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ABSTRACT

Distributed algorithms are derived for estimation and smoothing of
nonstationary dynamical processes based on correlated observations
collected by ad hoc wireless sensor networks (WSNs). Specifically,
distributed Kalman filtering (KF) and smoothing schemes are con-
structed for any-time minimum mean-square error (MMSE) optimal
consensus-based state estimation using WSNs. The novel distributed
filtering/smoothing approach is flexible to trade-off estimation delay
for MSE reduction, while it exhibits robustness in the presence of
communication noise. Numerical examples demonstrate the merits
of the proposed approach with respect to existing alternatives.

Index Terms— Distributed estimation and tracking, Kalman
filtering

1. INTRODUCTION

A popular application of WSNs is decentralized tracking of nonsta-
tionary dynamic signals using discrete-time samples collected across
sensors. Different from WSNs that rely on a fusion center, ad hoc
WSNs are robust against fusion center failures and require single
hop communications. In this context, consensus-based suboptimum
Kalman filtering schemes were developed by [1, 4, 7] for estimation
of dynamical state-space processes. These schemes are well moti-
vated for distributed tracking applications but allow only for rela-
tively slow-varying state processes, are inconsistent with the under-
lying observation model and/or, since they are based on variants of
the consensus averaging algorithm of [8], they inherit its noise sen-
sitivity when inter-sensor links are non-ideal.

In this paper, we consider distributed filtering and smoothing of
nonstationary random processes. We take advantage of the inherent
delay present in the consensus phase of the existing distributed KF
approaches in order to build a distributed Kalman smoother (KS)
that trades-off estimation delay for estimation quality (MSE). We
utilize the alternating-direction method of multipliers [3, 5] to ob-
tain ‘consensus-enriched’ observations across sensors and develop
judicious local KS recursions enabling each sensor to form any-time
MMSE optimal filtered and smoothed state estimates. Further, the
distributed smoother is shown resilient to communication noise [5].

After delineating the problem setup in Section 2, we consider
and motivate the problem of smoothing in Section 3.1. Then, we
reformulate the centralized KS, and utilize the alternating-direction
method of multipliers (Section 3.2) to derive the distributed KS re-
cursions across sensors (Section 3.3). Motivating numerical exam-
ples are provided in Section 4 to corroborate our theoretical findings.

Prepared through collaborative participation in the Communication and
Networks Consortium sponsored by the U. S. Army Research Lab under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

2. PROBLEM STATEMENT

Consider an ad hoc WSN comprising J sensors, where only single-
hop communications are allowed; i.e., the j-th sensor communicates
solely with nodes j′ in its neighborhood Nj ⊆ [1, J ]. Communi-
cation links are assumed symmetric, and the WSN is modeled as an
undirected graph whose vertices are the sensors and its edges repre-
sent the available links; see Fig. 1. As in [1,4,7], the communication
graph is assumed to be connected. The WSN is deployed to track a
p × 1 generally nonstationary signal s(t) based on sensor observa-
tions {xj(t)}J

j=1, where t denotes discrete time. The state process
obeys the Gauss-Markov model

s(t) = Φ(t − 1)s(t − 1) + w(t − 1) (1)

where w(t − 1) is zero-mean uncorrelated (in time) Gaussian with
covariance matrix Q(t−1) and s(−1) denotes the initial state which
is also zero-mean Gaussian with covariance Css(−1). Each sensor,
say the j-th, observes the time series

xj(t) = hT
j (t)s(t) + nj(t), j = 1, . . . , J (2)

where nj(t) is zero-mean white Gaussian with variance σ2
nj

(t). Ma-

trices Φ(t− 1) and Q(t− 1), as well as σ2
nj

(t) and hj(t) are avail-
able at sensor j and can be acquired from the physics of the problem.

If x(t) := [x1(t) . . . xJ(t)]T were available at a central loca-
tion, the MMSE optimal estimator of s(t) given {x(t′)}t

t′=0 is the
conditional expectation E[s(t)|x(t), . . . ,x(0)] := ŝ(t|t) which can
be recursively obtained using the KF [2, pg. 177]. If one can afford
a delay i > 0 in estimating the state, a lower MSE can be attained by
forming ŝ(t−i|t) := E[s(t−i)|x(t), . . . ,x(0)] for i = 0, 1, . . . , K
via a fixed-lag Kalman smoother (KS), see e.g., [2, Ch. 8], with K
denoting the maximum lag.

Based on single-hop communications, we wish to derive, dis-
tributed MMSE optimal KS estimates {ŝj(t − i|t; t : t + k)}K

i=0

using k + 1 local iterates (starting at t and ending at t + k as indi-
cated by the arguments after the semicolon) so that:
If sensor j knows Φ(t − 1), Q(t − 1), Css(−1) as well as hj(t)
and σ2

nj
(t), then limk→∞ ŝj(t − i|t; t : t + k) = ŝ(t − i|t) for

i = 0, 1, . . . , K and j = 1, 2, . . . , J .

Relative to [1, 4, 7], the distributed KF and KS approaches de-
veloped here do not limit s(t) to vary slowly, and enjoy well defined
MSE optimality as well as resilience to non-ideal links.

3. OPTIMAL DISTRIBUTED KALMAN SMOOTHING

The information form of the correction step of the centralized KF
for obtaining the filtered estimate ŝ(t|t) and the covariance matrix
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Fig. 1. An ad-hoc wireless sensor network.

C(t|t) of the estimation error s(t)− ŝ(t|t) is (see e.g., [2, pg. 139])

ŝ(t|t − 1) = Φ(t − 1)ŝ(t − 1|t − 1) (3)

C(t|t − 1) = Φ(t − 1)C(t − 1|t − 1)ΦT (t − 1) + Q(t − 1) (4)

C(t|t) = [HT (t)R−1(t)H(t) + C−1(t|t − 1)]−1
(5)

ŝ(t|t) = ŝ(t|t − 1) + C(t|t)HT (t)R−1(t)

× [x(t) − H(t)ŝ(t|t − 1)] (6)

where C(t|t− 1) is the predicted covariance, while H(t) := [h1(t)
. . .hJ(t)]T . If sensors had available local estimates ŝj(t− 1|t− 1)
and the corresponding covariance Cj(t − 1|t − 1), they could run
(3) and (4) in a distributed fashion since Φ(t − 1) and Q(t − 1)
are assumed locally known. However, (5) and (6) can be run only if
quantities

I(t) := HT (t)R−1(t)H(t) =
PJ

j=1 σ−2
nj

(t)hj(t)h
T
j (t) (7)

χ(t) := HT (t)R−1(t)x(t) =
PJ

j=1 σ−2
nj

(t)hj(t)xj(t) (8)

could be somehow estimated at each sensor j. This is possible be-
cause as the last equalities in (7) and (8) show, I(t) and χ(t) can be
expressed as averages with the j-th summand available at sensor j.

Through K + 1 iterations that start at t and end at t + K, [1, 7]

proposed (in our notation) to form estimates Î j(t; t : t + K) and
χ̂j(t; t : t+K) for I(t) and χ(t) respectively, using the consensus
averaging based algorithms in [6] and [8], respectively; see also [4]
where K = 0 was adopted. With these estimates plugged into re-
cursions (5) and (6) it is possible to obtain local filtered estimates
ŝj(t|t; t : t + K), that become available at t + K. Clearly, there is
a delay K in forming these estimates limiting the operation of [1, 7]
only to applications with slow-varying s(t) and/or fast communica-
tions needed to complete K � 1 consensus steps. In addition, [1,7]
inherit the noise sensitivity of [6, 8]. More important, the estimates
ŝj(t|t; t : t + K) in [1, 4, 7] are not MMSE optimal given the avail-
able information in χ̂j(t; t : t + K), unless K → ∞. This subop-
timality renders the distributed KF estimates in [1, 4, 7] inconsistent
with the underlying data model.

3.1. Smoothing versus Filtering

Instead of filtering advocated by [1, 4, 7], the delay incurred by the
K consensus averaging iterations needed to form ŝj(t|t; t : t +
K) prompts us to consider fixed-lag distributed Kalman smoothing.
Specifically, our first idea is to seek at time instant t + K, local
MMSE optimal smoothed estimates, ŝj(t|t + i; t + i : t + K), for
i = 1, . . . , K , that take advantage of all available data during the
interval [t, t + K] and generally yield a lower MSE than the filtered
estimates ŝj(t|t; t : t + K). Further, we wish to obtain zero delay
(K = 0) filtered estimates, i.e., ŝj(t|t; t : t), as well as any-time
MSE optimal estimates {ŝj(t + i − j|t + i; t + i : t + K)}K

j=0, for
i = 0, 1, . . . , K , which are not available in the suboptimal alterna-
tives [1, 4, 7].

To this end, we first express the fixed-lag Kalman smoother (KS)
as a KF applied to a properly augmented state model. Consider the
p(K + 1) × 1 augmented state model [cf. (1)]

s̆(t) =

2
6664

Φ(t − 1) 0 . . . 0
I 0 . . . 0
... . . .

. . .
...

0 . . . I 0

3
7775s̆(t − 1) +

2
6664

w(t − 1)
0
...
0

3
7775

:= Φ̆(t − 1)s̆(t − 1) + w̆(t − 1) (9)

where s̆(t) := [sT (t) . . . sT (t−K)]T , w̆(t) := [wT (t) 0T . . .0T ]T

and Φ̆(t−1) is the matrix multiplying s̆(t−1) after the first equality
in (9). The aggregate observations x(t) := [x1(t) . . . xJ(t)]T obey

x(t) = H̆(t)s̆(t) + n(t) (10)

where H̆(t) := [H(t),0 . . . ,0] and n(t) := [n1(t) . . . nJ(t)]T has
covariance matrix R(t) := diag(σ2

n1(t), . . . , σ2
nJ

(t)). Note that
this state augmentation guarantees that the augmented noise w̆(t−1)
is uncorrelated across time. Then, the centralized KS corresponding
to the augmented state model in (9) and the observation model (10)
can be implemented via (3)-(6) after replacing Φ(t − 1) and H(t)

with Φ̆(t − 1) and H̆(t), respectively. The KS recursions are sum-
marized as follows:

ˆ̆s(t|t − 1) = Φ̆(t − 1)ˆ̆s(t − 1|t − 1) (11)

C̆(t|t − 1) = Φ̆(t − 1)C̆(t − 1|t − 1)Φ̆
T
(t − 1)

+ diag(Q(t − 1),0, . . . ,0) (12)

C̆(t|t) = [H̆T (t)R−1(t)H̆(t) + C̆−1(t|t − 1)]−1
(13)

ˆ̆s(t|t) = ˆ̆s(t|t − 1) + C̆(t|t)H̆T (t)R−1(t)

× [x(t) − H̆(t)ˆ̆s(t|t − 1)] (14)

where C̆(t|t) denotes the covariance matrix associated with the esti-

mation error of the augmented state s̆(t) − ˆ̆s(t|t), while C̆(t|t − 1)
denotes the covariance matrix for the prediction error. Note that the

augmented state estimate ˆ̆s(t|t) := [ŝT (t|t) . . . ŝT (t − K|t)]T ob-
tained from KS, contains both a filtered estimate of the original state
s(t) as well as smoothed estimates of s(t − k), for k = 1, . . . , K ,
using all the available data up to time t.

3.2. The Alternating-Direction Method of Multipliers

Next, we will derive a distributed estimation/smoothing algorithm
that guarantees any-time MSE optimality under ideal links, while
being robust in the presence of communication noise. As it be-
comes apparent from recursions (13)-(14), in order to implement
a distributed KS scheme we will need local estimates of χ̆(t) :=

H̆T (t)R−1(t)x(t), Ĭ(t) := H̆T (t)R−1(t)H̆(t). But since Ĭ(t) :=
diag(I(t),0, . . . ,0) and χ̆(t) := [χT (t),0, . . . ,0]T , it suffices to
devise distributed estimators of I(t) and χ(t). This is done after re-
expressing χ(t) as the optimal solution of the following minimiza-
tion problem (I(t) can be rewritten likewise)

χ(t) := arg min
χ

PJ
j=1 ‖χ − Jhj(t)σ

−2
nj

(t)xj(t)‖2
2 (15)

where the term Jhj(t)σ
−2
nj

(t)xj(t) is locally available at sensor j.
Our goal is to minimize in a distributed fashion the cost in (15),

whose optimal solution yields the desired quantity χ(t). Toward
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this end, since the summands in (15) are coupled through χ we intro-
duce the auxiliary variables {χj}J

j=1 to represent the local estimates
across sensors. Using the χj’s we can re-write (15) as a constrained
separable optimization problem

{χj(t)}J
j=1 := arg min

χj

PJ
j=1 ‖χj − Jhj(t)σ

−2
nj

(t)xj(t)‖2
2

s. to χj = χ̄b, b ∈ B, j ∈ Nb (16)

where B ⊆ [1, J ] is the bridge sensor subset introduced in [5] which
is defined by the following pair of conditions: (i) ∀ j ∈ [1, J ] there
exists at least one b ∈ B such that b ∈ Nj (the bridge neighbors
of sensor j will be denoted by Bj := Nj ∩ B); and, (ii) ∀ b1 ∈
B there exists another sensor b2 ∈ B such that the shortest path
between b1 and b2 has at most two edges. For the WSN in Fig.
1 the filled circles denote a possible selection for B. Each sensor
b ∈ B maintains a local vector χ̄b via which consensus among local
variables χj across all sensors is achieved a fortiori. Specifically,
we have proved in [5] that the two conditions associated with B, and
combined with the connectivity of the WSN, provide a necessary and
sufficient condition ensuring that the constraint set in (16) implies
that χj = χj′ , ∀ j′, j ∈ [1, J ]. This guarantees the equivalence of
(15) and (16) in the sense that χ(t) = χj(t), ∀ j ∈ [1, J ].
Next, consider the augmented Lagrangian of (16) given by

La[φ, φ̄,v] =

JX
j=1

‖χj − Jhj(t)σ
−2
nj

(t)xj(t)‖2
2 (17)

+
X
b∈B

X
j∈Nb

(vb
j)

T (χj − χ̄b) +
X
b∈B

X
j∈Nb

cj

2
‖χj − χ̄b‖2

2

where φ := {χj}J
j=1, φ̄ := {χ̄b}b∈B, v := {vb

j}b∈Bj

j∈[1,J] comprises

the Lagrange multiplier vectors, and cj > 0 are penalty coefficients
corresponding to the constraint χj = χ̄b, ∀ b ∈ B. Using the
alternating-direction method of multipliers [3] to minimize (17), we
can mimic the steps in [5, Appendix B] to prove the following propo-
sition
Proposition 1: For the minimization problem defined in (16) at time
instant t, and per iteration index k consider iterates vb

j(t; t : t + k),
χ̂j(t; t : t + k) and χ̄b(t; t : t + k) defined by the recursions

vb
j(t; t : t + k) = vb

j(t; t : t + k − 1) + cj

ˆ
χ̂j(t; t : t + k)

−χ̄b(t; t : t + k)] , b ∈ Bj (18)

χ̂j(t; t : t + k + 1) = x̂j(t) − (2 + cj |Bj |)−1
X
b∈Bj

[vb
j(t; t : t + k)

− cjχ̄b(t; t : t + k)] (19)

χ̄b(t; t : t + k + 1) =
X

j∈Nb

1P
β∈Nb

cβ

h
vb

j(t; t : t + k)+

cjχ̂j(t; t : t + k + 1)
˜
, b ∈ B (20)

where x̂j(t) := (2+ cj |Bj |)−12Jhj(t)σ
−2
nj

(t)xj(t) and let the ini-
tial values {vb

j(t; t : t − 1)}b∈Bj , {χ̂j(t; t : t)}J
j=1 and {χ̄b(t; t :

t)}b∈B be arbitrary. If sensor links are ideal and the WSN con-
nected, then the local estimates χ̂j(t; t : t + k + 1) and χ̄b(t; t :
t+k+1) converge to χ(t) as k → ∞; i.e., ∀j ∈ [1, J ] and ∀b ∈ B,

lim
k→∞

χ̂j(t; t : t + k) = lim
k→∞

χ̄b(t; t : t + k) = χ(t).

Recall that t is the time index while k is the iteration index which

runs within the interval [0, K] and K < ∞. Through recursions
(18)-(20) all the sensors j ∈ [1, J ] keep track of the local estimate
χ̂j(t; t : t + k) and the Lagrange multipliers vb

j(t; t : t + k) for b ∈
Bj . The sensors that also belong to subset B keep also track of the
consensus enforcing variables χ̄b(t; t : t + k). During time instant
t + k sensor j receives the consensus variable χ̄b(t; t : t + k) from
its bridge neighbors within Bj , and updates its Lagrange multipliers
{vb

j(t; t : t + k)}b∈Bj using (18), which are used next to compute
χ̂j(t; t : t + k + 1) through (19). After completing this iteration
step, sensor j transmits to each of its bridge neighbors b ∈ Bj the
vector c−1

j vb
j(t; t : t+k)+ χ̂j(t; t : t+k +1). Subsequently, each

sensor b ∈ B receives the vectors c−1
j vb

j(t; t : t + k) + χ̂j(t; t :
t + k + 1) from all its neighbors j ∈ Nb and proceeds to compute
χ̄b(t; t : t+k +1) using (20). This completes the k-th iteration and
all the sensors in B proceed to transmit χ̄b(t; t : t + k + 1) to all
their neighbors j ∈ Nb starting the (k + 1)−st iteration.

Using exactly the same approach, a set of recursions similar to
(18)-(20) can be obtained, through which sensor j forms local es-

timates Î j(t; t : t + k) that converge to I(t) as k → ∞. In

the presence of additive noise, convergence of Î j(t; t : t + k)
and χ̂j(t; t : t + k) to I(t) and χ(t) is guaranteed in the mean

sense, while the variance of the noise within Î j(t; t : t + k) and
χ̂j(t; t : t + k) converges to a bounded value ensuring their noise-
resilience (due to space limitations we omit the details which can be
found in [5]).

3.3. The Distributed Kalman Smoother (D-KS)

Following steps similar to those in [5, Section V], we can write the

local recursions for χ̂j(t; t : t + k) and Î j(t; t : t + k) for k =
1, . . . , K , in compact form as

χ̂j(t; t : t + k) = Aj(k)
h
χ̂T (t; t : t + k − 1),

χ̂T (t; t : t + k − 2)
iT

(21)

Î j(t; t : t + k) = Aj(k)
h
ÎT

(t; t : t + k − 1),

ÎT
(t; t : t + k − 2)

iT

(22)

where χ̂(t; t : t+k) := [χ̂T
1 (t; t : t+k) . . . χ̂T

J (t; t : t+k)]T (sim-

ilarly for Î(t; t : t + k)), while the p × 2Jp matrix Aj(k) contains
p × p coefficient submatrices that weigh appropriately only the in-
formation received by the bridge neighbors in Bj , thus allowing for
distributed implementation (Aj(k) can be obtained from [5]). The
local estimates in (21) and (22) are initialized as follows:

χ̂j(t; t : t) = 2J(2 + cj |Bj |)−1hj(t)σ
−2
nj

(t)xj(t),

Î j(t; t : t) = 2J(2 + cj |Bj |)−1hj(t)σ
−2
nj

(t)hT
j (t),

where χ̂j(t; t : t − 1) = 0 and Î j(t; t : t − 1) = 0.

Later on, the estimate χ̂j(t; t : t + k) available at sensor j and
at time instant t + k with k ∈ [0, K], will be utilized as an enriched
information in the distributed (D-) KS algorithm. In order to do that,
it is crucial to determine the data model for χ̂j(t; t : t+k); i.e., how
χ̂j(t; t : t + k) is related with the state vector s(t). Interestingly, it

turns out that χ̂j(t; t : t+k) and Î j(t; t : t+k) are linearly related.
Specifically, we have proved that (details in [5]):

Lemma 1: Under ideal channel links, χ̂j(t; t : t + k) and Î j(t; t :
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t + k) are linearly related; i.e.,

χ̂j(t; t : t + k) = Î j(t; t : t + k)s(t) + n̂j(t; t : t + k) (23)

where n̂j(t; t : t+k) is zero-mean Gaussian with covariance Rj(t; t :
t + k) defined by the recursion

Rj(t; t : t + k) = Aj(k)R(t; t : t + k − 1)AT
j (k) (24)

where R(t; t : t + k) is the 2Jp × 2Jp covariance matrix of the
noise vector [n̂T

1 (t; t : t+k), . . . , n̂T
J (t; t : t+k), n̂T

1 (t; t : t+k−
1), . . . , n̂T

J (t; t : t+k−1)]T . The recursion in (24) is initialized by
R(t; t : t) = diag(R1(t; t : t), . . . , RJ(t; t : t),0Jp×Jp), where
Rj(t; t : t) = (2J)2(2 + cj |Bj |)−2σ−2

nj
(t)hj(t)h

T
j (t). Note that

Rj(t; t : t + k) is the j-th p× p diagonal block of R(t; t : t + k).
In terms of the augmented state model, (23) can be expressed as

χ̂j(t; t : t + k) =
ˆ̆I j(t; t : t + k)s̆(t) + n̂j(t; t : t + k) (25)

where
ˆ̆I j(t; t : t + k) := [Î j(t; t : t + k),0p×p, . . . ,0p×p]. Also,

note that the noise covariance Rj(t; t : t + k) can be computed lo-
cally at sensor j using a set of recursions similar to (18)-(20) (details
in [5, Section VI]).
Our key idea is to view χ̂j(t; t : t + k) in (23) as a ‘consensus-
enriched’ local observation vector per sensor j, and rely on it to de-
rive any-time MSE optimal state estimates. Note that besides xj(t),
quantity χ̂j(t; t : t+k) includes ‘consensus data’ from neighboring
sensors whose number increases as k increases. Since χ̂j(t; t : t+k)
contains more information than xj(t), state estimates based on it
will clearly exhibit improved performance. Each sensor utilizes its
‘consensus-enriched’ model introduced in Lemma 1, as well as its
parameters Î j(t; t : t + k) and Rj(t; t : t + k) to implement local
KS recursions corresponding to the observation model in (25) and
the state model in (9). These local KS recursions as well as the dis-
tributed algorithms for forming the estimates χ̂j(t; t : t + k) and

Î j(t; t : t + k) constitute the D-KS algorithm whose properties are
summarized next:
Proposition 2: Consider per sensor j the local augmented state es-

timates ˆ̆sj(t+k|t+k; t+k : t+K), with k = 0, 1, . . . , K , obtained
at time instant t + K through the KS recursions

C̆j(t + k|t + k − 1; t + k − 1 : t + K) = Φ̆(t + k − 1) (26)

C̆j(t + k − 1|t + k − 1; t + k − 1 : t + K) × Φ̆
T
(t + k − 1)

+ diag(Q(t + k − 1),0, . . . ,0)

ˆ̆sj(t + k|t + k − 1; t + k − 1 : t + K) = Φ̆(t + k − 1) (27)

× ˆ̆sj(t + k − 1|t + k − 1; t + k − 1 : t + K)

C̆j(t + k|t + k; t + k : t + K) = (28)h
ˆ̆IT

j (t + k; t + k : t + K)R−1
j (t + k; t + k : t + K)

×ˆ̆I j(t + k; t + k : t + K)

+C̆−1
j (t + k|t + k − 1; t + k − 1 : t + K)

i−1

ˆ̆sj(t + k|t + k; t + k : t + K) = (29)

ˆ̆sj(t + k|t + k − 1; t + k − 1 : t + K)

+ C̆j(t + k|t + k; t + k : t + K)
ˆ̆IT (t + k; t + k : t + K)

× R−1
j (t + k; t + k : t + K) × ˆ

χ̂j(t + k; t + k : t + K)

− ˆ̆IT (t + k; t + k : t + K) ×ˆ̆sj(t + k|t + k − 1; t + k − 1 : t + K)
i

corresponding to the augmented state model in (9) and the ‘enriched’
observation model in (25). Then, the local estimates ˆ̆sj(t + k|t +

k; t+k : t+K) are MMSE optimal in the sense that ˆ̆sj(t+k|t+k; t+
k : t + K) := E[s̆(t + k)|{χ̂j(t

′; t′ : t′ + K)}t
t′=0, {χ̂j(t

′; t′ :

t + K)}t+k
t′=t+1] which is the MMSE estimator of s̆(t + k) given

the ‘enriched’ local observations available up to time t + K. Fur-
ther, as the number of local iterates K → ∞ the local augmented
state estimates converge to their centralized counterparts; i.e. ∀ j ∈
[1, J ], t = 0, 1, . . .,

lim
K→∞

ˆ̆sj(t|t; t : t + K) = ˆ̆s(t|t), lim
K→∞

C̆j(t|t; t : t + K) = C̆(t|t).

Proof: MSE optimality of ˆ̆sj(t + k|t + k; t + k : t + K) holds be-

cause these estimates are derived by local KS recursions that adhere

to the state model in (9) and (25). Thus, ˆ̆sj(t+k|t+k; t+k : t+K)
is the MMSE estimator of s̆(t + k) at sensor j given the available
data {χ̂j(t

′; t′ : t + K)}t+k
t′=0 at sensor j up to time t + K. Further,

recall that under ideal links limK→∞
ˆ̆I j(t; t : t + K) = Ĭ(t) and

limK→∞ χ̂j(t; t : t + K) = χ(t) for t = 0, 1, 2, . . .. Thus, as
K → ∞ the local recursions of D-KS across all sensors coincide
with the centralized KS recursions given in Section 3 . �

Notice that within the interval [t, t + K], D-KS produces a se-

quence of local MSE optimal state estimates ˆ̆s(t|t; t : t+k), for k =

0, 1, . . . , K . Generally, the MSE associated with ˆ̆s(t|t; t : t + k),
decreases as k increases since χ̂j(t; t : t + k) improves with k and
provides a better estimate for χ(t). Depending on the delay that can
be afforded, D-KS trades-off estimation accuracy (i.e., MSE) for es-
timation delay. Recall that the motivation for developing D-KS was
to utilize the inherent time delay in computing filtered state estimates
and form smoothed estimates. Fulfilling this objective, each sensor
at time t + K provides the MSE optimal augmented state estimates
ˆ̆sj(t+k|t+k; t+k : t+K) with k = 0, 1, . . . , K . Upon recalling

that ˆ̆sj(t + K|t + K; t + K : t + K) := [ŝT
j (t + K|t + K; t + K :

t + K), . . . , ŝT
j (t|t + K; t + K : t + K)], the augmented state fil-

tered estimate formed by D-KS at t + K comprises both a filtered
estimate of the original state s(t + K) as well as the smoothed esti-
mates {ŝT

j (t + k|t + K; t + K : t + K)}K−1
k=0 for {sj(t + k)}K−1

k=0

respectively, exploiting all the χ̂j’s available up to time t + K.
Besides being able to form filtered and smoothed state estimates,

D-KS exhibits provable noise robustness and trades-off delay for
MSE reduction. The D-KS scheme is tabulated as Algorithm 1.

4. PRELIMINARY SIMULATIONS

Here we test the D-KS algorithm in terms of estimation MSE, and
compare it with [7] and [4], abbreviated here SD-KF and OD-KF
respectively. We consider a WSN with J = 60 sensors. Nodes
are randomly placed in the unit square [0, 1] × [0, 1] with uniform
distribution. We further assume a scalar state process, with Φ(k) =
1, Q = 4, and initial conditions E[s(−1)] = 0 and σ2

ss(−1) = 1.
Sensor j acquires at time k the scalar xj(k) for which hj(k) = hj

is normally distributed, while σ2
nj

= 1.5, ∀ j. The number of

consensus iterations used to estimate I(t) and χ(t) is K = 6. The
penalty coefficients are set to cj = 4/|Bj |.

An interesting property of D-KS is its ability to trade-off time
delay for MSE reduction. Specifically, depending on application-
dependent delay constraints, all sensors j at time t can utilize any of
the smoothed estimates ŝj(t−k|t; t : t) for k = 0, . . . , K . This is to
be contrasted with SD-KF that only provides an estimate for s(t−K)
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Fig. 2. Estimation error and 3σ curves vs. time index t for variable
delays at sensor j = 2.

after K iterations, without using the observations over the interval
[t − K, t]. Fig. 2 depicts the estimation error and corresponding 3σ
bounds at sensor j = 2, when estimating at time t the state s(t − k)
via ŝ2(t − k|t; t : t), for k = 0, 1 and 5. Note that longer delays
lead to lower MSEs. Further, the estimation error falls within the
±3

p
C2(t − k|t; t : t) curves. This is reasonable since the local

KS schemes are consistent with the underlying observation model
of χ̂j’s.

We now examine the MSE achieved by the filtered estimates
provided by SD-KF, OD-KF and D-KS. Recall that SD-KF produces
an estimate once every K consensus steps; thus, in order to have a
fair comparison, at time t, state s(t) is estimated via ŝj(t − K|t −
K; t − K : t) at sensor j. Fig. 3 depicts the MSE as a function
of time when reception noise is present in the ‘refined’ observations
χ̂j(t − k; t − k : t) for k = 0, 1, . . . , K . It can be seen that D-KS
tracks the state process through the local filtered estimates ŝj(t|t; t :
t), and the MSE reaches steady-state in the presence of noise. The
MSE associated with the local estimates provided by SD-KF and
OD-KF diverges. This is to be expected since both SD-KF and OD-
KF are inconsistent with the true observation model, causing errors
to accumulate for the fast varying s(t).

5. CONCLUSIONS

In this paper we derived distributed estimators of nonstationary ran-
dom signals. Utilizing the alternating-direction method of multipli-
ers we enabled each sensor to form ‘consensus-enriched’ observa-
tions, which were used to improve considerably the tracking per-
formance of the network. Different from existing suboptimal ap-
proaches, an MMSE optimal distributed Kalman smoother was de-
veloped that offers any-time optimal state estimates. The novel dis-
tributed smoother is flexible to trade-off estimation delay for MSE
reduction, while it exhibits noise resilience. 1

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies of
the Army Research Laboratory or the U. S. Government.
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Fig. 3. Empirical estimation MSE vs. time index t for D-KS, SD-KF
and OD-KF in the presence of reception noise at sensor j = 2.

Algorithm 1 D-KS Algorithm

For all j ∈ [1, J ] initialize s̆j(−1| − 1) = 0 and C̆j(−1| − 1) =
Css(−1).
At time instant t + K

For all j ∈ [1, J ] and k = 0, . . . , K form estimates χ̂j(t +

k; t + k : t + K) and Î j(t + k; t + k : t + K) using (18)-(20).
For all j ∈ [1, J ] and k = 0, . . . , K form augmented state

estimates ˆ̆sj(t + k|t + k; t + k : t + K) using (26)-(29).
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