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ABSTRACT

Distributed estimation of random parameter vector is dealt with us-
ing ad hoc wireless sensor networks (WSNs). The decentralized es-
timation problem is cast as the solution of multiple convex optimiza-
tion subproblems and the alternating direction method of multipliers
is employed to derive algorithms which can be decomposed into a
set of simpler tasks suitable for distributed implementation. Differ-
ent from existing alternatives, the novel approach does not require
knowing the desired estimator in closed-form as is generally the case
with the maximum a posteriori estimator (MAP). In addition, a pri-
ori information is accounted for and sensor observations are allowed
to be correlated. The resulting algorithms converge to the central-
ized estimators under ideal channel links, while they exhibit noise
robustness provably established for the distributed linear minimum
mean-square error estimator (LMMSE).

1. INTRODUCTION

A popular application of WSNs is decentralized estimation of deter-
ministic parameters or random signals using observation data col-
lected across sensors. The estimation task can be performed iter-
atively in a distributed fashion based on successive refinements of
local estimates maintained at individual sensors. Each iteration of
the estimation algorithm comprises a communication step where the
sensors interchange information with their neighbors, and an update
step where each sensor uses this information to update its local esti-
mate. In this context, estimation of deterministic parameters in linear
Gaussian models was considered in [9] using the notion of consensus
averaging. Decentralized estimation of Gaussian random parameters
in a scalar linear model was also reported in [3]. Distributed estima-
tion of Markov random fields was pursued in [4], where each sensor
estimates locally a random parameter.

However, consensus averaging schemes are challenged by the
presence of noise (non-ideal sensor links), exhibiting a statistical be-
havior similar to that of a random walk, and eventually diverging [9].
Furthermore, [3, 4] do not account for communication noise.

Here we focus on decentralized estimation of random signals in
general (possibly nonlinear and/or non-Gaussian) data models. Nov-
elties of our approach include: i) formulation of the desired estima-
tor as the solution of judiciously designed convex minimization sub-
problems that have a separable structure and are thus amenable to
distributed processing; ii) decentralized MAP algorithms even when
the desired estimator is not available in closed form, a case where [1]
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and [9] do not apply; iii) provable robustness under communication
noise, and iv) ability to incorporate a priori information and account
for correlated sensor data (not available with [1, 6, 9]). Different
from [4] our distributed MAP and LMMSE estimators account for
communication noise, while LMMSE also allows for arbitrary sen-
sor data correlations.

Specifically, we view MAP estimation as the optimal solution
of a separable constrained convex minimization problem in Section
3, and utilize the alternating direction method of multipliers to con-
struct the corresponding distributed algorithm. In Section 4 we con-
sider distributed LMMSE estimation, for which we develop noise-
robust distributed algorithms. Numerical results in Section 5 corrob-
orate our theoretical findings.

2. PROBLEM FORMULATION AND PRELIMINARIES

Consider an ad hoc WSN comprising J sensors, where only single-
hop communications are allowed; i.e., the j-th sensor communicates
solely with nodes j′ in its neighborhood Nj ⊆ [1, J ]. Communi-
cation links are symmetric and the WSN is modelled as an undi-
rected graph whose vertices are the sensors and its edges represent
the available links; see Fig. 1. The connectivity information is sum-
marized in the so called adjacency matrix E ∈ RJ×J with entries
Ejj′ = Ej′j = 1 if j′ ∈ Nj , while Ejj′ = Ej′j = 0 if j′ /∈ Nj .

The WSN is deployed to estimate a p×1 random parameter vec-
tor s based on distributed random observations {xj ∈ RLj×1}J

j=1.
Without loss of generality both s and xj for j = 1, . . . , J are as-
sumed zero mean. Depending on the available a priori statistical
information that the sensors have about s we consider two estima-
tion scenarios. In the first one, the a priori information about s is
summarized in the probability density function (pdf) p(s), which is
assumed known to all sensors. Conditioned on s, {xj}J

j=1 are as-
sumed independent across sensors, and the associated pdfs p(xj |s)
are known ∀j = 1, . . . , J . Under these assumptions, the MAP esti-
mator can be written as

ŝmap := arg min
s∈Rp×1

−
JX

j=1

(ln[pj(xj |s)] + J−1 ln[p(s)]). (1)

The second scenario arises when only the first and second order
statistics associated with s and xj are known across the network; i.e.,
when sensors know only the (cross-) covariance matrices Cxx :=
E[xxT ], Csx := E[sxT ] and Css := E[ssT ], where x := [xT

1 . . .

xT
J ]T contains all the L :=

PL
j=1 Lj sensor observations. Un-

like [1, 6, 9] where the sensor data are assumed to be uncorrelated,
Cxx here allows for arbitrary correlation among sensor data. Specif-
ically, sensor j has available Cxj := [Cxjx1 . . .CxjxJ ] and Csxj .
These matrices can be acquired either from the physics of the prob-
lem, or, during a training phase. Notwithstanding, each sensor does
not have to know the entire matrices Cxx and Csx but only part of
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Fig. 1. An ad-hoc wireless sensor network.

them containing 1/J of the total covariance information. A pertinent
approach in this setup is to form the LMMSE, see e.g., [5]

ŝlmmse := CsxC
−1
xx x. (2)

We will develop iterative algorithms based on communication with
one-hop neighbors that generate (local) time iterates sj(k) so that:
(s1) If the j-th sensor knows only pj(xj |s) and p(s) , the local iter-
ates converge, i.e., limk→∞ sj(k) = ŝmap.
(s2) If only Cxj and Csxj are known at the j-th sensor and the co-
variance matrix Cxx is full rank, then limk→∞ sj(k) = ŝlmmse.

The decentralized MAP estimator in (s1) is of particular impor-
tance for estimation in nonlinear data models since it is optimal in
the sense of minimizing the ‘hit-or-miss’ Bayes risk (see e.g., [5,
pg. 372]). The LMMSE estimator is MSE optimal when considered
within the class of linear estimators; however, it remains applicable
even when only {Csxj}J

j=1 and {Cxjxj}J
i,j=1 are known. Clearly,

if {xj}J
j=1 and s are jointly Gaussian, then ŝmap ≡ ŝlmmse.

The local iterates sj(k) will turn out to exhibit robustness to
communication noise. Specifically, if tj′

j (k) ∈ Rp×1 represents 1 a
vector transmitted from the j-th to the j′-th sensor at time slot k, the
corresponding vector rj

j′(k) ∈ Rp×1 received by the j′-th sensor is

rj
j′(k) = tj′

j (k) + ηj
j′(k) (3)

where ηj
j′(k) ∈ Rp×1 denotes zero-mean additive white noise at

sensor j′. Vector ηj
j′(k) is assumed uncorrelated across sensors and

time with covariance matrix Cηj′ηj′ . Additionally, we assume that:
(a1) The communication graph is connected.
(a2) The pdfs {p(xj |s)}J

j=1 and p(s) are log-concave in s.
Similar to [1, 9], (a1) ensures utilization of all observation vec-

tors by the decentralized scheme, while (a2) is to guarantee unique-
ness even for the centralized MAP estimator and is satisfied by a
number of unimodal pdfs encountered in practice; see e.g., [8].

3. DISTRIBUTED MAP

In this section we consider distributed computation of ŝmap in (s1),
under (a1) and (a2). Since summands in (1) are coupled through s, it
is not straightforward to decompose the unconstrained optimization
problem in (1). We overcome this coupling by introducing the aux-
iliary variable sj to represent the local estimate of s at sensor j and
consider the constrained optimization problem

{ŝj}J
j=1 := arg min

sj

−
JX

j=1

(ln[pj(xj |sj)] + J−1 ln[p(sj)]) (4)

s. to sj = s̄b, b ∈ B, j ∈ Nb

1Subscripts specify the sensor at which variables are computed at, while
superscripts denote the sensor at which the variable is communicated to.

where B ⊆ [1, J ] is a subset of “bridge” sensors maintaining local
vectors s̄b that are utilized to impose consensus among local vari-
ables sj across all sensors. If e.g., B = [1, J ], then (a1) and the
constraint sj = s̄b, b ∈ B, j ∈ Nb will render sj = si ∀ i, j. In
such a case (1) and (4) are equivalent in the sense that ŝj = ŝmap ∀
j = 1, . . . , J . Interestingly, a milder requirement on B is sufficient
to ensure equivalence of (1) and (4), as described next:

Definition 1 Set B is a subset of bridge sensors if and only if

(a) ∀ j ∈ [1, J ] there exists at least one b ∈ B so that b ∈ Nj; and

(b) ∀ b1 ∈ B there exists a sensor b2 ∈ B such that the shortest
path between b1 and b2 has at most two edges.

For the WSN in Fig. 1 a possible selection of sensors to form
a bridge sensor subset B is represented by the black nodes. Hence-
forth, the set of bridge neighbors of the j-th sensor will be denoted
as Bj := Nj ∩ B, and its cardinality by |Bj | for j = 1, . . . , J . In
words, condition (a) in Definition 1 ensures that every node has at
least one bridge sensor neighbor; while condition (b) ensures that
all the bridge variables {s̄b}b∈B are equal. Together, they provide
a necessary and sufficient condition for the equivalence between (1)
and (4) as asserted by the following proposition [7].

Proposition 1 The optimal solutions of (1) and (4) coincide; i.e.,

ŝmap = ŝj , ∀ j = 1, . . . , J, (5)

if and only if B is a subset of bridge sensors.

3.1. Alternating Direction Method of Multipliers

Here we solve (1) using the alternating direction method of multipli-
ers, through which we obtain a distributed algorithm for computing
ŝmap. The method of multipliers exploits the decomposable structure
of the augmented Lagrangian (see e.g., [2, pg. 253]). To this end,
let vb

j denote the Lagrange multiplier associated with the constraint
sj = s̄b, where the multipliers {vb

j}b∈Bj are kept at the j-th sensor.
The augmented Lagrangian for (4) is

La[s, s̄,v] =−
JX

j=1

(ln[pj(xj |sj)] + J−1 ln[p(sj)]) (6)

+
X

b∈B

X
j∈Nb

(vb
j)

T (sj − s̄b) +
X

b∈B

X
j∈Nb

cj

2
‖sj − s̄b‖22

where s := {sj}J
j=1, s̄ := {s̄b}b∈B, v := {vb

j}b∈Bj

j∈[1,J] and the
constants {cj > 0}J

j=1 are penalty coefficients corresponding to the
constraints sj = s̄b, ∀ b ∈ Bj . Combining the method of multi-
pliers with a block coordinate descent iteration [2, Chpt.3], we have
established the following result [7].

Proposition 2 For a time index k, let iterates vb
j(k), sj(k) and

s̄b(k) be defined by the recursions

vb
j(k) = vb

j(k − 1) + cj [sj(k)− s̄b(k)] , b ∈ Bj (7)

sj(k + 1) = arg min
sj

[− ln[pj(xj |sj)]− J−1 ln[p(sj)]

+
X

b∈Bj

cj

2
‖sj − s̄b(k)‖22 +

X

b∈Bj

(vb
j(k))T [sj − s̄b(k)] (8)

s̄b(k + 1) =
X

j∈Nb

1P
β∈Nb

cβ

h
vb

j(k) + cjsj(k + 1)
i
, b ∈ B (9)



∀ j = 1, . . . , J; and let the initial values of the Lagrange multipli-
ers {vb

j(−1)}b∈Bj , the local estimates {sj(0)}J
j=1 and the consen-

sus variables {s̄b(0)}b∈B be arbitrary. Under (a1), (a2) and ideal
communication links, the iterates sj(k) converge to the centralized
ŝmap as k →∞ and the WSN reaches consensus; i.e.,

lim
k→∞

sj(k) = lim
k→∞

s̄b(k) = ŝmap, ∀j ∈ [1, J ], b ∈ B. (10)

Local recursions (7)-(9) form the distributed (D-) MAP algorithm
whereby all sensors j ∈ [1, J ] keep track of the local estimate sj(k)
along with the Lagrange multipliers {vb

j(k)}b∈Bj . The sensors be-
longing to B also update the consensus-enforcing variables s̄b(k).
During iteration k, the j-th sensor receives the consensus variables
s̄b(k) from all its bridge neighbors in b ∈ Bj . Based on these con-
sensus variables, it updates the Lagrange multipliers {vb

j(k)}b∈Bj

using (7), which are then utilized to compute sj(k + 1) via (8).
Then sensor j transmits to each of its neighbors b ∈ Bj the vector
vb

j(k)+cjsj(k+1). Each sensor b ∈ B receives vb
j(k)+cjsj(k+1)

from all its neighbors j ∈ Nb, and proceeds to compute s̄b(k + 1)
using (9). This completes the k-th iteration, after which all sensors
in B transmit s̄b(k+1) to all their neighbors j ∈ Nb, which can pro-
ceed to the (k+1)-st iteration. Notice, that the optimization problem
(8) is strictly convex, implying that the optimal solution sj(k +1) is
unique and can be obtained using e.g., Newton’s method.

In the presence of communication errors, s̄b(k) and sj(k) in (7)-
(9) are corrupted as described in (3). Then, these recursions can be
thought of as a stochastic gradient algorithm; see e.g., [2, Sec. 7.8].
This implies that noise causes sj(k) to fluctuate around ŝmap with
the magnitude of fluctuations being proportional to the noise vari-
ance. However, sj(k) is guaranteed to remain within a ball around
ŝmap with high probability [7]. This should be contrasted with the
consensus averaging scheme in [9] which suffers from catastrophic
noise propagation.

4. NOISE-ROBUST DISTRIBUTED LMMSE

In this section we consider distributed computation of ŝlmmse in (s2)
under (a1), following an approach similar to the one in Section 3.
To this end, we have shown in [7] that ŝlmmse can be obtained as the
optimal solution of

{ŝj , ŷj}J
j=1 := arg min

PJ
j=1 ‖sj − JCsxjy

j
j‖22 (11)

s. to sj = s̄b, yj = ȳb, b ∈ B, j ∈ Nb

Cxjyj = xj , j = 1, . . . , J

where ŝj = ŝlmmse and ŷj = C−1
xx x, while yj := [(y1

j )
T . . . (yJ

j )T ]T

with yi
j ∈ RLi×1 for i = 1, . . . , J . Note that the optimization for-

mulation in (11) involves the additional local variables yj at sensor
j, as well as their consensus counterpart ȳb located at the b-th bridge
sensor. Intuitively, the role of {yj}J

j=1 is to encapsulate the covari-
ance information embedded in C−1

xx x, which is vital for computing
ŝlmmse in (2). Introducing also the Lagrange multiplier wb

j associated
with the constraint yj = ȳb that is maintained at the j-th sensor with
b ∈ Bj , and letting dj denote the corresponding penalty coefficient,
we can form the augmented Lagrangian function for (11) as in (6).
Utilizing once more, the alternating direction method of multipliers,
we have proved the following result [7].

Proposition 3 For each sensor j ∈ [1, J ], and iteration k let iter-
ates vb

j(k), wb
j(k), sy,j(k) and s̄y,b(k) be defined by the recursions

[vb
j(k)T , wb

j(k)T ] = [(vb
j(k − 1))T , (wb

j(k − 1))T ] (12)

+ [cj(sj(k)− s̄b(k))T , dj(yj(k)− ȳb(k))T ], b ∈ Bj

sy,j(k + 1) := [(sj(k + 1))T , (yj(k + 1))T ]T

= x̂j − F−1
j (IL+p −Gj)ζj(k) (13)

s̄y,b(k + 1) := [(s̄b(k + 1))T , (ȳb(k + 1))T ]T (14)

=
X

j∈Nb

diag((
P

β∈Nb
cβ)−1Ip, (

P
β∈Nb

dβ)−1IL)

×
„h

(vb
j(k))T , (wb

j(k))T
iT

+ diag(cjIp, djIL)sy,j(k + 1)

«

where diag(·) denotes a diagonal matrix and

Fj := 2

»
(1 + 0.5cj |Bj |)Ip −JC̄T

sxj

−JC̄sxj J2C̄sxj C̄
T
sxj

+ 0.5dj |Bj |IL

–

ζj(k) := [
X

b∈Bj

(vb
j(k)− cj s̄b(k))T

X

b∈Bj

(wb
j(k)− dj ȳb(k))T ]T

x̂j := F−1
j C̄T

xj
(C̄xjF

−1
j C̄T

xj
)−1xj

Gj := C̄T
xj

(C̄xjF
−1
j C̄T

xj
)−1C̄xjF

−1
j

with C̄sxj := [0p×L1 . . .Csxj . . .0p×LJ ]T and C̄xj := [0Lj×p

Cxj ], while {cj , dj > 0}J
j=1. Assuming ideal links and the validity

of (a1), the iterates sj(k) converge to the LMMSE as k → ∞; i.e.,
for all j ∈ [1, J ] and b ∈ B

lim
k→∞

[sj(k)T , yj(k)T ]T =lim
k→∞

[s̄b(k)T ȳb(k)T ]T

= [ŝT
lmmse (C−1

xx x)T ]T

Following steps analogous to those described for D-MAP, the al-
gorithm described by the local recursions (12)-(14) performs dis-
tributed (D-) LMMSE estimation. Indeed, recursions (12)-(14) ex-
hibit similar structure with those in (7)-(9). Thus, the message ex-
changing protocol that takes place among neighboring sensors dur-
ing iteration k of the D-MAP, can also be applied here after re-
placing sj(k) with sy,j(k), s̄b(k) with s̄y,b(k), and (vb

j(k))T with
[(vb

j(k)T , (wb
j(j))

T ]T .
Relative to [3], the D-LMMSE algorithm is more general since

it neither requires linearity nor Gaussianity in the data model. Fur-
thermore, [3] requires each sensor, say the j-th, to communicate
with all these sensors whose observation data are correlated with xj .
For arbitrary Css and Cxx this may require multi-hop communica-
tion. However, D-LMMSE guarantees convergence to ŝlmmse across
all sensors through single-hop communication. Notice also that D-
LMMSE incorporates distributed inversion of Cxx, through the lo-
cal variables yj(k) which is essential since every sensor has only
a portion of Cxx. A fair comparison between [3] and the present
D-LMMSE algorithm does not appear possible, since the former uti-
lizes information from the inverse covariance matrices which facili-
tates estimation but leaves open the question of how and how costly
acquiring this information is.

4.1. Noise-Resilient D-LMMSE

Starting from the D-LMMSE algorithm in Proposition 3, we will de-
rive a provably noise resilient distributed algorithm that is amenable



to convergence analysis. Toward this end, let us initialize the recur-
sions (12)-(14) with {vb

j(−1) = 0,wb
j(−1) = 0}b∈Bj

j∈[1,J], {s̄y,b(−1)

= 0}b∈B and {sy,j(0) = x̂j}J
j=1. Upon substituting (12) in (13)

and (14), we find that the D-LMMSE local recursions can be rewrit-
ten in a simpler form as follows:

sy,j(k + 1) = [IL+p − F−1
j (IL+p −Gj)D

1
j ]sy,j(k) (15)

+ F−1
j (IL+p −Gj)D

2
j

X

b∈Bj

[2s̄y,b(k)− s̄y,b(k − 1)], j ∈ [1, J ]

s̄y,b(k + 1) =
P

j∈Nb
D2

jDbsy,j(k + 1), b ∈ B (16)

where D1
j := diag(cj |Bj |Ip, dj |Bj |IL), D2

j := diag(cjIp, djIL)

and Db := diag((
P

β∈Nb
cβ)−1Ip, (

P
β∈Nb

dβ)−1IL). Observe
that (15)-(16) are simpler than (12)-(14) in the sense that they avoid
the multipliers vb

j(k) and wb
j(k).

Recursions (15) and (16) constitute an intermediate step based
on which we build next a distributed noise-robust algorithm for D-
LMMSE. The idea is to introduce an auxiliary local variable ϕj(k)
which replaces sy,j(k), and is kept at the j-th sensor. We will
show that the mean of successive differences of ϕj(k) converge
to the LMMSE; i.e., limk→∞E[ϕj(k + 1) − ϕj(k)] = [ŝT

lmmse

(C−1
xx x)T ]T , while the covariance matrix of this difference remains

bounded. Intuitively, noise terms that propagate from ϕj(k) to ϕj(k
+1) cancel when considering the difference ϕj(k + 1) − ϕj(k),
thus achieving the desired robustness to noise. This is akin to the
principle for noise suppression utilized in the approach of coupled
oscillators in [1], where a continuous-time differential (state) equa-
tion is involved per sensor, and the information is encoded in the
derivative of the state. The desired discrete-time recursion for ϕj(k)
is introduced in the following lemma [7].

Lemma 1 If ϕj(0) = x̂j and ϕj(−1) = ϕj(−2) = 0, the second-
order recursions

ϕj(k + 1) = x̂j +
`
IL+p − F−1

j (IL+p −Gj)D
1
j

´
ϕj(k)

+ F−1
j (IL+p −Gj)D

2
j

P
b∈Bj

[2ϕ̄b(k)− ϕ̄b(k − 1)] (17)

ϕ̄b(k + 1) =
X

j∈Nb

D2
jDbϕj(k + 1), b ∈ B, k ≥ −1 (18)

yield iterates ϕj(k) and ϕ̄b(k) whose differences δϕj(k) := ϕj(k)−
ϕj(k − 1) and δϕ̄b(k) := ϕ̄b(k) − ϕ̄b(k − 1) equal the iterates
sy,j(k) and s̄y,b(k) in (15) and (16), respectively.

We already know from Proposition 3 that under (a1) and ideal links
limk→∞ sy,j(k) = [ŝT

lmmse, (C−1
xx x)T ]T ; thus, using Lemma 1

we deduce that as k → ∞ the differences δϕj(k) and δϕ̄b(k)

converge to the vector [ŝT
lmmse, (C−1

xx x)T ]T , i.e., limk→∞ δϕj(k)

= limk→∞ ϕ̄b(k) = [ŝT
lmmse, (C−1

xx x)T ]T .
Next, we deal with noisy communication links. Define the quan-

tities ψ̄b(k) := 2ϕ̄b(k) − ϕ̄b(k − 1) and ψj(k + 1) := 2ϕj(k +

1)−ϕj(k). Note that ψ̄b(k) is equal to the b-th term inside the sum
of (17), and recursion (18) can be replaced by

ψ̄b(k + 1) =
X

j∈Nb

D2
jDbψj(k + 1), b ∈ B. (19)

Notice, that (17)-(18), and the pair (17) and (19) produce the same
sequence of ϕj(k)’s. Actually, when sensors communicate to their
neighbors the vectors ψj(k+1) and ψ̄b(k) the communication noise
incorporated in the recursions on a per step basis is lower than when

exchanging ϕj(k), ϕ̄b(k) and ϕj(k− 1), ϕ̄b(k− 1) separately [7].
In the presence of noise, (17) and (19) become

ϕj(k + 1) = x̂j +
`
IL+p − F−1

j (IL+p −Gj)D
1
j

´
ϕj(k)

+ F−1
j (IL+p −Gj)D

2
j

X

b∈Bj

ψ̄b(k)

+ F−1
j (IL+p −Gj)D

2
j

X

b∈Bj\{j}
ηb

j(k) (20)

ψ̄b(k + 1) =
X

j∈Nb

D2
jDbψj(k + 1) +

X

j∈Nb,j 6=b

D2
jDbη̄

j
b(k + 1). (21)

The steps involved in implementing locally (17) and (19) are:
(i) all sensors j receive the vectors ψ̄b(k) + ηb

j(k) from b ∈ Bj to
form a (noisy) iterate ϕj(k + 1); and (ii) bridge sensors receive the
vector ψj(k + 1) + η̄j

b(k + 1) from j ∈ Nb to form the (noisy)
iterate ψ̄b(k + 1). The distributed algorithm resulting from the lo-
cal recursions (20)-(21) is abbreviated as resilient distributed (RD)
LMMSE.

Pertinent to the ensuing RD-LMMSE convergence analysis is
the global RD-LMMSE recursion formed by stacking φj(k + 1)
for j = 1, . . . , J . For future use, define also the matrices A1 :=
FGdiag(D1

1 . . .D1
J) − 2FGWE , A2 := FGWE with FG :=

diag(F−1
1 (IL+p −G1) . . .F−1

J (IL+p −GJ)) and WE as follows

WE = D2
X

b∈B
(IJ ⊗Db)(eb ⊗ IL+p)(eb ⊗ IL+p)T D2 (22)

where eb denotes the b-th column of the adjacency matrix E, D2 :=
diag(D2

1, . . . ,D
2
J), and ⊗ is the Kronecker product. Upon sub-

stituting (21) in (20), and stacking the local variables ϕj(k) for
j = 1, . . . , J in the vector ϕ(k) := [(ϕ1(k))T . . . (ϕJ(k))T ]T

the RD-LMMSE global recursion is written as [7]

ϕ(k + 1) = x̂ + ϕ(k)−A1ϕ(k)−A2ϕ(k − 1) + η̄(k) + η̄b(k)
(23)

where x̂ := [x̂T
1 , . . . , x̂T

J ]T , and the noise vectors η̄(k) := [η̄T
1 (k)

. . . η̄T
J (k)]T and η̄b(k) := [η̄T

b,1(k) . . . η̄T
b,J(k)]T have entries

η̄j(k) = F̃j

X

b∈Bj\{j}
ηb

j(k), η̄b,j(k) := F̃j

X

b∈Bj ,

j′∈Nb,j′ 6=b

D2
j′Dbη̄

j′
b (k)

where F̃j := F−1
j (I−Gj)D

2
j .

Note that (23) is a recursion with memory 2. Stacking ϕ(k +1)
and ϕ(k), we obtain a first-order recursion that has a 2J(p + L) ×
2J(p + L) transition matrix A formed by the J(L + p)× J(L + p)
submatrices [A]11 = IJp − A1, [A]12 = −A2, [A]21 = IJp

and [A]22 = 0Jp. This recursion as well as the associated transi-
tion matrix A are particularly important for the convergence analysis
of RD-LMMSE. Due to space limitations, we omit the details and
provide directly the main result establishing the noise-resilience of
RD-LMMSE. Let λA,i, uA,i and vA,i denote the ith largest in mag-
nitude eigenvalue of A and the corresponding right and left eigen-
vectors, respectively. Define also Cη̄η̄b = diag(Cη̄η̄,Cη̄bη̄b) and
C̄η̄η̄b = diag(Cη̄η̄ + Cη̄η̄b ,0J(L+p)), whose entries have finite
magnitude (since {Cηjηj}J

j=1 are finite). Moreover, let δϕ̄(k) :=

[(δϕ(k))T (δϕ(k−1))T ]T with δϕ(k) := ϕ(k)−ϕ(k−1). Based
on these definitions, we have shown that [7]:

Proposition 4 The RD-LMMSE algorithm summarized in (23) reaches
consensus in the mean i.e.,

lim
k→∞

E[δϕj(k)] := [ŝT
lmmse (C−1

xx x)T ]T , j = 1, . . . , J.



Matrix Cη(k) := E[(δϕ̄(k) − E[δϕ̄(k)])(δϕ̄(k) − E[δϕ̄(k)])T ]
converges to

lim
k→∞

Cη(k) = C̄η̄η̄b +

2J(L+p)X
i=L+p+1

2J(L+p)X

i′=L+p+1

uA,iu
T
A,i′

1− λA,iλA,i′
vT

A,i

·
»

A1 A1

−I −I

–
Cη̄η̄b

»
AT

1 −I
AT

1 −I

–
vA,i′ . (24)

Furthermore, the entries of Cη(k) are bounded.

Proposition 4 guarantees convergence of the RD-LMMSE in the
mean sense, while the noise covariance Cη(k) remains bounded and
converges to a fixed matrix as k → ∞. Existing schemes, e.g. con-
sensus averaging, are not able to provide distributed computation of
the LMMSE without assuming knowledge of C−1

xx . But even in that
case consensus averaging suffers from catastrophic noise propaga-
tion [9]. RD-LMMSE on the other hand, offers a distributed matrix
inversion procedure, through the updating of yj(k), while guarante-
ing bounded noise variance. Finally, notice that Proposition 4 holds
universally for general data models, allowing for arbitrary correla-
tion patterns among sensor data.

5. NUMERICAL EXAMPLES

Here we test the convergence of D-LMMSE and RD-LMMSE, along
with their noise resilience properties in the presence of communica-
tion errors. We consider a WSN with J = 30 sensors. Nodes in
the WSN are randomly placed in the unit square [0, 1] × [0, 1] with
uniform distribution. Sensor j acquires Lj = 5 observations, and s
has dimensionality p = 2 while Css = diag(0.2, 0.3). We consider
a linear model xj = Hjs + nj , where the entries of Hj are ran-
dom uniformly distributed over [−0.5, 0.5] and {nj}J

j=1 are zero-
mean AWGN with Cnjnj = 0.5ILj×Lj . We further let Cηjηj =

σ2I(L+p), where σ2 is adjusted so that the SNR := 10 log10[ŝlmmse/

(pσ2)] assumes specific values. Fig. 2 depicts the total normalized
error

enorm(k) =
PJ

j=1 ‖sj(k)− ŝlmmse‖2/‖ŝlmmse‖2
versus iteration index k for different SNR values. The penalty coef-
ficients of both D-LMMSE and RD-LMMSE, namely dj , cj , are set
equal to 4. Notice that under ideal channel links both D-LMMSE
and RD-LMMSE iterates coincide as suggested by Lemma 1, and
enorm(k) → 0 as k → ∞ corroborating Proposition 3. In the pres-
ence of reception noise, we average enorm(k) over 50 independent D-
LMMSE and RD-LMMSE estimates. As expected from Proposition
4, enorm(k) obtained from RD-LMMSE exhibits an error floor con-
firming that the noise covariance converges to a matrix with bounded
entries. Note that the D-LMMSE exhibits also noise resilience at the
expense of higher steady-state variance than RD-LMMSE.

6. CONCLUSIONS

We developed distributed algorithms for estimation of random sig-
nals using ad hoc WSNs based on successive refinement of local
estimates. The essence of our approach is to express the desired es-
timator, either MAP or LMMSE, as the solution of pertinent convex
optimization problems. We then used the alternating direction mul-
tipliers method to enable decentralized implementation. Our frame-
work does not require knowledge of the estimator in closed form,
and allows for distributed computation, even of nonlinear estima-
tors. Furthermore, our schemes exhibit resilience to communication
errors. When it comes to decentralized computation of linear estima-
tors, namely the LMMSE, we constructed noise-resilient algorithms
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Fig. 2. Normalized error vs. k for D-LMMSE and RD-LMMSE.

that offer distributed estimation even when the observations across
sensors are correlated.2
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