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ABSTRACT

We consider the problem of finding multihop routes in a wireless
ad-hoc network jointly with scheduling transmission times of differ-
ent information flows. Taking into account the unreliable nature of
wireless channels, we derive a joint stochastic routing-scheduling al-
gorithm whereby schedules and routes are selected at random with
certain probabilities that we optimize. We prove that if there exists
a set of (random) schedules and routes ensuring that all queues in
the network are stable, our protocol converges to one such set. Our
approach to the problem is to: i) characterize the set of scheduling-
routing policies guaranteeing that all queues in the network are sta-
ble; ii) show that this can be reduced to finding a set of auxiliary
variables in a convex polyhedron; and iii) use dual decomposition
techniques to develop an algorithm converging to a point inside this
convex polyhedron.

1. INTRODUCTION

In lieu of a fixed infrastructure, wireless ad-hoc networks count on
peers relaying packets for each other in order to establish and carry
on communications. Among the challenges nodes face in such net-
works, we find the problems of establishing routes to intended des-
tinations, adjusting transmission rates to avoid network congestion
and scheduling transmission times among different flows. For a first
approach to defining our problem, consider an ad-hoc network with
J terminals {Uj}J

j=1. Terminal Uj intends to send packets to Uk at
a rate of ρkj packets per unit time while at the same time collaborat-
ing in forwarding packets from nearby nodes. In principle, there are
three questions that Uj wants to answer:

(i) Can the network deliver my packets to Uk at a rate ρkj?
(ii) If so, which among my neighboring nodes is a convenient next

hop? Besides, since I am also collaborating in routing pack-
ets from nearby nodes what are convenient next hops for the
packets I am receiving from my neighbors?

(iii) How should I divide my transmission time among the informa-
tion flows I am serving?

To answer these questions we respectively need to solve the so called
flow control, routing and scheduling problems. In the context of
wired networks, the landmark work in [10, 11] offers a joint solu-
tion to these three problems through the “back-pressure” algorithm
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whereby routing-scheduling decisions are based on the difference
between queue lengths of adjacent terminals. It is shown that if there
exists a routing-scheduling policy affording delivery rates ρkj from
Uj to Uk, then the back-pressure algorithm is one such policy.

Wireless networks are further complicated by the unreliable na-
ture of wireless connections. To be specific, let Rij denote the prob-
ability that a packet transmitted by user Uj is correctly decoded by
user Ui. In a wired network the reliability Rij is either very close to
1, if there is a (physical) link between Uj and Ui, or 0, if there is not.
In a wireless network however, the whole range of Rij values may
and indeed happen in practice, as testified by experimental measure-
ments [1]. In the context of routing, a number of works deal with
links of intermediate reliability by finding shortest path routes in
graphs with link metrics that depend on Rij ; see e.g., [6]. In particu-
lar, the link cost 1/Rij that penalizes but does not preclude the use of
unreliable links has found widespread acceptance [4]. An alternative
approach to shortest path routing is to formulate routing algorithms
as network utility optimization problems based on the matrix R with
entries Rij . It has been recently shown that many routing schemes
can be formulated based on R as convex optimization problems thus
ensuring algorithmic tractability [8]. Furthermore, dual decomposi-
tion techniques can be used to solve these optimization problems in
a distributed manner [9].

Our goal in this paper is to develop a joint routing-scheduling
protocol that given a set of rates ρkj finds a set of routes and sched-
ules so that all queues in the network are stable. If such set of routes
does not exist, the protocol will tell so. The random nature of wire-
less channels lends itself naturally to stochastic routing-scheduling
policies. At a given slot, user node Uj schedules destination Uk by
transmitting the packet to (i.e., routing through) Ui with a certain
probability Tkij . Instead of a routing table, a stochastic routing-
scheduling policy finds a set of probability matrices {Tk}K

k=1 with
entries Tkij ; where K denotes the number of destinations, see Sec-
tion 2. Our approach to finding a policy that stabilizes all queues in
the network, when this is possible, is as follows:

(i) Given rates ρkj we characterize the stability region S of joint
scheduling-routing policies {Tk}K

k=1 guaranteeing that all the
queues in the network are stable.

(ii) We show that the problem of finding a routing policy in S can
be reduced to the problem of finding a set of auxiliary variables
{Uk}K

k=1 in a convex polyhedron S ′.
(iii) Finding variables {Uk}K

k=1 in S ′ is posed as a convex opti-
mization problem, which allows dual decomposition techniques
to find iterates {Uk(n)}K

k=1 converging to a point {Uk∞}K
k=1

in S ′.
(iv) The routing probabilities {Tk}K

k=1 are obtained from the aux-
iliary variables {Uk∞}K

k=1 via a closed-form transformation.
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2. PROBLEM FORMULATION

Consider a wireless ad-hoc network with J terminals {Uj}J
j=1 col-

laborating to support a set of ongoing communications. Without loss
of generality, suppose that the first K terminals {Uk}K

k=1 are desti-
nations of packets randomly generated at other terminals, with ρkj

denoting the rate at which Uj generates packets whose intended des-
tination is Uk. To exemplify notation consider a network with J/2
bidirectional communications between pairs of nodes Uj , Uk(j). In
this case we would have that: i) every node is a destination, i.e.,
K = J ; ii) the arrival rate is null except for communicating pairs,
i.e., ρkj = 0 when k 6= k(j); and iii) arrival rates ρkj 6= 0 if and
only if ρjk 6= 0. In general, some nodes may not be receiving pack-
ets in which case K < J ; some Uk node may receive packets from
more than one source implying that ρkj 6= 0 for more than one j;
and some Uj node may not be sending packets resulting in ρkj = 0,
∀ k. We assume that the random processes generating packets are
stationary and define the vectors ρk := [ρk1, . . . , ρkJ ]T of rates
with destination Uk. We further convene ρkk = 0.

Terminals transmit at random with probabilities µ := [µ1, . . . ,
µJ ]T . We describe the network topology by the pairwise correct
detection probabilities Rij that we define as the probability of Ui

correctly decoding a packet transmitted by Uj ; i.e.,

Rij = Pr{Ui decodes Uj}. (1)

We arrange these probabilities in the reliability matrix R with (i, j)-
th entry Rij . The matrix R is a function of the transmission proba-
bilities µ, transmitted power and other parameters pertaining to the
physical and medium access layers but is assumed given for our pur-
poses. Counting acknowledgements from Ui, node Uj can estimate
Rij as the ratio between the number of acknowledgements received
over the number of packets sent to Ui.

At each time slot, a terminal Uj that decides to transmit a packet
is faced with a scheduling and a routing decision. Of the intended
destinations {Uk}K

k=1,k 6=j , node Uj has to decide which one it is go-
ing to serve, i.e., schedule, in the current slot. Given that it chooses
to send a packet whose final destination is Uk, node Uj chooses a
convenient next hop {Ui}J

i=1,i6=j , i.e, Uj routes the packet through
Ui.

2.1. Stochastic routing-scheduling

Recall that Tkij is the probability of Uj scheduling Uk, and routing
the packet through Ui. Consequently, at any slot, say the n-th, Uj de-
cides to transmit with probability µj , if it chooses so, it then selects a
final destination Uk and a next hop Ui with the pair (Uk, Ui) chosen
with probability Tkij . If the transmission is successful, something
that happens with probability Rij , the packet moves to Ui’s queue.
Otherwise, the packet stays at Ui to be later retransmitted, possibly
to a different node. Since at any slot in which Uj transmits it has to
serve some node we have that

KX
k=1

JX
i=1

Tkij = 1, ∀ j 6= k. (2)

We also have Tkik = 0, ∀ i and Tkjj = 0, ∀ j, respectively meaning
that a destination Uk does not forward its own packets and that Uj

does not route packets through itself. For future reference define the
matrix Tk ∈ RJ×J , with (i, j)-th element Tkij .

To characterize the evolution of packets through the network we
define a third matrix Kk with elements Kkij denoting the probabil-
ity that a packet with final destination Uk moves from Uj’s to Ui’s

queue. For i 6= j, this happens if and only if the pair of destination
and next hop (Uk, Ui) is chosen by Uj and the packet is correctly
decoded, that is

Kkij = TkijRij , i 6= j. (3)

If the packet does not move from Uj to some Ui 6= Uj , it stays at
Uj , which implies that Kkjj = 1 −

PJ
i=1,i6=j Kkij . The latter can

be more compactly written as KT
k 1 = 1.

The constraints in (2) and (3) define the set of all possible joint
scheduling-routing strategies that can be implemented in a network
with reliability matrix R. To simplify subsequent notation let us
summarize the discussion by defining the feasible set

F :=
n
{Tk}K

k=1, {Kk}K
k=1 (4)

KX
k=1

JX
i=1

Tkij = 1, j 6= k; Tkik = 0,∀i; Tkjj = 0,∀j

Kkij = TkijRij , i 6= j; KT
k 1 = 1

o
that we interpret as the set of all possible scheduling-routing matrices
{Tk}K

k=1 and associated packet evolution matrices {Kk}K
k=1. Our

goal is to find a set of joint scheduling-routing matrices {Tk}K
k=1

such that the system is stable [5].

3. CENTRALIZED FEASIBILITY PROBLEM

To characterize the stability region, note that Uj’s k-th queue is
loaded with packets generated at Uj and packets received from other
terminals. Let λjk denote the aggregate arrival rate at Uj’s k-th
queue and λo

jk the corresponding departure (output) rate. The queue
balance equations yield the relation

λkj = ρkj +

JX
j=1

Kkijλ
o
kj ≤ ρkj +

JX
j=1

Kkijλkj (5)

where the inequality comes from the fact that λjk = λo
jk when the

queue is stable and λjk < λo
jk when it is not. Upon defining the

vector λk := [λk1, . . . , λkJ ]T , we can rewrite (5) as

(I−Kk)λk ≤ ρk (6)

with equality achieved when all queues are stable.
From (6) we can obtain a condition ensuring that the system is

stable as stated in the following proposition:

Proposition 1 For a given set of required rates {ρk}K
k=1, define the

set

S
�
{ρk}K

k=1

�
:=

8><
>:{Tk}K

k=1 :ρk≤(I−Kk)λk; 0≤
KX

k=1
k 6=j

λkj≤µj

9>=
>;
(7)

where we implicity require
�
{Tk}K

k=1, {Kk}K
k=1

	
∈ F with F as

in (4). Then, for a given set of matrices {Tk}K
k=1 we have:

(i) if {Tk}K
k=1 is strictly inside S({ρk}K

k=1); i.e., if {Tk}K
k=1 ∈

S({ρk}K
k=1) − ∂S({ρk}K

k=1) all queues in the network are
stable;

(ii) if {Tk}K
k=1 /∈ S({ρk}K

k=1) at least one queue is unstable.



Using Proposition 1 we reformulate our goal as developing an
algorithm which for a required set of rates {ρk}K

k=1 finds a set of
matrices {Tk}K

k=1 so that {Tk}K
k=1 ∈ S({ρk}K

k=1). However,
finding a point – i.e., set of matrices {Tk}K

k=1 – in S
�
{ρk}K

k=1

�
is computationally difficult. Among other conditions, a set of ma-
trices {Tk}K

k=1 ∈ S
�
{ρk}K

k=1

�
is such that the constraints ρk ≤

(I−Kk)λk are satisfied for some λk. This is a bilinear inequality,
implying that our scheduling-routing problem belongs to the class of
(computationally expensive) bilinear programs.

Fortunately, we can exploit the structure of the constraints to
reformulate the problem as we state in the following proposition.

Proposition 2 For a given set of required rates {ρk}K
k=1 consider

matrix variables
�
{Uk}K

k=1, {Lk}K
k=1

	
∈ F and define the set

S ′
�
{ρk}K

k=1

�
=

(
{Uk}K

k=1 :ρk≤(I−Lk)1; 0≤
KX

k=1

JX
i=1

Ukij≤µj

)
.

(8)
Consider the transformation T ′kij = Ukij/

PK
k=1

PJ
i=1Ukij and de-

fine the set

S ′′
�
{ρk}K

k=1

�
=

(
{T′k}K

k=1 : T ′kij =
UkijPK

k=1

PJ
i=1Ukij

)
(9)

where {Uk}K
k=1 ∈ S ′

�
{ρk}K

k=1

�
. Then, the sets S

�
{ρk}K

k=1

�
in (7)

and S ′′
�
{ρk}K

k=1

�
in (9) are equal, i.e.,

S ′′
�
{ρk}K

k=1

�
= S

�
{ρk}K

k=1

�
. (10)

Using Proposition 2 the routing-scheduling problem reduces to find-
ing a set of matrices {Uk}K

k=1 such that

ρk≤(I−Lk)1 (11)

0 ≤
KX

k=1

JX
i=1

Ukij ≤ µj , j 6= k; Ukik = 0,∀i; Ukjj = 0,∀j

Lkij = UkijRij , i 6= j; LT
k 1 = 1

We then find the routing matrices {Tk}K
k=1 with the transformation

Tkij = Ukij/
PK

k=1

PJ
i=1Ukij .

Different from the computationally challenging problem of find-
ing {Tk}K

k=1 ∈ S
�
{ρk}K

k=1

�
, finding {Uk}K

k=1 ∈ S ′
�
{ρk}K

k=1

�
is computationally tractable. Indeed, since S ′

�
{ρk}K

k=1

�
is defined

by a set of linear equalities and inequalities, finding {Uk}K
k=1 ∈

S ′
�
{ρk}K

k=1

�
is a convex feasibility problem that can be efficiently

solved using e.g., convex optimization tools [3]. In particular, dual
decomposition techniques – see e.g., [7] – can be used to obtain a
decentralized protocol based only on communication with adjacent
nodes that converges to a point {Uk}K

k=1 ∈ S ′
�
{ρk}K

k=1

�
. This, we

pursue next.

4. STOCHASTIC SCHEDULING-ROUTING PROTOCOL

To obtain a protocol based on one-hop communications with adja-
cent nodes, we start by defining the index set

a(j) := {i : Rij 6= 0, i 6= j} (12)

so that the nodes adjacent to Uj are those nodes Aj := {Ui}i∈a(j)

that can decode Uj’s transmission with non-zero probability. We
assume that adjacency is a symmetric relationship, i.e., i ∈ a(j)

if and only if j ∈ a(i), which is necessarily true in any practical
network. We also define the index set of destinations Uk that are
served by Uj as

c(j) := {k : Tkij 6= 0, for some i ∈ c(j)}. (13)

With these definitions we can rewrite the rate constraint ρk ≤ (I−
Lk)1 as

ρkj ≤ 1−
X

i∈a(j)

Lkji =
X

i∈a(j)

Lkji −
X

i∈a(j)

Lkij (14)

where in obtaining the equality we used that 1−Lkjj =
P

i∈c(j) Lkji.
Since we eliminated Kkjj from the rate constraint we can now use
(3) to obtain

ρkj ≤
X

i∈a(j)

UkjiRji −
X

i∈a(j)

UkijRij . (15)

Consider now the vectors ukj := Uka(j)j containing the probabil-
ities of Uj transmitting to adjacent nodes in a(j) packets with final
destination Uk. Likewise, let u′kj := Ukja(j) be the probabilities
with which Uj’s adjacent nodes send packets to Uj with destination
Uk. Upon defining rj = Ra(j)j and sj = Rja(j) containing the
corresponding correct detection probabilities we can rewrite (15) as

ρkj ≤ rT
j ukj − sT

j u′kj (16)

We can now define a scheduling-routing protocol as one that lets
every terminal Uj find a set of vectors {ukj}k∈c(j) satisfying the
constraints [cf. (11) and (16)]

ρkj ≤ rT
j ukj − sT

j u′kj (17)X
k∈c(j)

tT
k 1 ≤ µj , ukj ≥ 0 (18)

The constraints in (18) involve only Uj’s transmission probabilities
and can be locally enforced in the sense that Uj can find vectors
{tk}k∈c(j) satisfying (18). The constraint in (17), however, also
involves transmission probabilities of Uj’s adjacent nodes. To deal
with the latter we introduce Lagrange multipliers pkj associated with
the constraint ρkj ≤ rT

j ukj − sT
j u′kj . Define the vector of mul-

tipliers pk := [pk1, . . . , pkJ ]T , the vector of adjacent multipliers
p′kj := pkc(j) and consider the following iteration:

Primal iteration: For given local multipliers pkj and adjacent mul-
tipliers p′kj(n) define the primal iterate as

ukj(n) =
rj

α
·
�
1pkj(n)− p′kj(n)− βj1

�+ (19)

where βj > 0 is a scaling constant so that
P

k∈c(j) t
T
kj(n)1 =

µj and [ ]+ denotes projection in the positive orthant.

Dual iteration: For given local and neighboring iterates ukj(n) and
u′kj(n) update the dual iterates by

pkj(n+1)=
h
pkj(n)+ γ

�
ρkj−rT

j ukj(n)+sT
j u′kj(n)

�i+
.

(20)

The iteration described by (19) and (20) is a dual decomposition
algorithm [2] to solve the feasibility problem [3] in (17)-(18). As
such, it can be shown to converge to a solution of the feasibility
problem as we state in the following proposition.



Algorithm 1 Primal iteration
1: Receive dual iterates p′kj(n) from adjacent nodes Aj

2: Update primal iterates using (19):
ukj(n) =

rj

2α
·
�
1pkj(n)− p′kj(n)− βj1

�+
3: Transmit primal iterates ukj(n) to adjacent nodes Aj

4: Routing probabilities for current slot:

tkj(n) =
�P

k∈c(j) u
T
kj(n)1

�−1

ukj(n).

Algorithm 2 Dual iteration
1: Receive primal iterates u′kj(n) from adjacent nodes Aj

2: Update dual iterates using (20):
pkj(n + 1) =

�
pkj(n) + γ

�
ρkj − rT

j ukj(n) + sT
j u′kj(n)

��+
3: Transmit dual iterates pkj(n + 1) to adjacent nodes Aj

Proposition 3 Consider a given set of rates {ρk}K
k=1 and iterates

defined by (17)-(18). If the stability region S
�
{ρk}K

k=1

�
is non

empty, then, for sufficiently small γ > 0

lim
n→∞

{Uk(n)}K
k=1 := {Uk∞}K

k=1 ∈ S ′
�
{ρk}K

k=1

�
. (21)

When the stability region is nonempty Proposition 3 ensures that
the iteration (17)-(18) succeeds in finding vectors {ukj(n)}k∈c(j)

that satisfy the conditions in (17) and (18), from were we conclude
that the corresponding {Uk(n)}K

k=1 ∈ S ′
�
{ρk}K

k=1

	
as n → ∞.

We then use the transformation

tkj(n) =

0
@ X

k∈c(j)

uT
kj(n)1

1
A
−1

ukj(n). (22)

Defining the matrices {Tk(n)}K
k=1 with columns Tka(j)j(n) =

tkj(n) we have that {Tk}K
k=1(n) ∈ S ′′

�
{ρk}K

k=1

	
[cf. (9), (22)

and {Uk(n)}K
k=1 ∈ S ′

�
{ρk}K

k=1

	
]. Using Proposition 2 we then

conclude that {Tk(n)}K
k=1 ∈ S

�
{ρk}K

k=1

	
from where Proposi-

tion 1 guarantees that routing with probabilities tkj(n) ensures that
all queues in the network are stable. The corresponding stochastic
routing-scheduling protocol is shown in Algorithms 1 and 2, where
steps 1 and 3 ensure that variables are properly communicated.

4.1. Interpretation

As is often the case in dual decomposition algorithms, the multipliers
pkj can be interpreted as prices. Let us thus define pkj as the price
that Uj charges for handling packets destined to Uk. The profit that
Uj obtains from this k-th flow is

Pkj = pkjρkj − uT
kj(rj · p′kj) + pkjs

T
j u′kj (23)

where the first term is charged to the upper layers, the second term is
payed to adjacent nodes that receive Uj’s packets and the last term is
charged to adjacent nodes. For given prices, Uj wants to maximize
Pj :=

P
k∈c(j) Pkj .

However, Uj’s profits are partly determined by t′kj , a variable
chosen by Uj’s neighbors. Since, it cannot choose the latter directly,
Uj resorts to optimizing a bound on the profits. Considering that
in order to ensure stability it should be ρkj + sT

j t′kj ≤ tT
kjrj , the

profits of Uj are bounded by

Pkj ≤ Qkj = pkju
T
kjrj − uT

kj(rj · p′kj)

= uT
kj

�
pkj − p′kj · rj

�
(24)

-
(k, j)

6akj

βj

Fig. 1. The primal iteration in (19) is a form of waterfilling on the
price differences Rij/α [pkj(n)− pki(n)] (turn the page around).
The sum of the gray squares is the amount of water µj with βj de-
noting the water level. When pkj(n)−pki(n) < βj no transmission
probability is assigned to Ui for this flow. The water level is always
positive.

The potential profitQkij that Uj expects to make by sending packets
through Ui is

Qkij = UkijRij [pkj(n)− pki(n)] (25)

which has the simple interpretation of being the expected number of
packets that Ui receives from Uj times the difference between the
price pkj(n) charged by Uj and the price pki(n) charged by Ui.

Lacking control over its profits Pkj , Uj aims to maximize its
potential profits Qkij . This is what (19) does. The transmission
probability that Uj assigns to Ui is

ukij(n) =
Rij

α
[pkj(n)− pki(n)− βj ]

+ . (26)

Ignoring βj we see that the transmission probability assignment is
proportional to the potential profit that Uj expects to make by send-
ing packets to Ui. The constant βj simply enforces a form of water-
filling as illustrated in Fig. 1.

Eq. (20) is the corresponding price update. If ρkj + sT
j t′kj <

tT
kjrj , then Uj is receiving less packets than those expected. That

implies the price Uj charges for handling packets is excessive and
pkj is decreased by an amount proportional to tT

kjrj − ρkj + sT
j t′kj .

If on the other hand ρkj +sT
j t′kj > tT

kjrj , then Uj is receiving more
packets than expected, implying that the price should be correspond-
ingly increased.

5. SIMULATIONS

We consider a wireless ad-hoc network with J = 100 nodes ran-
domly deployed in a rectangle of dimensions 5Km.× 3Km.. Every
node transmits with probability µj = 0.5 and wants to deliver pack-
ets to a randomly chosen destination at a rate ρjk(j) = 0.1 packets
per unit time. The reliability matrix R is represented in Fig. 2.

The convergence of Algorithms 1-2 to a point in the stability re-
gion is illustrated in Fig. 3. Note that after 20 iterations, all nodes are
getting a rate of at least ρjk(j)(n) = 0.08. Interpreting convergence
as the point at which the achieved rate is 90% of the required rate
(ρjk(j)(n) = 0.09 in our example) it takes about 40 iterations for
the slowest node to converge. After 140 iterations all rates ρjk(j)(n)
are within 3% of the required rate.

Simulation of packet transmissions is depicted in Fig. 4 where
we show the routes followed by 100 packets transmitted between a
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Fig. 2. A randomly generated ad-hoc network with 100 nodes uni-
formly distributed in a rectangle of 5Km. × 3Km.; the color index
represents the value of Rij that is generated according to the empir-
ical distribution in [4] (only values Rij > 0.3 are shown).

randomly selected pair of nodes. It is interesting how the proposed
protocol divides the load among many different routes.

6. CONCLUSIONS

We introduced a stochastic joint-scheduling routing protocol to sup-
port a set of required rates {ρk}K

k=1. We showed that as long as
there exists a set of routes and schedules leading to stable queues,
the proposed protocol summarized by Algorithms 1 and 2 ensures
that all queues in the system are stable.
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