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ABSTRACT

We deal with distributed estimation of deterministic vector param-
eters using ad hoc wireless sensor networks (WSNs). We cast the
decentralized estimation problem as the solution of multiple convex
optimization subproblems. Using the method of alternating multi-
pliers we derive algorithms which are decomposable into a set of
simpler tasks suitable for distributed implementation. Different from
existing alternatives, our approach does not require knowing the de-
sired estimator in closed-form thus allowing for distributed nonlin-
ear estimation. Our algorithms have guaranteed convergence under
ideal channel links, while they exhibit noise resilience provably es-
tablished for the distributed best linear unbiased estimator (BLUE).

Index Terms— Distributed Estimation, Distributed Algorithms

1. INTRODUCTION

A popular application of WSNs is decentralized estimation of un-
known deterministic signal vectors using samples collected across
sensors. The estimation task can be performed iteratively in a dis-
tributed fashion based on successive refinements of local estimates
maintained at individual sensors. Each iteration of the estimation
algorithm comprises a communication step where the sensors inter-
change information with their neighbors, and an update step where
each sensor uses this information to refine its local estimate. In this
context, estimation of deterministic parameters in linear Gaussian
models was considered in [6] using the notion of consensus averag-
ing. However, consensus averaging schemes are challenged by the
presence of noise (non-ideal sensor links), exhibiting a statistical be-
havior similar to that of a random walk, and eventually diverging [5].

An alternative to consensus averaging uses the notion of mutu-
ally coupled oscillators [1]. Experimental results in [1] suggest that
coupled oscillators exhibit noise robustness, but convergence has not
been established analytically. In addition, [6] and [1] require the de-
sired estimator to be known in closed-form.

Here we focus on decentralized estimation of deterministic pa-
rameter vectors in general (possibly nonlinear and/or non-Gaussian)
data models. Novelties of our approach include: i) formulation of
the desired estimator as the solution of convex minimization sub-
problems that exhibit a separable structure and are thus amenable to
distributed implementation; ii) unlike [1] and [6], it leads to decen-
tralized algorithms even when the desired estimator is not available
in closed-form, as is frequently the case with the maximum likeli-
hood estimator (MLE); and iii) provably noise-resilient algorithms.
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Specifically, we viewMLE as the optimal solution of a separable
constrained convex minimization problem in Section 3, and utilize
the method of alternating multipliers to construct the corresponding
decentralized estimation algorithm. In Section 4 we consider dis-
tributed linear estimation using the BLUE, for which we develop a
noise-robust distributed algorithm. Numerical results in Section 5
demonstrate the merits of our algorithms with respect to (wrt) [1]
and [6].

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider an ad hoc WSN with J sensors. We allow single-hop com-
munications only, so that the j-th sensor communicates solely with
nodes i in its neighborhood Nj ⊆ [1, J ]. Assuming that links are
symmetric, the WSN is modelled as an undirected graph whose ver-
tices are the sensors and its edges represent the available communi-
cation links; see Fig. 1. The graph connectivity is summarized in the
so called adjacency matrix E ∈ RJ×J for which Eji = Eij = 1 if
i ∈ Nj , while Eji = 0 if i /∈ Nj .

The WSN is deployed to estimate a p×1 deterministic unknown
parameter vector s based on distributed random observations {xj ∈
R

Lj×1}Jj=1. The xj observation is taken at the j-th sensor and has
probability density function (pdf) pj(xj ; s). We further assume that
observations are independent across sensors. If pj(xj ; s) is known,
the MLE is then given by

ŝML := arg min
s∈Rp×1

−
JX

j=1

ln[pj(xj ; s)]. (1)

Another estimation scenario arises when the observations adhere to
a model for which E[xj ] = Hjs but different from (1), only the
covariance matrixΣxjxj := E[(xj−E[xj ])(xj−E[xj ])

T ], and the
matrix Hj are known per sensor. This setup arises frequently, and
includes as a special case the popular linear model xj = Hjs+ nj .
A pertinent approach in this scenario is to apply the BLUE, which
for zero-mean uncorrelated sensor observations is given by

ŝBL := (

JX
j=1

HT
j Σ

−1
xjxjHj)

−1
JX

j=1

HT
j Σ

−1
xjxjxj , (2)

where T stands for transposition. Both (1) and (2) will be considered.
In particular, we will develop iterative algorithms based on single-
hop communications that generate time iterates sj(k) so that:

(s1) If pj(xj ; s) is known only at the j-th sensor, the local iterates
converge as k →∞ to the MLE, i.e., limk→∞ sj(k) = ŝML.

(s2) IfΣxjxj ,Hj are known at the j-th sensor and the block matrix

H := [HT
1 . . .HT

J ]T has full column rank, then limk→∞
sj(k) = ŝBL.

The decentralized algorithm developed under scenario (s1) is attrac-
tive for ML estimation in nonlinear data models. The linear esti-
mator considered in (s2) is encountered in many cases of practical
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Fig. 1. An ad-hoc wireless sensor network.

interest. The BLUE is outperformed by the MLE but has lower
complexity and remains applicable even when only {Hj}Jj=1 and

{Σxjxj}Jj=1 are known. Clearly, when xj adheres to a linear model
xj = Hjs+ nj and nj is Gaussian, ŝML = ŝBL and consequently
(s1) coincides with (s2).

The iterates sj(k) will turn out to exhibit resilience to commu-
nication noise. Specifically, if tij(k) ∈ R

p×1 represents1 a vector
transmitted from the j-th to the i-th sensor at time slot k, the corre-
sponding vector rji (k) ∈ Rp×1 received by the i-th sensor is

rji (k) = tij(k) + zji (k), (3)

where zji (k) ∈ Rp×1 represents zero-mean additive white Gaussian
noise (AWGN), at sensor i, assumed uncorrelated across sensors and
time with covariance Σzz = σ2Ip, where Ip denotes the p × p
identity matrix. Furthermore, we assume that:
(a1) The communication graph is connected.
(a2) The pdf pj(xj ; s) is log-concave wrt s.
Similar to [1,6], (a1) ensures utilization of all observation vectors by
the decentralized scheme, while (a2) is satisfied by a number of pdfs
encountered in practice; see e.g., [3].

3. DISTRIBUTED MLE

In this section we consider decentralized estimation of ŝML in (s1),
under (a1) and (a2). Since summands in (1) are coupled through s,
it is not straightforward to decompose the unconstrained optimiza-
tion problem in (1). This prompts us to define the auxiliary variable
sj to represent the local estimate of s at sensor j and consider the
constrained optimization problem

{ŝj}Jj=1 := arg min−
JX

j=1

ln[pj(xj ; sj)], (4)

s. to sj = s̄b, b ∈ B, j ∈ Nb,

where B ⊆ [1, J ] is a subset of “bridge” sensors maintaining local
vectors s̄b that are utilized to impose consensus among local esti-
mates across all sensors. If e.g., B = [1, J ], then (a1) and the con-
straint sj = s̄b, b ∈ B, j ∈ Nb will render sj = si ∀ i, j. In
such a case (1) and (4) are equivalent in the sense that ŝj = ŝML ∀
j ∈ [1, J ]. In fact, a milder requirement on B is sufficient to ensure
equivalence of (1) and (4), as described in the following definition.

Definition 1 Set B is a subset of bridge sensors if and only if

(a) ∀ j ∈ [1, J ] there exists at least one b ∈ B so that b ∈ Nj; and

(b) ∀ b1 ∈ B there exists a sensor b2 ∈ B such that the shortest
path between b1 and b2 has at most two edges.

1Throughout the paper, subscripts denote the sensor at which variables
are “controlled” (e.g., computed at) , while superscripts specify the sensor at
which the variable is communicated to.

For the WSN in Fig. 1 a possible selection of sensors forming a
bridge sensor subset B, i.e., obeying (a) and (b), is represented by
the black nodes. For future reference, the set of bridge neighbors of
the j-th sensor will be denoted as Bj := Nj ∩ B, and its cardinal-
ity by |Bj | for j = 1, . . . , J . Roughly speaking, condition (a) in
Definition 1 ensures that every node has a bridge sensor neighbor;
while condition (b) ensures that all the bridge variables {s̄b}b∈B are
equal. Together, they provide a necessary and sufficient condition
for the equivalence between (1) and (4) as asserted by the following
result [4].

Proposition 1 The optimal solutions of (1) and (4) coincide; i.e.,

ŝML = ŝj , ∀ j ∈ [1, J ], (5)

if and only if B is a subset of bridge sensors as per Definition 1.

3.1. The Algorithm of Alternating Multipliers

Here we solve (1) using the method of multipliers to obtain a dis-
tributed algorithm for computing the MLE ŝML. The method of
multipliers exploits the decomposable structure of the augmented
Lagrangian [2, Chpt. 3]. Let vb

j denote the Lagrange multiplier asso-

ciated with the constraint sj = s̄b, where the multipliers {vb
j}b∈Bj

are kept at the j-th sensor. The augmented Lagrangian for (4) is

La[s, s̄,v] =−
JX

j=1

ln[pj(xj ; sj)] +
X
b∈B

X
j∈Nb

(vb
j)

T (sj − s̄b)

+
X
b∈B

X
j∈Nb

cj
2
‖sj − s̄b‖22 (6)

where s := {sj}Jj=1, s̄ := {s̄b}b∈B and v := {vb
j}b∈Bjj∈[1,J]. The

constants {cj > 0}Jj=1 are penalty coefficients corresponding to the
constraints sj = s̄b, ∀ b ∈ Bj . Combining the method of multi-
pliers with a block coordinate descent iteration [2, Chpt.3], we have
established the following result [4].

Proposition 2 For a time index k consider iterates vb
j(k), sj(k) and

s̄b(k) defined by the recursions

vb
j(k) = vb

j(k − 1) + cj [sj(k)− s̄b(k)] , b ∈ Bj (7)

sj(k + 1) = arg min
sj

[− ln pj(xj ; sj) +
X
b∈Bj

cj
2
‖sj − s̄b(k)‖22

+
X
b∈Bj

(vb
j(k))T [sj − s̄b(k)] (8)

s̄b(k + 1) =
X
j∈Nb

1P
β∈Nb

cβ

h
vb
j(k) + cjsj(k + 1)

i
, b ∈ B

(9)

for all sensors j ∈ [1, J ]; and let the initial values of the Lagrange
multipliers {vb

j(−1)}b∈Bj , the local estimates {sj(0)}Jj=1 and the
consensus variables {s̄b(0)}b∈B be arbitrary. Assuming ideal com-
munication links and the validity of (a1) and (a2), the iterates sj(k)
converge to the MLE ŝML as k →∞; i.e.,

lim
k→∞

sj(k) = lim
k→∞

s̄b(k) = ŝML, ∀j ∈ [1, J ], b ∈ B. (10)

We then say that as k →∞ the WSN reaches consensus.

The recursions in (7)-(9) constitute our distributed (D-) MLE al-
gorithm. All sensors j ∈ [1, J ] keep track of the local estimate
sj(k) along with the Lagrange multipliers {vb

j(k)}b∈Bj . The sen-
sors belonging to B also update the consensus-enforcing variables
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s̄b(k). During the k-th iteration, sensor j receives the consensus
variables s̄b(k) from all its neighbors in the subset B, namely all
b ∈ Bj . Based on these consensus variables, it updates the Lagrange
multipliers {vb

j(k)}b∈Bj using (7), which are then used to compute
sj(k + 1) via (8). After determining sj(k + 1), sensor j transmits
to each of its neighbors b ∈ Bj the vector v

b
j(k) + cjsj(k + 1).

Each sensor b ∈ B receives vb
j(k) + cjsj(k + 1) from all its neigh-

bors j ∈ Nb, and proceeds to compute s̄b(k + 1) using (9). This
completes the k-th iteration, after which all sensors in B transmit
s̄b(k + 1) to all their neighbors j ∈ Nb, which can then initialize
the (k + 1)-st iteration. Note that the cost function in (8) is strictly
convex; thus, the optimal solution sj(k + 1) is unique and can be
obtained using e.g., Newton’s method.

In the presence of noise, s̄b(k) and sj(k) in (7)-(9) are corrupted
as described in (3). Then, these recursions can be thought of as a
stochastic gradient algorithm; see e.g., [2, Sec. 7.8]. This implies
that noise causes sj(k) to fluctuate around ŝML with the magnitude
of fluctuations being proportional to the noise variance. However,
sj(k) is guaranteed to remain within a ball around ŝML with high
probability [4]. This should be contrasted with [5] which suffers
from catastrophic noise propagation.

4. NOISE-ROBUST DISTRIBUTED BLUE

In this section, we consider decentralized estimation of ŝBL in (s2),
under (a1). Similar to Section 3, we write ŝBL as the optimal so-
lution of a constrained convex minimization problem whose con-
straints are exactly the same as in (4), and its cost function has the

form ‖Σ−1/2xjxjHjsj − Σ−1/2xjxj xj‖22 (see [4]). Then, we utilize the
method of alternating multipliers to obtain a decentralized algorithm
with iterates sj(k) converging to ŝBL, and we obtain a recursive
scheme as suggested in Proposition 2 with Eq. (8) replaced by

sj(k + 1) = x̂j −B−1j (
P

b∈Bj v
b
j(k) + cj

X
b∈Bj

s̄b(k)), (11)

where Bj := 2HT
j Σ

−1
xjnxjHj + cj |Bj |Ip, while the vector x̂j is

x̂j := B−1j 2HT
j Σ

−1
xjxjxj . Vector x̂j can be interpreted as a regu-

larized version of the local BLUE (HTΣxjxjHj)
−1HT

j Σ
−1
xjxjxj .

The decentralized algorithm described by the recursions (7), (9) and
(11), abbreviated as D-BLUE, guarantees convergence of all local
estimates to the centralized BLUE i.e., limk→∞ sj(k) = ŝBL under
ideal channel links.

Building on D-BLUE, we will derive another distributed scheme
that exhibits improved noise resilience and is amenable to conver-
gence analysis. To this end, let us initialize the recursions in (7),

(9) and (11) with {vj
b(−1) = 0}j∈[1,J]b∈Bj , {s̄b(−1) = 0}b∈B and

{sj(0) = x̂j}Jj=1. Upon substituting (7), in (9) and (11), and stack-

ing local estimates in the vector s(k) := [s1
T (k) . . . sJ

T (k)]T , and
defining x̂ := [x̂T

1 , . . . , x̂
T
J ]T , we find that the D-BLUE iteration is

equivalent to [4]:

s(k + 1) = s(k)−A1s(k)−A2s(k − 1), (12)

where s(0) = x̂ and s(−1) = 0, and matricesA1 andA2 are found
in [4] to beA1 = (diag(c1|B1| . . . cJ |BJ |)⊗ Ip)B−1− 2B−1WE

and A2 = B−1WE , with B := diag(B1, . . . ,BJ), eb denoting
the b-th column of the adjacency matrix E, and

WE = Dc

X
b∈B

1P
β∈Nb

cβ
(eb ⊗ Ip)(eb ⊗ Ip)TDc, (13)

with Dc := diag(c1, . . . , cJ) ⊗ Ip and ⊗ denoting the Kronecker
product. It follows from (12) that s(k) is a second-order vector AR

process. Careful examination of (9) and (11) reveals that each sen-
sor, say the j-th, updates its local estimate sj(k + 1) using infor-
mation from neighboring sensors within a radius of two hops. In-
deed, sj(k + 1) is updated using the consensus variables s̄b(k) for
b ∈ Bj , formed using the local estimates of all sensors within the set
{Nb}b∈Bj , which contains all the sensors within a distance of either
a single hop or two hops from sensor j. As a result, D-BLUE has the
potential of achieving higher convergence rates wrt [1, 6] because it
utilizes more information across time and space.

Starting from (12), we next develop a decentralized noise-robust
algorithm for BLUE. The idea is to introduce an auxiliary vector
φ(k) := [φT

1 (k) . . .φT
J (k)]T , with φj(k) kept at the j-th sensor.

We will show that successive differences of φj(k) converge to the
BLUE; i.e., limk→∞[φj(k+ 1)−φj(k)] = ŝBL. Intuitively, noise
terms that propagate from φj(k) to φj(k + 1) cancel when consid-
ering the difference φj(k + 1) − φj(k), thus achieving the desired
robustness to noise. This is akin to the principle for noise suppres-
sion utilized in the approach of coupled oscillators in [1], where a
continuous-time differential (state) equation is involved per sensor,
and the information is encoded in the derivative of the state. The
desired discrete-time recursion for φj(k) is introduced next [4].

Proposition 3 If φ(0) = x̂ and φ(−1) = φ(−2) = 0, the second-
order recursion for k ≥ 0

φ(k + 1) = x̂+ φ(k)−A1φ(k)−A2φ(k − 1), (14)

yields iterates φ(k) whose difference δφ(k) := φ(k + 1) − φ(k)
equals the iterates s(k) of (12), i.e., s(k) = φ(k)− φ(k − 1).

Proposition 3 links (14) with (12); and since limk→∞ sj(k) = ŝBL,
we have that limk→∞ φj(k)−φj(k−1) = limk→∞ δφj(k−1) =
ŝBL [cf. Proposition 3]. Thus, for the recursion in (14) the BLUE
is obtained at each sensor from the difference between subsequent
states. Interestingly, (14) can be implemented in a distributed fashion
and is equivalent to the following recursion per sensor [4]

φj(k + 1) = x̂j + (I− cj |Bj |B−1j )φj(k) + cjB
−1
j

X
b∈Bj

ψ̄b(k)

ψ̄b(k) =
X
j∈Nb

cjP
β∈Nb

cβ

ˆ
2φj(k)− φj(k − 1)

˜
, b ∈ B. (15)

In the presence of communication noise, ψ̄b(k) and 2φj(k)−φj(k−
1) in the two recursions of (15) are replaced by ψ̄b(k) + zbj(k) and

2φj(k)−φj(k− 1) + zjb(k), respectively. These recursions imple-
ment the following steps: (i) all sensors j ∈ [1, J ] receive the vectors
ψ̄b(k)+zbj(k) from b ∈ Bj to form the (noisy iterate)φj(k+1); and

(ii) bridge sensors receive 2φj(k+1)−φj(k)+zjb(k) from j ∈ Nb

to form ψ̄b(k + 1). Adding the noise terms in the two equations of
(15) as described, and stacking the first equation for j ∈ [1, J ] we
obtain the noisy version of (14) as

φ(k+1) = x̂+φ(k)−A1φ(k)−A2φ(k−1)+z̄(k)+z̄b(k), (16)

where z̄(k) := [z̄T1 (k) . . . z̄TJ (k)]T and z̄b(k) := [z̄Tb,1(k) . . . z̄Tb,J(k)]T

have entries

z̄j(k) = cjB
−1
j

X
b∈Bj\{j}

zbj(k), z̄b,j(k) = cjB
−1
j

X
b∈Bj ,

j′∈Nb,j
′ �=b

cj′z
j′
b (k)P

β∈Nb
cβ

.

The decentralized algorithm resulting from the recursions in (15)
and its noisy counterpart summarized in (16) is abbreviated as robust
distributed (RD-) BLUE. Next, letA be a 2Jp×2Jpmatrix formed
by the Jp × Jp submatrices [A]11 = IJp − A1, [A]12 = −A2,
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[A]21 = IJp and [A]22 = 0Jp. Furthermore, let λA,i, uA,i and
vA,i denote the ith largest in magnitude eigenvalue of A and the
corresponding right and left eigenvectors, respectively. Define also,
Σz̄z̄b = diag(Σz̄z̄,Σz̄bz̄b) and Σ̄z̄z̄b = diag(Σz̄z̄ + Σz̄z̄b ,0Jp),
whose entries have finite magnitude (since σ2 is finite). Moreover,
let δφ̄(k) := [δφ(k)T δφ(k − 1)T ]T . Interestingly, it turns out
that [4]:

Proposition 4 The RD-BLUE algorithm summarized in (16) reaches
consensus in the mean i.e.,

lim
k→∞

E[δφj(k)] := lim
k→∞

E[φj(k+1)−φj(k)] = ŝBL, j ∈ [1, J ].

MatrixΣn(k) := [(δφ̄(k)−E[δφ̄(k)])(δφ̄(k)−E[δφ̄(k)])T ] con-
verges to

lim
k→∞

Σn(k) = Σ̄z̄z̄b +

2JpX
i=p+1

2JpX
i′=p+1

uA,iu
T
A,i′

1− λA,iλA,i′
vT
A,i

·
»
A1 A1

−I −I
–
Σz̄z̄b

»
AT

1 −I
AT

1 −I
–
vA,i′ . (17)

Furthermore, the entries ofΣn(k) are bounded.

Proposition 4 establishes convergence of RD-BLUE in the mean. It
also shows that even though noise causes the local estimates to fluc-
tuate around BLUE, their variance remains bounded as k → ∞.
Iterates in the consensus average approach of [5] are obtained via
a first-order vector AR process. In order to effect consensus, the
largest eigenvalue of the matrix defining the AR recursion has to be
1. This entails, alas, an unstable AR process and leads to catastrophic
noise propagation. For the coupled oscillators in [1] the consensus
is achieved in the derivative of a continuous-time state. Noise re-
silience is thus expected, and indeed observed in simulations, but
not formally established. As per Proposition 4, RD-BLUE is shown
to achieve consensus in the mean with local iterates remaining within
a ball of consensus with high probability.

5. NUMERICAL EXAMPLES

Here we test the convergence of D-BLUE and RD-BLUE, and com-
pare them with the coupled oscillators (CO) based BLUE in [1] and
the consensus average (CA) BLUE in [6]. Furthermore, we examine
the noise resilience properties of the aforementioned schemes in the
presence of communication noise. We consider a WSN with J = 60
sensors. Nodes in the WSN are randomly placed in the unit square
[0, 1] × [0, 1] with uniform distribution. Each sensor collects 5 ob-
servations, i.e., {Lj}50j=1, while s incorporates p = 2 parameters.
We consider a linear model, where the entries of Hj are random
uniformly distributed over [−0.5, 0.5] and {nj}Jj=1 are zero-mean

AWGN with Σnjnj = 0.5Ip×p. Noise variance σ
2 is adjusted so

that SNR := 10 log10
ŝBL/p

σ2
assumes specific values.

Fig. 2 depicts the average noise variance per sensor, namely the
trace(Σn(k))/J , versus iteration index k, after incorporating noise
in the sensor links so that SNR = 20dB. Specifically, the noise vari-
ance per sensor is computed via ensemble averaging across sensors
and across 50 different realizations of the RD-BLUE,D-BLUE, CO-
BLUE and CA-BLUE. For a fair comparison between RD-BLUE
and CO-BLUE we set the penalty coefficients in RD-BLUE and D-
BLUE to cj = 1/|Bj | for j = 1, . . . , 60, while in CO-BLUE the
corresponding parameter c is set equal to the value that attains the
highest convergence rate. The selected parameters {cj}60j=1 guar-
antee that the steady-state noise variance for both RD-BLUE and

CO-BLUE is the same with trace(limk→Σn(k)) = 1.4 · 10−3. For
CA-BLUE we adopt the max-degree and Metropolis weights [6]. As
expected, CA-BLUE eventually diverges in the presence of noise.
Notice that the D-BLUE exhibits noise resilience, at the expense
of higher steady-state variance than the RD-BLUE. But RD-BLUE
achieves a higher convergence rate relative to CO-BLUE while the
steady state-noise variance is the same for both schemes. Thus, RD-
BLUE is flexible to tradeoff convergence rate for steady-state error
variance2.
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Fig. 2. Average noise variance per sensor vs. k for D-BLUE, RD-
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