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ABSTRACT

We consider state estimation of a Markov stochastic process using an
ad hoc wireless sensor network (WSN) based on noisy linear observa-
tions. Due to power and bandwidth constraints present in resource-
limited WSNs, the observations are quantized before transmission.
We derive a distributed recursive mean-square error (MSE) optimal
quantizer-estimator based on the quantized observations. The resul-
tant Kalman-like algorithm based on quantized observations exhibits
MSE performance and computational complexity comparable to the
Kalman filter based on un-quantized observations even for 2-3 bits of
quantization per observation.

Index Terms— wireless sensor networks, distributed state estima-
tion, Kalman filtering, target tracking, limited-rate communication.

1. INTRODUCTION

Consider an ad hoc wireless sensor network (WSN) tracking a Markov
random process where each sensor acquires noisy observations of a
common state. Sensors transmit their observations to each other in
order to form a state estimate. If observations were available at a com-
mon location, minimum mean-square error (MMSE) estimates could
be obtained using a Kalman filter (KF) [1, Chapter 5.5]. However,
since observations are distributed in space and there is limited com-
munication bandwidth, the observations are quantized before transmis-
sion. The problem is thus transformed into distributed state estimation
based on quantized observations.

Quantizing observations to estimate a parameter of interest, is not
the same as quantizing a signal for later reconstruction [2]. Instead of
a reconstruction algorithm, the objective is finding, e.g., MMSE opti-
mal, estimators using quantized observations. By using binary quanti-
zation defined by the sign function, it is possible to derive a filter with
complexity and performance close to the clairvoyant KF based on the
un-quantized observations [3]. Even though promising, the approach
of [3] is limited to a particular 1-bit per observation quantizer.

This paper builds on and considerably broadens the scope of [3]
by addressing the middle ground between estimators based on severely
quantized (1-bit) data and those based on un-quantized data. The end
result is a multi-bit quantized Kalman filter (QKF) that trades band-
width utilization (dictating the number of quantization bits used for
inter-sensor communications) and overall tracking performance (as-
sessed by the mean-square state estimation error).

The rest of the paper is organized as follows: Problem statement
and modeling assumptions are presented in Section 2. Section 3 de-
scribes the KF based on quantized observations. Simulations in Sec-
tion 4 are used to corroborate the analytical discourse and compare the
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estimator based on quantized data to the clairvoyant KF case based on
un-quantized data. Concluding remarks are in Section 5.

Notation: Vectors (resp. matrices) are denoted using lower (upper)
case bold face letters. The probability density function (pdf) of x con-
ditioned on y is represented by p(x|y). The Gaussian pdf with mean
E{x} = μ and covariance matrix cov{x} = C is represented as
p (x) = N [x; μ,C] and Q(z) :=

∫ ∞
z

N [x; 0, 1] dx. The probability
mass function for b is denoted as Pr{b}. Estimators (or estimates)
will be represented using a hat, e.g., x̂(n|w1:m), where w1:m :=
{w(1), w(2), . . . w(m)}. Finally, T will stand for transposition and
δij (resp. δ(t)) for the Kronecker (Dirac) delta function.

2. MODELING AND PROBLEM STATEMENT

Consider an ad hoc WSN whose K sensor nodes {Sk}K
k=1 are de-

ployed to estimate a multivariate random process xc(t) ∈ R
p, where

c denotes continuous time. The underlying state equation is

ẋc(t) = Ac(t)xc(t) + uc(t) (1)

where Ac(t) ∈ R
p×p denotes the state transition matrix and uc(t)

is a zero-mean white Gaussian noise process with covariance matrix
E{uc(t)u

T
c (τ)} = Cuc(t)δc(t − τ).

The k-th sensor Sk records scalar observations

yc,k(t) = hT
c,k(t)xc(t) + vc,k(t) (2)

where hc,k(t) ∈ R
p denotes the regression vector, and vc,k(t) is a

temporally and spatially white zero-mean Gaussian noise process with
covariance E{vc,k(t) vc,l(τ)} = cvc(t)δ(t − τ)δkl. It is further as-
sumed that uc(t) is independent of both vc,k(t) and xc(t0), where t0
is an arbitrary initial reference time.

The discrete-time counterpart of (1) is obtained using the def-

initions Φ(t2, t1) := exp
[∫ t2

t1
Ac(t)dt

]
, x(n) := xc(nTs), and

u(n) :=
∫ nTs

(n−1)Ts
Φ(nTs, τ)uc(τ)dτ , where Ts is the sampling pe-

riod. The discrete-time state equation is [1, Section 4.9]

x(n) = A(n)x(n − 1) + u(n) (3)

where u(n) is zero-mean white Gaussian noise with covariance matrix

Cu(n) =
∫ nTs

(n−1)Ts
Φ(nTs, τ)Cuc(τ)ΦT (nTs, τ)dτ and A(n) :=

Φ(nTs, (n − 1)Ts). The discrete-time counterpart of the observation
equation (2) is given by

yk(n) = hT
k (n)x(n) + vk(n) (4)

where yk(n) := yc,k(nTs) is obtained by uniform sampling of yc,k(t)
in (2) followed by low- or band-pass filtering with bandwidth 1/Ts,
leading to zero-mean white Gaussian discrete-time noise vk(n) with
variance cv(n)=cvc(nTs)/Ts [1, Section 4.9].

In order to collaboratively estimate x(n), each sensor Sk needs to
communicate yk(n) to all other sensor nodes {Sl}K

l=1,l�=k by broad-
casting over the wireless channel. It is assumed that the sensor schedul-
ing protocol allows for one sensor transmission per time slot in a round-
robin fashion such that Sk = S(n) is active at time n. This leads to a
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one-to-one correspondence between sensor index and time slot, i.e., at
time n, yk(n) = y(n). See e.g., [4] and references therein for further
discussion on sensor scheduling.

2.1. MMSE estimation with quantized observations

In order to effect digital inter-sensor communications in a bandwidth-
limited WSN, the observations y(n) ∈ R are quantized before broad-
casting. With B denoting a finite set of quantization messages, we
define a quantization rule qn : R → B so that b(n) := qn[y(n)].
Note that each quantization message, b(n) ∈ B, can be represented
by log2|B| bits. Given past and current messages at time n, b1:n :=
{b(1), b(2), . . . , b(n)}, the MMSE estimator is given by the condi-
tional mean, see e.g., [1, Chapter 5]

x̂(n|b1:n) = E{x(n)|b1:n} :=

∫
Rp

x(n) p [x(n)|b1:n] dx(n). (5)

In order to obtain a closed-form expression for x̂(n|b1:n), the pos-
terior pdf p[x(n)|b1:n] has to be known and the integral in (5) needs
to be computable. The pdf p[x(n)|b1:n] can be, in principle, obtained
from the state space model in (3)-(4) using the prediction-correction
steps [P1]-[C1] outlined next.

[P1] Prediction step. With p[x(n − 1)|b1:n−1] known, the theorem
of total probability implies that

p [x(n)|b1:n−1]

=

∫
Rp

p[x(n)|x(n−1),b1:n−1]p[x(n−1)|b1:n−1]dx(n−1). (6)

[C1] Correction step. When quantized observations b(n) become

available Bayes’ rule allows us to write

p[x(n)|b1:n] = p[x(n)|b1:n−1]
Pr{b(n)|x(n),b1:n−1}

Pr{b(n)|b1:n−1} . (7)

The form of Pr{b(n)|x(n),b1:n−1} and Pr{b(n)|b1:n−1} depend, in
part, on the quantization rule b(n) = qn[y(n)]. A well-known exam-
ple of an iteration of the form [P1]-[C1] corresponds to un-quantized
messages b(n) = y(n), i.e., a clairvoyant scenario without bandwidth
constraints. In this case, the pdfs in (6) and (7) are Gaussian and by
propagating their means and covariance matrices we obtain the clair-
voyant Kalman recursions [1, Chapter 5.3]. The pdf in (6) then be-
comes N [x(n); x̂(n|y1:n−1),M(n|y1:n−1)] with mean and covari-
ance matrix given by

x̂(n|y1:n−1) = A(n)x̂(n − 1|y1:n−1) (8)

M(n|y1:n−1) = A(n)M(n − 1|y1:n−1)A
T (n) + Cu(n). (9)

The pdf in (7) is also Gaussian N [x(n); x̂(n|y1:n),M(n|y1:n)]. With
ỹ(n|y1:n−1) := y(n) − hT (n)x̂(n|y1:n−1), we have

x̂(n|y1:n) = x̂(n|y1:n−1)

+
M(n|y1:n−1)h(n)

hT (n)M(n|y1:n−1)h(n)+cv(n)
ỹ(n|y1:n−1)

(10)

M(n|y1:n) = M(n|y1:n−1)

− M(n|y1:n−1)h(n)hT (n)M(n|y1:n−1)

hT (n)M(n|y1:n−1)h(n) + cv(n)
. (11)

The KF iterations in (8) - (11) require a few algebraic operations per
time-step n whereas for the iteration [P1]-[C1],with quantized obser-
vations, numerical methods are needed to approximate the pdfs in (6)
and (7) and to evaluate the expectation in (5).

The objective of this work is to develop an approximate MMSE es-
timation algorithm based on a Gaussian approximation p[x(n)|b1:n−1]
≈ N [x(n); x̂(n|b1:n−1),M(n|b1:n−1)]. We will see that the pro-
posed algorithm has comparable computational cost to the KF. We will
further compare the MSE of the resulting algorithm with that of the
clairvoyant KF by quantifying analytically the MSE performance loss
due to quantization.

3. KALMAN FILTER WITH QUANTIZED OBSERVATIONS

Quantization of y(n) ∈ R with N -level quantizer is achieved by par-
titioning R into non-overlapping intervals Ri :=

[
τi(n), τi+1(n)

)
where, i ∈ B = {1, . . . , N}. The quantizer qn[·] is thus defined by
the thresholds {τi(n)}N+1

i=1 , where τ1(n) = −∞, τi(n) < τi+1(n),
and τN+1(n) = +∞. Consider the observation estimate ŷ(n|b1:n−1) =
E{y(n)|b1:n−1}, the corresponding innovation ỹ(n|b1:n−1) := y(n)−
ŷ(n|b1:n−1), and the quantization rule

b(n) = i, iff ỹ(n|b1:n−1) ∈
[
τi(n) τi+1(n)

)
. (12)

Obtaining an expression for x̂(n|b1:n) requires evaluating the integral
in (5), which in turn requires the probabilities Pr{b(n) = i|b1:n−1}
and Pr{b(n) = i|x(n),b1:n−1} [cf. (7)]. Using the quantization rule
in (12) the events {b(n) = i} and {τi(n) ≤ ỹ(n|b1:n−1) < τi+1(n)}
are equivalent; and consequently

Pr{b(n) = i|x(n),b1:n−1} =

Pr {τi(n) ≤ ỹ(n|b1:n−1) < τi+1(n)|x(n),b1:n−1} . (13)

The innovation ỹ(n|b1:n−1) := y(n)−ŷ(n|b1:n−1) = hT (n)[x(n)−
x̂(n|b1:n−1)]+v(n) has conditional pdf p[ỹ(n|b1:n−1)|x(n),b1:n−1]
= N [ỹ(n|b1:n−1);h

T (n) x̃(n|b1:n−1), cv(n)], where x̃(n|b1:n−1)
:= x(n) − x̂(n|b1:n−1). Using this pdf we can rewrite (13) in terms
of the Gaussian tail function Q[.] as

Pr{b(n)= i|x(n),b1:n−1} (14)

=Q

[
τi(n)−hT(n)x̃(n|b1:n−1)√

cv(n)

]
−Q

[
τi+1(n)−hT(n)x̃(n|b1:n−1)√

cv(n)

]
.

Likewise, we can write the probability Pr{b(n) = i|b1:n−1} =
Pr {τi(n) ≤ ỹ(n|b1:n−1) < τi+1(n)|b1:n−1 } which is identical to
(13) except for the conditioning variables. Note that, unlike (13), the
conditional pdf p[ỹ(n|b1:n−1)|b1:n−1] is not Gaussian. It can never-
theless be approximated by using a Gaussian pdf for p[x(n)|b1:n−1]
as follows.

If p[x(n)|b1:n−1] = N [x(n); x̂(n|b1:n−1),M(n|b1:n−1)], then
the prior pdf p[y(n)|b1:n−1] is also normal with mean ŷ(n|b1:n−1)
and variance σ2

y(n) := hT (n)M(n|b1:n−1)h(n) + cv(n). Since the
innovation is defined as ỹ(n|b1:n−1) := y(n)− ŷ(n|b1:n−1), we have
p[ỹ(n|b1:n−1)|b1:n−1] = N [ỹ(n|b1:n−1); 0, σ2

y(n)] and we can
thus write

Pr{b(n) = i|b1:n−1} = Q[τi(n)/σy(n)] − Q[τi+1(n)/σy(n)]

= Q[Δi(n)] − Q[Δi+1(n)] (15)

where Δi(n) := τi(n)/σy(n) is a normalized threshold.

Substituting (14) and (15) into (7), we obtain an expression for
p[x(n)|b1:n] that can be used in (5) to obtain x̂(n|b1:n). It is remark-
able that with the Gaussian assumption for p[x(n)|b1:n−1], the inte-
gral in (5) can be found analytically as we show in the next proposition
(see [5] for proofs of this and subsequent claims).
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Proposition 1 Consider the state space model (3)-(4) and quantized
observations b(n) defined in (12). Suppose that the predicted esti-
mate x̂(n|b1:n−1) and corresponding error covariance matrix (ECM)
M(n|b1:n−1) are given. If the predicted pdf is Gaussian p[x(n)|b1:n−1]
= N [x(n); x̂(n|b1:n−1),M(n|b1:n−1)], the MMSE estimator x̂(n|b1:n)
in (5) can be obtained as follows:

[C2] Quantized (Q)KF correction step. Define the variance of the
innovation sequence as σ2

y(n) := hT (n)M(n|b1:n−1)h(n) + cv(n)
and normalized thresholds Δi(n) := τi(n)/σy(n). For b(n) = i,
define the ratios

αi(n) :=
E{ỹ(n|b1:n−1)|b1:n−1, b(n) = i}

σy(n)

=
1√
2π

e−Δ2
i (n)/2 − e−Δ2

i+1(n)/2

Q[Δi(n)] − Q[Δi+1(n)]
(16)

βi(n) := 1 − var{ỹ(n|b1:n−1)|b1:n−1, b(n)= i}
σ2

y(n)

=α2
i (n)− 1√

2π

Δi(n)e−Δ2
i (n)/2 − Δi+1(n)e−Δ2

i+1(n)/2

Q[Δi(n)] − Q[Δi+1(n)]
.

(17)

Then the estimate of x(n) and its corresponding ECM based on quan-
tized messages are given by

x̂(n|b1:n) = x̂(n|b1:n−1)

+ αi(n)
M(n|b1:n−1)h(n)√

hT (n)M(n|b1:n−1)h(n) + cv(n)
(18)

M(n|b1:n) =M(n|b1:n−1)

− βi(n)
M(n|b1:n−1)h(n)hT(n)M(n|b1:n−1)

hT (n)M(n|b1:n−1)h(n) + cv(n)
. (19)

Proposition 1 suggests an algorithm for finding (approximate) MMSE
state estimates using quantized observations. The resulting QKF con-
sists of recursive application of the prediction step (8)-(9), with y1:n−1

replaced by b1:n−1, and the correction step [C2].

The QKF retains a notable resemblance to the clairvoyant KF (8)-
(11). Except for the βi(n) factor, the ECM for the QKF in (19) has
the same form as the ECM for the KF in (11). To compare the state
updates (10) of the KF and (18) of the QKF, rewrite (18) as

x̂(n|b1:n) = x̂(n|b1:n−1) (20)

+
M(n|b1:n−1)h(n)

hT (n)M(n|b1:n−1)h(n) + cv(n)
α̃i(n|b1:n−1)

where, α̃i(n|b1:n−1) :=
√

hT (n)M(n|b1:n−1)h(n) + cv(n)αi(n)
is the QKF innovation. Note that (20) has the same form as the KF cor-
rection (10) with α̃i(n|b1:n−1) viewed as the QKF innovation counter-
part of the KF innovation ỹi(n|y1:n−1).

Remark 1 MSE performance of the QKF can be compared with MSE
performance of the KF given the same past observations {b1:n−1}.
For that matter, define the ECM reduction per correction step, at time
n, for the QKF as [cf. (19)]

ΔM(n) : = M(n|b1:n−1) − M(n|b1:n)

= βi(n)
M(n|b1:n−1)h(n)hT (n)M(n|b1:n−1)

hT (n)M(n|b1:n−1)h(n) + cv(n)
. (21)

Table 1. β̄(n) values for m= log2N number of bits

N (m bits) 2 (1 bit) 4 (2 bits) 8 (3 bits) 16 (4 bits)

β̄(n) 0.637=2/π 0.883 0.966 0.991

Equivalently, if we use b(n) = y(n) the corresponding ECM reduc-
tion for the KF is [cf. (11)]

ΔMK(n) : = M(n|b1:n−1) − M(n|b1:n−1, y(n))

=
M(n|b1:n−1)h(n)hT (n)M(n|b1:n−1)

hT (n)M(n|b1:n−1)h(n) + cv(n)
. (22)

Comparing (21) to (22), we obtain ΔM(n) = βi(n)ΔMK(n). That
is, the ECM reduction achieved by the QKF in one correction step, is
βi(n) times the ECM reduction of the clairvoyant KF. From (17) we
see that 0 < βi(n) < 1, consistent with the fact that b(n) contains
less information about x(n) than y(n).

3.1. Quantizer design

Quantization in (12) is defined by the quantizer thresholds {τi(n)}N+1
i=1 .

The ECM M(n|b1:n) in (19), and consequently the ECM reduction
ΔM(n) in (21), depend on b(n). We define the optimal quantizer as
the one that maximizes the average variance reduction, i.e.,

{Δ∗
i (n)}N

i=2 : = arg max
{Δi(n)}N

i=2

Eb(n)

{
ΔM(n)|b1:n−1

}
. (23)

It is readily verified that {Δ∗
i (n)}N

i=2 in (23) can be obtained as the
maximizers of β̄(n) := Eb(n){βi(n)|b1:n−1}. Using the expression
for Pr{b(n) = i|b1:n−1} in (15), β̄(n) can be written as

β̄(n) =

N∑
i=1

[
Q[Δi(n)] − Q[Δi+1(n)]

]
βi(n)

=
1

2π

N∑
i=1

[
exp(−Δ2

i (n)/2) − exp(−Δ2
i+1(n)/2)

]2
Q[Δi(n)] − Q[Δi+1(n)]

(24)

where in the second equality we used the definitions of αi(n) in (16)
and βi(n) in (17). Using (24) we can obtain the following proposition.

Proposition 2 Consider the problem of optimal quantization of the
innovation ỹ(n|b1:n−1). If b(n) = i, the reconstructed innovation is
ˆ̃y(i)(n|b1:n−1) := E{ỹ(n|b1:n−1)|b1:n−1, b(n) = i} = σy(n) αi(n)
[cf. (16)]. Using an MSE distortion, the optimal quantizer of the inno-
vation ỹ(n|b1:n−1) is given as

{Δ†
i (n)}N

i=2

:= arg min
{Δi(n)}N

i=2

E
{

[ỹ(n|b1:n−1)− ˆ̃y(i)(n|b1:n−1)]
2|b1:n−1

}
. (25)

The optimal thresholds in (23) and (25) are equal, i.e., {Δ∗
i (n)}N

i=2 =

{Δ†
i (n)}N

i=2 .

Proposition 2 asserts that the optimal strategy for quantizing the in-
novations ỹ(n|b1:n−1) in order to estimate x̂(n|b1:n) is to quantize
ỹ(n|b1:n−1) with minimum MSE distortion.

Since p[ỹ(n|b1:n−1)|b1:n−1] ≈ N [ỹ(n|b1:n−1); 0, σ2
yn

], the opti-
mal MSE quantizer for ỹ(n|b1:n−1) is given by the Lloyd-Max quan-

tizer of [6]. The optimal normalized thresholds values, i.e., {Δ†
i (n)}N+1

i=1 ,
from [6] are used in (24) and the calculated β̄(n) values are summa-
rized in Table 1. Note that quantizing to more than 4 bits, for which
β̄(n) ≈ 0.99, seems rather unjustified. In the next section, simula-
tions for the QKF are provided in order to corroborate the analytical
statements and validate model consistency.
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4. SIMULATIONS

The two-dimensional state space model simulated is

ẋc(t) :=

(
ẋc1(t)
ẋc2(t)

)
=

(
0 1
0 0

)(
xc1(t)
xc2(t)

)
+

(
0
1

)
uc(t).

This model is known as constant-velocity tracking model in [7, pp. 82].
Noisy measurements at sensor Sk are given as yk(t) = xc1(t) +
θkxc2(t) + vk(t), where θk is a parameter at sensor k. A discrete-
time equivalent model is used with sampling period Ts = 1. Simu-
lations were performed for K = 2 sensors with [θ1 θ2] = [0.1 0.2],
cv(t) = 1 and cu(t) = 1.

In Fig. 1 QKF MSE, i.e., tr{M(n|b1:n)}, for 1, 2 and 3 bits is
compared with the MSE of the clairvoyant KF. The plots demonstrate
the MSE improvement offered by 2 bits of quantization compared to
the 1-bit QKF case. Quantizing with more than 2 bits offers little MSE
improvement.

Model consistency tests comparing the empirical MSEs with ana-
lytical MSEs are depicted in Fig. 2. The analytical MSEs, as defined
in (9) and (19) are compared with empirically computed MSEs (sam-
ple average of the squared estimation errors) for both predictor MSE
and estimator MSE. This consistency test reveals that the empirical
and analytical MSEs are nearly identical.

Fig. 3 shows the normalized estimation error squared (NEES) con-
sistency test statistics for the QKF [7, Chapter 5.4]. With L realiza-
tions of the NEES statistics {ri(n)}L

i=1 , where r(n) := [x(n) −
x̂(n|b1:n)]T [M(n|b1:n)]−1[x(n) − x̂(n|b1:n)] and using r̂(n) :=
1
L

∑L
i=1ri(n), an acceptance (confidence) region Pr{r̂(n) ∈ [l, u]} =

1−α, is defined. From L = 100 realizations, p = 2 state dimensions,
and α = 0.05 (i.e., 95% region), we observed that indeed only 5% of
the 100 time samples were outside the 95% acceptance region.

5. CONCLUDING REMARKS

A distributed recursive state estimator based on quantized observations
was developed for tracking Markov state space models. It was shown
both analytically and in simulation that quantizing using 2 − 3 bits
improves the mean-square error performance of the Kalman-like algo-
rithm to virtually coincide with the optimal state estimator (Kalman fil-
ter), with only minimal increase in computation. It was further shown
that actual state estimation MSEs are consistent with the estimator al-
gorithm’s MSEs.
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