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Abstract This paper introduces a robust approach to stochastic
multi-hop routing for wireless networks when the quality of links is
modelled through a reliability matrix R. Yielding to the practical
constraint that link reliabilities have to be measured, we consider
that R is random with known mean and variance. Thus, network
utilities are also random quantities. Robust routing algorithms are
then introduced to maximize an average utility subject to a variance
constraint; or, alternatively, to minimize variance subject to a minimum
utility yield. We prove that both problems can be solved by convex
programming techniques. We further show that the robust routing
optimization problems exhibit a separable structure enabling the
proposal of routing protocols based on communication with one-hop
neighbors only. Although the communication cost to compute the
optimal routes is thus significantly reduced, we show that there is
no performance penalty with respect to optimal routes computed by
a centralized algorithm.
Keywords: Networking, Signal Processing, Communications

I. INTRODUCTION

The design of a routing algorithm can be likened to finding a
path between an origin-destination (OD) pair which is optimal in a
certain sense. In wired networks, this can be almost always reduced
to the problem of finding the shortest path route between the OD
pair using a properly defined cost, i.e., distance, between individual
hops. In multi-hop wireless networks, shortest path routing is
certainly a useful approach, see e.g., [10] and references therein.
However, the definition of a link in a wireless network is somewhat
arbitrary, because there is no tangible connection among nodes.

To be specific, let Rij denote the probability that a packet
transmitted by the j-th user Uj is correctly decoded by the i-th
user Ui. In a wired network the reliability Rij is either very close
to 1, if there is a link between Uj and Ui, or 0, if there is not. In
a wireless network, the whole range of Rij values is possible, as
testified by experimental measurements [1]. To deal with links of
intermediate reliabilities, a number of works have advocated link
metrics that depend on Rij, e.g., [7]. In particular, the link cost
1lRij that penalizes but does not preclude the use of unreliable
links has found widespread acceptance [5]. An alternative approach
to shortest path routing is to formulate routing algorithms as
network utility optimization problems based on the matrix R with
entries Rij. It has been recently shown that many routing schemes
can be formulated as convex optimization problems thus ensur-
ing algorithmic tractability [8]. Furthermore, dual decomposition
techniques can be used to solve these optimization problems in a
distributed manner [9]; see also [6], [4].
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As matrix R is not a priori known, it must be estimated in
practice. For instance, Uj can estimate Rij by computing the ratio
of the number of acknowledgements received from Ui over the total
number of transmitted packets. Regardless of the specific estimator
used, routing decisions must be taken based on the estimated R.
Thus, the optimal network utility - expressed in terms of R - is
itself an estimate of the real utility. In this context, a problem of
interest here is to formulate routing problems taking into account
the uncertainty in network utility induced by the uncertainty in
reliability estimates. Finding routes that exhibit robustness against
estimation errors is the problem addressed in this paper.

In particular, we develop routing algorithms so that: (PI) the
variance of a network utility is minimized subject to a constraint
in the utility; and (P2) a network utility is maximized subject to
a constraint in its variance (Section II). The problem of finding
optimal robust routes may or may not be tractable. Conditions
ensuring convexity - thus tractability - of the problems considered
are introduced in Section III. It turns out that the class of mean and
variance utilities ensuring convexity of the optimization problem
includes many cases of practical interest (Section III-A). Even
though convexity ensures problem tractability, the communication
cost associated with collecting reliability estimates at a central
location followed by percolation of the optimal routing matrix may
be prohibitive. This motivates the introduction of routing protocols
based on local communications only that as time progresses
converge to the optimal routing matrix (Section IV). We finally
present corroborating simulations (Section V) and conclude the
paper (Section VI).

II. PROBLEM FORMULATION

Consider a group of J wireless terminals {Uj }jI that col-
laborate in routing packets to any out of a set of Jp access
points (AP) {Uj}j+Jap . At any given time slot, Uj services a
packet with rate ,U7 that we assume is determined by the medium
access control (MAC) layer. If it decides to send a packet, Uj
would transmit it to Ui with probability Tij. Instead of a routing
table, stochastic routing algorithms search for an optimal matrix of
probabilities T C R(J+Jap) X (J+Jap) with entries Tij. To model
the evolution of packets through the network we introduce a matrix
K c R(J+Jap) X (J+Jap) such that Kij denotes the probability of
a packet moving from Uj's to Ui's queue. Since the packet moves
from Uj's to Ui's queue if and only Uj transmits it to Ui, and U1
correctly receives it, we have that

Kij = TijRij for i #? j, (1)

Further, note that since T and K are stochastic matrices we have
TT1 = 1 and KT1 = 1, where 1 denotes the (J+Jap) x 1 vector
of all ones. To simplify notation, define the set K := {K:K:g
Tjg Rjg for i 7? j, TT1 = 1, KT1 = 1} of feasible matrices K
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that can be implemented - by proper selection of T - in a network
described by R. Note that K is a convex polyhedron.

Packet arrivals at Uj are modeled as a stationary random process
with rate pj. In addition to its own packets, Uj receives packets
from other nodes for a total arrival rate Aj. A sufficient condition
for stability (i.e., for the number of packets in the j-th queue to
be bounded with probability 1) is Aj <pa7. Upon defining vectors
p= Tpl * P] /8=[B1 BJ and A := [Al, , A>J]T
it can be further proved that all queues will be stable so long as
the p vector of arrival rates satisfies [8]

p = (I -Ko)A, for some A C [Ott] (2)
where Ko denotes the J x J upper left sub-matrix of K. The
description of the stable rate region in (2) involves a bilinear
function of the problem variables K and T. It can be proven [8]
that an alternative characterization is

p =(I-Ko)1, TT1<,-. (3)
The set of feasible K matrices changes accordingly to KI {K
Ki = TijRij for i ? j, TT1 < t, KT1 = 1}. Since (3)
is a characterization in terms of linear functions of the problem
variables, it is more tractable from an optimization perspective.

To model the fact that R is estimated, we consider that R is
random with known mean and variance:

R:= E(R)

Y'ilili2j2 := E[(Riljl - R1j,)(Ri2i2 -Ri22)] > 0

III. OPTIMAL ROBUST ROUTES

To compute the mean and variance of p in terms of R and
1'ilJ1,i2j2I start by noting that the j-th component of p can be
written as [cf. (3)]

J

pj = Z1-Kji
i=l

J+Jap

EK1j
i=l,i:74

J

1E Kj i
i=l ,i:74

(7)

where in the second equality we replaced 1 = Ei=z'a, Kij
which follows from K being a stochastic matrix. We can now use
the constraint in (1) to write

J+Jap J

pj RiSTj RjjTfj (8)
i=l i=l

which shows that p is a linear function of the reliability matrix R.
Since R is usually sparse many terms in the sum in (8) are

null. To make this explicit, we define the set c(j) := {i : Rij >
0; i 7? j, i C [1, J + Jap]}, representing the indices of terminals
{Ui}j+fj that are able to decode Uj's transmission with non-
zero probability. Likewise, define r(j) := {i : Rji > 0; i +
j, i C [1, J]} as the set of indices corresponding to terminals
{Ui }I 1 whose transmission can be decoded by Uj with nonzero
probability. We can thus rewrite (8) as

(4) (9)pj= E TijRij- E RjiTi
iEc(U) iEr(i)

implying that the rate in (3) is also random. We further assume that
reliability estimates are never perfect, i.e., Yij,ij > 0 whenever

I

Rij ? 0. Our goal here is to design robust routing algorithms that
we define as follows:

(PI) Maximize a function of the expected value E(p) = E[(I-
Ko) 1] subject to a constraint in the maximum tolerable
variance var(p) = var[(I -Ko)1]1

T arg max fo [[E(I -Ko) 1] (5)

s.t. gj [var[(I -Ko)]] < goi i C [1, M]
where {gi[var(p)], goi}m1 describes M prescribed toler-
ances on variance utilities.

(P2) Minimize a function of the variance var(p) subject to a
minimum requirement on a function of E(p); i.e., we seek

T argmax go[var[( -Ko)1]] (6)

s.t. fi[E[(I -Ko)1]] > foi i C [1,N]

where {fi[E(p)], fo}IN 1 describes N pre-specified mean
rate utility requirements.

The goal of this paper is to: (i) compute the mean E(p) and
variance var[p] as functions of R, T and E -, 2J2; and (ii)
establish cases in which (6) and (5) are convex; (iii) identify
conditions for (6) and (5) to be equivalent, and (iv) introduce a
distributed implementation of (6)-(5).

1For a random vector v we adopt the notation var(v) to denote a
vector with components [var(v)]j := E[(vj -E(vj))2]. This is to be
distinguished from the covariance matrix Cov(v) := E[(v- E(v))T(vV
E(v))]. The two are related by var(v) = tr[Cov(v)].

To further simplify notation define rj := R,(j),j and sj -

Rj,(j) containing the non-zero elements of the j-th column and
row of R, respectively. In the same way define tj := Tc(j),j and
t,7 := Tj,,() to write

T T /
pj = rj tj- Sj tj. (10)

From (10) we can readily express E(pj) in terms of the mean
R := E(R) in (4). Noting that E(rj) = E(R,(j),j) = ft(j),j
and E(sj) = E(Rj,C(j)) = R j,c(j) we can take expected value in
(10) to obtain

(1 1)

where we defined rj := Rl(j),j and S7 := Rj,c(j).
The rate variance var(pj) can be analogously expressed in terms

of the Yi,j,,i2j2 in (4). Indeed, upon defining the covariance
matrices Cov(rj) := E[(rj -i)(rj-r j)T] and Cov(sj)
E[(sj -S)(sj-S j)T] and the cross-covariance Cov(rj,sj)
E[(rj -i)(sj -s)T] we can write

var(pj) tTCov(rj)tj -2t Cov(rj, sj)t' + tJTCov(sj)t.
(12)

The (i, k)-th entry of Cov(rj) is given by [Cov(rj)]ik = ij,kj.
Likewise, we have [Cov(sj)]ik = Xi,j and [Cov(rj,s)]ik =

Yij,j. For future reference, note that the rate variance in (12) is
a positive definite quadratic form in the transmission probabilities
(tI,tv)
A particular case of practical relevance is when the estimation

of R is carried out componentwise, e.g, when Rij is estimated by
Uj as the ratio between the number of acknowledgements received
from Ui and the number of packets sent to Ui. In this case the Rij
estimates are independent implying that E[(Rij,-Rk1II )(Ri2j2-
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Ri2h2)] = i?J,i232 0O for (i1, j1) ? (i2, j2). Thus, the cross-
covariance Cov(rj, sj) = 0 and the covariances Cov(rj) and
Cov(sj) are diagonal. We have

J+Jap J

var[pj] = T- YZX+ irif (13)
i=l i=l

where we defined Yjj E[(Rij R1i)2] =

A. Convexity of robust routing problems

Substituting (11) and (12) (or (13) if the Rij estimates are
independent) into (6) and (5), we obtain an optimization problem
that can, in principle, be solved to obtain the optimal routing matrix
T*. Solving these optimization problems might, or might not be
tractable. Under proper conditions however, we can guarantee that
(6) and (5) are convex, as we assert in the following proposition.

Proposition 1 Consider the optimal robust routingproblems in (6)
and (5) and assume that (hi) the functions fi [E(p)] are concave
for i C [0, N] and (h2) the functions gi [var(p)] are convex and
nondecreasing in each argument. Then, the optimization problems
in (6) and (5) are convex.

Proof: Since T is constrained by a set of linear inequalities
(TT 1 < , and T > 0), to prove that the problem in (6) is convex,
it suffices to prove that: i) go [var(p)] is a convex function of the
routing matrix T; and ii) fi [E(p)] for i C [1, N] is a concave
function of T. Correspondingly, (5) will be convex as long as:
iii) fo[E(p)] is a concave function of T; and iv) gi[var(p)] for
i C [1, N] a convex function of T. Thus, the claim follows if (cI)
fi [E(p)] is a concave function of T; and (c2) gi [var(p)] a convex
function of T for i C [0, N].

The latter follows from the composition rules of convex analysis
[3, Sec.3.2.4]. Indeed, E[p] is a linear function of T. Composition
of the concave function fi [E(p)] [cf. (hi)] with the linear function
E[p] [cf. (I1)], yields a concave function implying (ci). To
prove (c2) recall that var(pj) is a positive definite quadratic form
with variables tj, and thus convex (indeed, strictly convex). The
composition of the convex and nondecreasing in each argument
function gi[var(p)] [cf. (h2)] with the convex function var(pj)
[cf. (12)] is convex establishing (c2). X
Under (mild) restrictions on the utility functions fi[E(p)] and

gi[var(p)], Proposition (1) ensures tractability of (6) and (5).
Consequently, interior point methods can be used to solve these
problems with affordable complexity in the order 0(j3 5).

The conditions (hl) and (h2) are satisfied in many practical
cases. Some examples are given next.

Maximum rate utility with bounded variance. A typical example
of a problem of the form in (PI) is to consider the maximization of
a weighted sum of rates wTE(p). The variance of the individual
rates is further upper bounded by a certain tolerance voj yielding
the problem

max , wj (r tj
,}=1

Tt/) (14)

s.t. var(pj) < voj, tj > O, t T1 < pU7, j C [1,J]

The functions fo[E(p)] := wTE(p) and gj[var(p)] = var(pj)
satisfy the hypothesis (hl) and (h2) of Proposition I proving that

the problem in (14) is convex. This can be verified by noting that
the argument to be optimized is a linear function of the tj, and
that the constraint var(pj) < voj is a positive definite quadratic
form on tj.

Different rate utilities can be used in the argument of
(14). E.g., the minimum rate utility minjE[l,J] [E(pj)]
min E[,J] (i7Ttj _gTtl) is consider a fair alternative since it
maximizes the rate of the least favored terminal. The sum of
logarithms utility E log[E(pj)] = EJ1 log (rgTtj _gTtl),
is regarded as an intermediate point between weighted sum and
minimum rate.

Minimum variance with rate guarantees. Alternatively, we may
aim to comply with a minimum rate requirement poj for each
terminal Uj, while minimizing the norm of the variance vector,
i.e.,

min 11var(p)II (15)

s.t. r7Ttj _Sgt, > pjo, tj > O, tT 1 < ,U,jC[1, ill
Any norm verifies (hl) and (h2) of Proposition I establishing
the convexity of the problem in (15). As a particular case, for
the 1-norm we have 11var(p) 1 = Ejvar(pj) because vari-
ances are always non-negative. For the oc-norm, jjvar(p)j =
maxjE[1,J] var(pj). If the R estimate were perfect, (15) would
guarantee rates {poj }/ 1. In the presence of estimation uncertainty,
(15) attempts the same while, in some sense, maximizing the
likelihood of this actually happening.

We have shown that finding the optimal solution to (5)-(6)
incurs affordable computational complexity. However, it requires
the entire reliability estimate R and all the variances Eij7,j,j to
be available at a central location, so that the optimization problem
can be solved and the optimal routing matrix T* distributed to
the individual nodes. The drawbacks of this centralized approach
are: i) a large communication cost to collect R and Ei, ,i2j2 and
to distribute T*; ii) considerable delay to compute T*; and iii)
lack of resilience to changes in the statistics of R. These motivates
distributed algorithms that we pursue next.

IV. ROBUST ROUTING PROTOCOLS

To develop a robust routing protocol, we introduce iterative
algorithms to solve (PI) and (P2) in a distributed fashion. In such
distributed algorithm Uj is interested in computing a sequence of
iterates tj (n) such that as n - oo we have limn->oc ti (n) = t*,
with {t * }j I denoting the solution of a problem of the form (PI)
or (P2) for given functions fi(E(p)) and g1(var(p)).

Throughout this section we assume that

[Al] Terminal Ui can decode Uj with non-zero probability if and
only if the probability of Uj decoding Uj is also non-zero,
i.e., Rij 7 0 if and only if Rji 0.

[A2] The reliability estimates Rij are independent, i.e., E[(Ri1jX-
Rj1jj )(Ri2j2 -Ri2h2)] = iXlJl,i222 = 0 for ii, ji #? i2, J2.

A distributed algorithm can be developed using dual decomposi-
tion techniques. For simplicity of exposition we concentrate on the
problem in (6) with go[var(p)] = Ejvar(pj), and fj [E(p)]
E(pj) for j C [1, J]. This problems amounts to minimizing the
sum of rate variances while satisfying a (expected) rate requirement
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poj for terminal Uj. We further assume that the Rij estimates are

independent so that we can write the sum of variances as [cf. (13)]:
I- diag(-yj). Define then the local Lagrangian:

Lj, (tj,, -y, 1y) = tTAj tj, _r rTgtj + _Yjpoj. (21)

(16) We then have that

J J+Jap

=E E (Hg_tjTij ,ij + 1(I_iTji)2y'ji
=1 i=l i=+

Rearranging terms in (16) and defining the constants

aic = 2jj ij for i C [1, J] (17)

c°ij = _2Eij for i C [J + 1,J + Jap]

it is easy to see that we can write g, [var(p)]
LI1 aij Ti2. We emphasize that being Yjj the

variance of the Rij estimate the constant aij is readily available
at Uj.

Substituting the aij definitions in (16) into (17), and the result
in (15) we obtain

J

min EjttAjtj
E
=1

(i) The (global) Lagrangian L({tj}' ,iy) is the sum of the
local Lagrangians in (21), i.e.,

J

L({tjI}J1 ) = E: Lj(tj,j, ),= =1

(22)

(ii) Let tj(Qy) := argmin{tj, tjy1 ,J}j C({t} =-') be

the arguments minimizing the Lagrangian in (20) for a given
multiplier -y. Then tj (-y) is the argument minimizing the local
Lagrangian, i.e.,

tj (-y) = arg min Lj (tj, y).
tj>O, tTj</tj

(23)

(iii) The derivative of the dualfunction with respect to y is given
by

q(-y)
(18)

s.t. ti > 0; tgTi < _g;rgtg AY-t > poj Vj

where Aj = diag{C"(j)j }, a diagonal matrix whose diagonal
entries are a,(j)j
A distributed optimization algorithm separates the original prob-

lem in J sub-problems involving variables tj only. Even though
the objective of the optimization problem in (18) is a summation
of quadratic functions that depend on the local variables tj and
the constraints tj > 0 and tT1 < j depend on tj only, such

separation cannot be achieved for the problem in (18). Indeed, the
constraints rFTtj g t, > poj involve the local variable tj, and the
variable t' that contains transmission probabilities corresponding
to Uj's neighboring terminals.

This problem can be overcome by resorting to the dual problem.
Define a vector of Lagrange multipliers -y := [y1, .½,_]T with
the multiplier y associated with the constraint r4Ttj _A tt > poj
and write the Lagrangian:

J J

L({tj} itT)Zt6 Ajtj +E j (poj -itjr Tt )

J=1 J=1
(19)

that is defined over the set {t : t > 0,tT < I-}j
The dual function is then defined as

qQ(y) min L({tjJ}= <). (20)
{tj :tj > ,ttj </_ j }

Since the problem in (18) is convex strong duality holds and the
optimal value of (18) can be found as maxy>o q(Qy).
An interesting observation is that the Lagrangian can be sepa-

rated in J "local" Lagrangian containing tj variables only. This
property also allows a separable computation of the gradient of the
dual function. These two properties are introduced in the following
proposition.

Proposition 2 Define the vector -yj := Yc(j) containing the
multipliers of Uj s neighbors and the diagonal matrix Ij =

poj - tj (-Y) + STt; (-Y) (24)

with tj (-y) and t' (-y) the solutions of (23).

Proof: Consider the sum of the local Lagrangians in (21) and use

the definition of Ij := I- diag(yj) to write.

tjTAjtj + poj
J1

E1 L(tj,y, )
,}=1~- _yjiTtg (25)

+ f'diag( Y)tj
J=1

The last sum in (25) can be written as

J

EJ1diag(-y7)tj
} =1

J

E E VyiRigTij
j=1 iEC(j)
J

E Vi E RfigTij
i= 1 jEc(i)

J

i=l

(26)

where in the first equality we use the definitions of i' and tj; in
the second equality we interchange the order of summations and
use the assumption c(j) = r(j); and in the last equality we use

the definitions of S7 and t>
Substituting (26) in (25) we obtain

J

E: Lj(tj, -y, ')
,}=1~-

J

t'Ajtj +)po) -'))7 tj + YsgTt7
J} 1

(27)
Since the right hand sides of (27) and (20) coincide, (22) follows.

To prove (23) use (22) to write the optimal argument tj (-y) as

tj Qy) =arg minllL tj j )
{tj>0, tTl< Il_j}J

(28)

The only term in the summation in (28) that contains tj is

Lj (tj, yj,-y) from where (23) follows.
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To obtain the result in (24) note that since Aj is positive definite
(Aj is a diagonal matrix with strictly positive elements) it is
invertible. Thus, for any -y there exists a unique minimizer tj (-y) of
C({tj } i. The result then follows from Danskin's Theorem, [2,
pp. 737] stating that: i) if there is a unique Lagrangian minimizer
- i.e., a unique set {tj (-y)}j= solving (20) - the dual function
is differentiable; and ii) the derivative of the dual function with
respect to y is given by poj -ttj (-y) + sTt (-y).

Using the separability properties described by Proposition 2 we
can propose a distributed routing protocol. Indeed, since a gradient
of the dual function can be computed using local and neighboring
iterates, we can define a routing protocol by using a gradient
ascent algorithm on the dual function. The routing protocol and the
corresponding optimality claim is presented in the next proposition

Proposition 3 Consider a routing protocol in which terminal Uj
updates local primal and dual iterates denoted by tj (n) and y (n)
respectively. The iterates are updated according to the following
rules:
[PI] Receive dual iterates -yj (n) from neighboring terminals

{Ui }iEc(j).
[P2] Update the local primal iterates tj(n) using

tj (n) = 2 [A-' (6j(n)1+ U) +. (29)

where [ + denotes projection to the nonnegative orthant and
6 (n) > 0 is chosen so that tT(n))1 = j. Iffor making
tF(n)1 = we require 6jr(n) < 0 we set 6jr(n) = 0.

[P3] Transmit the primal iterates tj (n) to neighboring terminals
{Ui }iEc(j).

[P4] Receive primal iterates tj (n) from neighboring terminals
{Ui }iEc(j).

[P5] Update the local dual iterates using

7(n + 1)=[(n) + c (poj - r tj(n) + TS(n))
(30)

with c > 0 a properly selected step size.
[P6] Transmit the dual iterate -y(n + 1) to neighboring terminals

{Ui }iEc(j).
For sufficiently small step size c, as n -) oc, the local

iterates tj(n) converge to the optimal robust routes t* solving
the optimization problem in (18), i.e.,

lim t (n) = t* (31)

Proof: Start by noting that (29) is the solution of the local
Lagrangian optimization in (21), i.e., tj (n) in (29) is such that

t(1(n) = arg min Lj (tj,-y((n)). (32)
tj 0, tjTi <tj

Thus, according to (24) we have

t6[(!:= poj _ rtt (n) + gTt, (n). (33)

Consequently, the iteration in (30) is tantamount to gradient ascent
for optimizing q[(Qy)], implying that for sufficiently small c

lim 'j (n) = * (34)

with7y := [ iyi,, yj] = arg max >o q(-y). But since the dual
function is differentiable, convergence of ½ (n) implies conver-
gence of tj (n).
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Fig. 1. Representation of network reliability estimates R, the color index
represents the value of Rij (J = 120 nodes shown as dots and Jp = 9
APs shown as boxes).

Steps [PI] and [P6] simply ensure that dual iterates are properly
communicated and received. Steps [P3] and [P4] do the same for
the primal iterates. U

The distributed routing protocol [P1]-[P6] overcomes the lim-
itations of a centralized implementation detailed at the end of
Section III. Indeed, note that the proposed protocol i) requires
communication with one-hop neighbors only, and ii) relies on
knowledge of Rij estimates and variances that either Uj or

Uj's neighbors have available. Interestingly, there is no optimality
penalty associated with this reduction in communication cost. The
optimal routing matrix solving (18) and its corresponding optimal
utility are eventually achieved by [P1]-[P6].

V. SIMULATIONS

We present simulation results for the problem in (18). We
consider a network with 120 user terminals randomly placed within
a rectangle area of size 5000m x 3500m. The nodes collaborate
to forward packets to 9 APs. We set all the requested rates
to poj = 0.2. We form R using the empirical distribution in
[1] and then generate the Rij estimates uniformly distributed
in [(1- 0.25)Rij,(1 + 0.25)Rij]. This entails a 25% uncer-
tainty in reliability estimates. The variance of the estimates is
>ij = (0.5R%.)/12. The resulting estimated matrix R is shown
schematically in Fig. 1.

After running the robust routing protocol defined in proposition 3
for 200 iterations, we obtained the optimal routing matrix T shown
in Fig. 2. We see that nodes split their traffic in different routes,
ensuring less sensibility of network utility to estimation errors.
An alternative representation of the data flow throughout the

network, is shown in Fig 3 where we plot the inbound traffic
(green dots) and outbound traffic (red circles) of each node. We
see that near each AP, there are many nodes with large inbound
traffic. This again indicates that nodes farther away from the AP are
splitting their traffic between many different routes. For any node,
the difference between the red dot and the green circle depicts the
data rate of that node.

To study the convergence rate of our algorithm, we define the
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Fig. 3. The inbound traffic of each terminal is proportional to the size of
the green dot. The outbound traffic is represented by the red circle (R is
shown in the background).

residual as

c(k) := jj-(k + 1) -(k) 112 (35)

which is an indicator of the optimality of the dual iterates. The
evolution of e(k) is shown in Fig. 4. The algorithm converges
slowly at the beginning, but once it gets close enough to the
optimum the convergence rate is very fast.

VI. CONCLUSIONS

We introduced a robust approach to stochastic routing in wireless
multi-hop networks. Since in any practical implementation link
performance metrics have to be estimated we posed problems
in which average rate utilities (given as functions of estimated
performance metrics) are maximized. To ensure robustness against
estimation errors we further constraint variance utilities (expressed
as functions of the estimator's variances) to lie within a certain
region.

From a practical point of view, we showed that the optimization
problems involved are convex, and thus can be solved efficiently us-
ing interior point methods. Furthermore, using dual decomposition
and associated computational methods, we developed a distributed
solution to the robust routing problem.
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