoupled we can solve the optimization in two separate
steps

K∗ = arg max
K∈K

{
maxλ mini [(I − KD)λ]i
s.t. 0 � λ, λT 1 = µ0

}
. (33)

If KD is fixed, then the innermost optimization is a simple linear
max-min problem widely studied in a variety of contexts, e.g., game
theory. The important point here is that the solution to this problem
is well known, and in some cases computable in closed-form. This
allows us to obtain the following theorem.

Theorem 6: For consistent routing matrices, max-min optimal
routing with a global traffic constraint as defined by (33) is equivalent
to

K∗ = arg min
K∈K

1T (I − KD)−11. (34)

Moreover, the optimal traffic vector is given by

λ∗ =
(I − K∗

D)−11

1T (I − K∗
D)−11

µ0. (35)

Proof: See [20].
Even though Theorem 6 transforms the problem in (33) into

a conceptually simpler form, it is not yet clear how (34) might
be solved. However, recalling (15) we see that quite surprisingly,
max-min rate routing with a global traffic constraint as per (33) is
equivalent to minimum delay routing as defined in (13). Since the
solution to the latter, as we have already seen, is given by the shortest
path in a fully connected graph with arc weights 1/Rij , so is the
solution to (33); a fact that we summarize in the following corollary.

Corollary 2: The matrix K† ∈ K satisfying Bellman’s principle
of optimality in (14) solves the max-min routing problem with a
global traffic constraint defined by (33).

Proof: If K† ∈ K satisfies (14), it solves (15) [cf. Theorem 3].
But (15) is identical to (34) which we know solves (33) [cf. Theorem
6]. Thus, if K† ∈ K satisfies (14), it solves (33).

Corollary 2 implies that in order to find the matrix optimizing
(33) it suffices to find the SPR in a fully connected graph with the
arc between Ui and Uj having weight 1/Rij . On the other hand,
Theorem 6 provides interesting insights on the optimal solution that
we discuss in the following remarks.

Remark 3: The proof establishes that for any KD , the optimal
λ = λ† is given by (35). The corresponding rate offered to each
user is subsequently given by rj = 1/1T (I−KD)−11 showing that
every user gets the same rate. The vector of optimal offered rates is

r∗ = µ0

[
1T (I − K∗

D)−11
]−1

1. (36)

Eq. (36) reveals that max-min routing is fair in the sense that it evenly
divides the traffic resources available.

Remark 4: Strong duality applied to the innermost optimization
over λ in (33) proves the equivalence of the latter with

K∗ = arg max
K∈K

{
minx maxi

[
(I − KT

D)x
]

i

s.t. 0 � x, xT 1 = µ0

}
(37)

where we used that (I − KD)T = I − KT
D; see also [20]. The

formulation in (37) corresponds to min-max optimal routes for a
multihop cooperative downlink subject to a constraint in the total
traffic delivered by D ≡ UJ+1. The interpretation is that of a group of
terminals competing to receive information from D ≡ UJ+1 that can
transmit at a rate of µ0 packets per packet slot [cf. xT 1 ≤ µ0]. The
access point (D) is interested in a fair formulation that minimizes the
rate of the greediest user node while still using its own resources to a
prescribed extent [cf. xT 1 = µ0]. This problem turns out equivalent
to max-min optimal routing for a multihop cooperative uplink [cf.
(33) and (37)]. In particular, we deduce that every node is served
with the same rate given by (36).

D. Simulations and numerical examples

Let us illustrate the distinctions between the different routing
protocols. In Fig. 6 we represent the connectivity matrix R for a
network with 50 nodes randomly deployed in a circle of radius 2
km. The results of sum-rate optimal routing as defined in (23) and
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Fig. 6. Connectivity graph for a network with 50 nodes uniformly deployed
in a circle with radius 2 Km. at whose center is the common AP. The color
index represents the value of Rij that is generated according to the empirical
distribution in [7].
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Fig. 7. Sum-rate optimal routes as given by (23). The nodes with good
connections to the destination get most of the total rate available.

max-min optimal routing as per (24) are shown in Figs. 7 and 8,
respectively. Fig. 10 depicts the shortest path routes solving max-
min optimal routing with a global traffic constraint as given by (32).
We recall that all these optimal routing algorithms can be efficiently
solved as guaranteed by Corollaries 1 and 2.

Sum-rate optimal routing yields a matrix K in which the nodes
with reliable links to the destination get most of the rate. Actually,
a possible solution maximizing the sum-rate is for all the Uj’s with
R(J+1)j �= 0 to send their traffic to the destination D ≡ UJ+1

without forwarding any traffic belonging to other users. To this end
we can add the constraint r ≥ r01, which ensures that every user
has a guaranteed rate rj = r0 with the excess traffic assigned to the
most favored users. The result of this approach is shown in Fig. 7
(r0 = 0.01). Note that the constraint r = (I−KD)µ ≥ r01 is linear
in KD maintaining the convexity of the problem in (28).

A perhaps better approach is max-min routing whose correspond-
ing optimal routes are depicted in Fig. 8. We see that most users
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Fig. 8. Max-Min routes obtained as the solution of (24) for the network
in Fig.6. Most nodes divide their traffic between many different neighbors to
avoid the formation of bottlenecks.
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Fig. 9. Instances of the arrival rate processes for the max-min optimal routes
in Fig. 8. The fairness of the protocol is manifested in the not so different
rates offered to the best and worst nodes.

divide their traffic between many different neighbors to avoid the
formation of bottlenecks. The fairness of this approach is illustrated
in Fig. 9 where we show instances of the arrival processes of the
best and worst users. For the network considered, the offered rates
were 0.056 and 0.074, respectively. We see that the simulated arrival
processes are accurately modelled by (16). As time progresses the
number of packets delivered for terminal Uj approaches its rate rj

(times the elapsed time). We also plot the sum-rate for this case which
is to be compared with 5.36 achieved by sum-rate optimal routing.

We finally depict in Fig. 10 the max-min optimal routes when we
enforce a global traffic constraint set to λT 1 = 1. We note that
among all the approaches considered in this subsection, this is the
only one resulting in deterministic routes.

IV. CONCLUSIONS

We introduced a general framework for stochastic routing in wire-
less multi-hop networks. Deviating from the traditional graph models,
we considered a general framework based on the packet delivery
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Fig. 10. Max-min routing with a global traffic limit as per (32). The routes
are obtained as the shortest path in a fully connected graph with arc weights
equal to 1/Rij .

probability matrix and showed that different routing algorithms can
be either described by the evolution of a properly defined Markov
chain – per session model of routing –, or by a network of backlogged
queues – saturated system. These connections permit characterization
of properly defined deliverability and stability conditions in terms of
the spectral radius of a stochastic routing matrix.

For the per-session model of routing we introduced stochastic
routing algorithms that maximize the convergence rate of the Markov
chain, entailing a maximization of the packet delivery probability
for a fixed, sufficiently large delay n. This routing approach is
meaningful in the context of delay sensitive traffic involved in, e.g,
voice and/or video conferencing. We further found an expression
for the average packet delay measured by the number of hops and
identified the corresponding optimal routing scheme that minimizes it.
Interestingly, we proved that the optimum routing matrix in this case
can be obtained as the shortest path route in a fully connected graph
with the arc between users having a weight inversely proportional to
the corresponding delivery ratio.

For the saturated system we defined different routing algorithms
corresponding to different maximization criteria of the arrival rate
vector. These approaches include maximization of the rate of the least
favored user (max-min), maximization of the sum of rates (max-sum)
and of the product of rates (max-prod). We showed that all these prob-
lems can be efficiently solved using convex optimization techniques.
Rather unexpectedly, we also established equivalence between max-
min routing with a global traffic constraint and minimum average
delay routing.

In future research we plan to address additional topics related
with the optimization framework introduced here. One direction is to
consider different optimality criteria that were omitted due to space
considerations. These include lower and upper bounds in user rates,
robust formulations in the presence of fading, and different network
topologies. Another direction is to develop algorithms for distributed
implementations of optimal routing. These can be obtained along the
lines of primal and dual decomposition for network optimization as
in, e.g., [5], [16], [23]. A distributed implementation of algorithms
proposed here has been reported in [21]. We will also work on
generalizing the approach in Sections III and IV to ad-hoc networks.
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