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ABSTRACT

We formulate a frequency-division multiple access (FDMA) networking
problem for wireless mobile ad-hoc networks (MANETS) to jointly opti-
mize end-to-end user rates, routes, link capacities, transmitted power, fre-
quency and power allocation across subcarriers and fading states. We show
that the resulting non-convex optimization problem has zero duality gap.
For some types of FDMA networks this result is exploited to reformulate
the original problem into a (computationally tractable) convex optimization
problem. We further exploit the lack of duality gap to show that conven-
tional layering can be optimal in FDMA wireless MANETS. Specifically, if
we select Lagrange multipliers appropriately, we can decompose the origi-
nal problem in smaller sub-problems associated with the conventional net-
working layers. The solution of these per-layer optimization problems coin-
cides with the solution of the originally formulated cross-layer optimization
problem.

Index Terms— Wireless networking, cross-layer design, optimization

1. INTRODUCTION

It is widely recognized that networking in wireless mobile ad-hoc networks
(MANETS) requires joint optimization of parameters that span the differ-
ent layers of the traditional network-protocol stack. This optimization, alas,
is computationally complex. Consequently, advances in cross-layer opti-
mization usually rely on either restricting attention to a subset of layers,
introducing approximations to render the problem tractable, or attempting
to find an approximation, e.g., a local optimum, of the optimal solution.

One of the most comprehensive approaches to the wireless networking
problem is the work in [1] where suitably modified versions of the back-
pressure algorithm [2] are shown to approximate solutions of various wire-
less networking problems. Approaching the problem from an optimization
perspective the use of the Lagrangian dual function is widespread. In par-
ticular, the Lagrangian function can be used to justify the decomposition of
network optimization into layers and develop distributed implementations
translating a mathematical optimization to a networking protocol; see e.g.,
[3] and references therein. It has to be noted that since wireless network-
ing problems are not convex, the duality gap is not null. Thus, the dual
optimum is different from the primal optimum. Lyapunov’s convexity the-
orem [4], has been recently applied to the subcarrier allocation problem in
digital subscriber lines (DSL) [5]. This problem, which bears resemblance
to some particular wireless networking problems, is also non-convex and
computationally intractable. Nonetheless, when formulated in continuous
– as opposed to discrete – frequency the problem has zero duality gap [5].

This paper formulates a frequency-division multiple access (FDMA)
networking problem for wireless MANETS to jointly optimize end-to-end
user rates, routes, link capacities, transmitted power, frequency and power
allocation across subcarriers and fading states. This problem is computa-
tionally difficult, and in the absence of fading known to be NP-hard [6].
One would expect that fading complicates matters further. Quite surpris-
ingly, Lyapunov’s convexity theorem can be used to show that in the pres-
ence of fading there is no duality gap. Therefore, the Lagrangian dual can
be solved instead of the primal problem. For some types of FDMA net-
works this result can be used to reformulate the FDMA networking prob-
lem into a (tractable) convex optimization problem. Perhaps more impor-
tant, the zero duality gap shows that conventional layering can be optimal
in FDMA wireless MANETS. Specifically, if we select Lagrange multipli-
ers appropriately, we can decompose the original problem in smaller sub-
problems associated with the conventional networking layers. The solution
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of these per-layer optimization problems coincides with the solution of the
originally formulated cross-layer optimization problem.

2. PROBLEM FORMULATION

Consider an ad-hoc wireless network comprising J user terminals {Ti}J
i=1.

Terminal Ti wants to deliver packets for different application level flows
generically denoted by k. Flow k specifies the destination of the flow’s
packets, but the same destination might be associated with different flows
to, e.g., accommodate different types of traffic (video, voice or data). The
destination of flow k is denoted by T k to emphasize that flow indexing is
different from terminal indexing. For every flow k, packet arrivals at Ti

form a stationary stochastic process with mean ak
i .

We model network connectivity with a graph G(v, e) with vertices
v := {1, . . . , J} and edges e ∈ E connecting pairs of vertices (i, j) when
and only when Ti and Tj can communicate with each other. The adjacency
of i is denoted n(i) := {j : (i, j) ∈ E}. Each terminal {Tj}j∈n(i) that
can communicate with Ti will be referred to as a neighbor and the set of
all neighbors as Ti’s neighborhood. Given this model, terminals rely on
multi-hop transmissions to deliver packets to the intended destination T k

of the flow k. For that matter, Ti selects an average rate rk
ij for transmit-

ting k-th flow packets to Tj . Assuming that packets are not discarded and
that queues are stable throughout the network, we can write a flow conser-
vation equation to relate rates ak

i of exogenous packet arrivals (from the
application layer) and endogenous (to the network layer) average rates rk

ij

of transmission to and from neighboring nodes

ak
i =

X
j∈n(i)

“
rk

ij − rk
ji

”
. (1)

Consider now rates rk
ij of all flows traversing the link Ti → Tj . Denoting

by cij the information capacity of this link, we ensure queue stability by
requiring X

k

rk
ij ≤ cij . (2)

Constraints (1) and (2) are sufficient to describe traffic flow in a wireline
network with fixed capacities cij . In such a case, Ti needs to determine
exogenous arrival rates ak

i and transmission rate variables rk
ij to satisfy

certain optimality criteria. In a wireless network however, cij is not a fixed
resource given to the terminals. In fact, operating conditions are determined
by a set of available frequencies F and power budgets pmax i. Thus, in
addition to ak

i and rk
ij , Ti has to decide how to split the power budget

pmax i among tones f ∈ F and neighbors Tj , j ∈ n(i). Matters are further
complicated by fading as described in the next section.

2.1. Link capacities in FDMA wireless networks

For every frequency tone f ∈ F and (i, j) ∈ E , let hf
ij denote the channel

gain from Ti to Tj . As is customary practice in wireless communications,

hf
ij is modeled as a random variable. The channel gains of all network links

are collected in the vector h, and all h realizations in the setH.

For a given channel realization h, let the indicator variable αf
ij(h)

equal 1 when Ti sends packets to Tj on tone f and 0 otherwise, i.e., αf
ij(h)

indicates the event that Ti chooses to transmit to Tj on the tone f when the

channel vector realization is h. When αf
ij(h) = 1, pf

ij(h) denotes the
power used for transmission in this link. For a given channel realization,
the instantaneous total power pi(h) used by Ti is the sum of the power used
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to transmit to all selected neighbors in all selected tones, i.e.,

pi(h) :=
X

j∈n(i)

X
f∈F

αf
ij(h)pf

ij(h). (3)

Integrating over all possible channel realizations yields the average pi

power used by Ti as

pi := Eh [pi(h)] = Eh

2
4 X

j∈n(i)

X
f∈F

αf
ij(h)pf

ij(h)

3
5 (4)

where Eh[·] denotes expectation over the channel probability distribution.
The rate of information transmission in the Ti → Tj link is a function

of the power distributions pf
ij(h). In this paper, we assume that terminals

avoid mutual interference (this constrains the values of the indicator vari-
ables αf

ij(h) as we explain in Section 2.2) so that cf
ij(h) can be written as

a function of pf
ij(h) only, i.e.,

cf
ij(h) := αf

ij(h)C
“
hf

ijp
f
ij(h)

”
. (5)

If, e.g., a capacity achieving code is used we can write C[hf
ijp

f
ij(h)] =

log[1 + hf
ijp

f
ij(h)], where we have assumed that the noise power is 1, as

can always be done, normalizing the channel gains hf
ij if necessary. An-

other example entails the use of a finite number of adaptive modulation and
coding (AMC) modes. In this case, C(·) is a staircase function defined by
the rate of the AMC modes considered.

In any event, the capacity cij of the wireless link Ti → Tj is obtained
after integrating over all possible channel realizations:

cij := Eh

2
4X

f∈F
cf

ij(h)

3
5 = Eh

2
4X

f∈F
αf

ij(h)C
“
hf

ijp
f
ij(h)

”35 . (6)

The average link capacity and power expressions in (4) and (6) with the
flow and rate constraints in (1) and (2) describe a generic FDMA wireless
networking problem. To complete the problem description we need to con-
strain the indicator variables αf

ij(h) in order to prevent use of the same
frequency tone by neighboring terminals. This is done in the next section.

2.2. Frequency separation

To ensure frequency separation, we have to constrain the link assignment
variables αf

ij(h). In principle, we want to ensure that if a certain tone f is
being used for transmission in a certain link, then the same tone is not used
simultaneously by nearby nodes. Consider an arbitrary terminal Tj and

recall that αf
ij(h) = 1 indicates that Ti ∈ n(j) is transmitting to Tj on the

tone f ∈ F when the channel realization is h ∈ H. To avoid interference,
a tone f cannot be used to transmit to Tj by more than one of its neighbors.

In terms of indicator variables, the latter implies that if αf
i0j(h) = 1 for

some i0 ∈ n(j), then for any other i �= i0 we must have αf
i0j(h) = 0.

Since the indicator variables αf
ij(h) ∈ {0, 1}, the latter can be written as

X
i∈n(j)

αf
ij(h) ≤ 1. (7)

For a given channel realization h, (7) is satisfied if either no terminal trans-
mits to Tj on the tone f , or only one terminal Ti does so. This is not
sufficient to ensure lack of interference in any Ti → Tj link, since we also
have the possibility of Tj transmitting to a neighbor Ti on the same tone,
i.e., the tone f being used by some outgoing transmission from Tj . To pre-

vent this from happening we have to assure that if αf
i0j(h) = 1 for some

i0 ∈ n(j) then we not only have αf
ij(h) = 0 for i �= i0 but αf

ji(h) = 0
(note the reversal of subindexes since this indicator variables are for Tj’s
transmissions) for all i ∈ n(j). This can be guaranteed if the following is
satisfied X

i∈n(j)

αf
ij(h) +

X
i∈n(j)

αf
ji(h) ≤ 1. (8)

So far, we assured that transmissions to Tj do not interfere with each other
[cf. (7)] as neither do incoming and outgoing transmissions [cf. (8)]. We
have to further prevent the possibility of some neighbor of Tj using a tone
f to communicate with any other node when f is used to transmit to Tj .

Again, in terms of indicator variables we have that if αf
ij(h) = 1 for some

i ∈ n(j), i.e., Tj is receiving information on the tone f , then for any

neighbor k ∈ n(j) we must have αf
kl(h) = 0, i.e., neighbors of Tj do not

use f . This yields the constraintsX
i∈n(j)

αf
ij(h) +

X
l∈n(k),l�=j

αf
kl(h) ≤ 1, ∀k ∈ n(j). (9)

The constraints in (7)-(9) state that for a given channel realization h one of
two things happens. If f is used for transmitting to Tj , then (7) guarantees
that it is used only by one node so that the sum in (7) equals 1; since this
sum is also the first term of (8) and (9), (8) ensures that the tone f is not
used by Tj’s transmissions; while the constraints in (9) ensure that f is not
used by neighboring terminals. If f is not used for transmitting to Tj by
any of its neighbors the sum in (7) is null as are the first terms of the sums
in (8) and (9); the tone f may then be used for transmission by Tj itself
and/or any or many of its neighbors as long as it is compatible with the
FDMA constraints associated with other nodes.

With a properly defined A, the constraints in (7)-(9) will be henceforth
denoted as Aαf (h) ≤ 1, where αf (h) is a vector containing all the link

indicator variables αf
ij(h) for a given tone f and channel realization h.

Note that A is the same for all f and h.

3. OPTIMAL FDMA NETWORKING

We have now finished relating the variables in an FDMA networking prob-
lem. For link indicator variables αf

ij(h) satisfying (7)-(9), link capacities

cij and power consumption pi depend on the chosen power profiles pf
ij(h)

as per (4) and (6). The average link rates rk
ij are then constrained by (2) and

the end-to-end flow rates ak
i by (1). Problem variables αf

ij(h), pf
ij(h), cij ,

pi, rk
ij and ak

i that satisfy these equations can be supported by the network.
As network designers, we want to select out of this set of feasible variables
those that are optimal in some sense. We thus introduce concave Uk

i (ak
i )

and convex Vi(pi) functions, respectively representing the value of rate ak
i

and the cost of power pi. Though not required, we expect Uk
i (ak

i ) and
Vi(pi) to be increasing functions of their arguments. We can thus define
the optimal networking problem as [cf. (1), (2), (4), (6) and (7)-(9)]

P = max
X
i,k

Uk
i (ak

i )−
X

i

Vi(pi) (10)

cij ≤ Eh

2
4X

f∈F
αf

ij(h)C
“
hf

ijp
f
ij(h)

”35 (11)

pi ≥ Eh

2
4 X

j∈n(i)

X
f∈F

αf
ij(h)pf

ij(h)

3
5 (12)

ak
i ≤

X
j∈n(i)

“
rk

ij − rk
ji

”
,

X
k

rk
ij ≤ cij (13)

Aαf (h) ≤ 1; αf
ij(h) ∈ {0, 1} (14)

where we have relaxed the constraints (1), (4) and (6), which we can do
without loss of optimality. Note that all problem variables have to be
non-negative, but this is left implicit in (10). We have also left implicit
power constraints pi ≤ pmax i and pf

ij(h) ≤ pmax, arrival rate require-

ments ak
min i ≤ ak

i ≤ ak
max i and upper bound constraints cij ≤ cmax and

rk
ij ≤ rmax on link capacities and link flow rates. We will henceforth refer

to these constraints as box constraints.
Problem (10) is difficult to solve. The function C(·) is not concave in

general and even if we restrict attention to concave functions, the products

αf
ij(h)C

“
hf

ijp
f
ij(h)

”
and αf

ij(h)pf
ij(h) still pose computational chal-

lenges. As we will see, it is possible to reformulate (11) and (12) to avoid
the latter. The unsurmountable complication, however, comes from the
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integer constraints (14) on the indicator variables αf
ij(h) ∈ {0, 1}. Indeed,

if we remove the expected value operators in (11) and (12), i.e., if channels
are deterministic and there is only one realization h, it has been proved
that the problem (10) is NP-hard, [6]. In light of this challenge, one is well
justified to look for approximate solutions. This motivates the introduction
of problem relaxations outlined in the next two sections.

3.1. Constraint relaxation

A constraint relaxation of (10) is obtained by replacing the constraint
αf

ij(h) ∈ {0, 1} in (14) with the constraint αf
ij(h) ∈ [0, 1]; i.e., instead of

αf
ij(h) being 0 or 1, we let it take values over the interval [0,1].

To take care of the non-convex products in (11) and (12), we intro-
duce the variables qf

ij(h) := αf
ij(h)pf

ij(h). The power constraint is thus
rewritten as [cf. (12)]

pi ≥ Eh

2
4 X

j∈n(j)

X
f∈F

qf
ij(h)

3
5 (15)

which is a simple linear function of qf
ij(h). The link capacity constraint

(11) takes the form

cij ≤ Eh

2
4X

f∈F
αf

ij(h)C

 
hf

ijq
f
ij(h)

αf
ij(h)

!35 . (16)

The expression αf
ij(h)C

“
hf

ijq
f
ij(h)/αf

ij(h)
”

is the perspective of the

function C(·). Since the perspective operator preserves concavity, for con-
cave functions C(·) the expression in (16) defines a convex constraint in
the problem variables.

The relaxed problem defined as the maximization of the objective in
(10) subject to the constraints (15), (16), (13) and Aαf (h) ≤ 1, αf

ij(h) ∈
[0, 1] is a convex problem that can be efficiently solved using, e.g., inte-
rior point algorithms. Since relaxing the integer constraint enlarges the
set of feasible variables, the maximum P̃ of the relaxed problem provides
an upper bound on the maximum P of the original problem (10), i.e.,
P̃ ≥ P . The optimal arguments of the relaxed problem will in general
have αf

ij(h) /∈ {0, 1}. To obtain a feasible solution, we have to project the

latter so that αf
ij(h) ∈ {0, 1}. This might be computationally difficult and

might entail a significant performance loss.

3.2. Lagrangian relaxation

Lagrangian relaxation refers to the solution D of the dual problem of (10).
Since (10) is non-convex the duality gap is nonzero and we have D ≥ P .
To define the dual problem, associate Lagrange multipliers λij with the
capacity constraints in (11), μi with the power in (12), and νk

i and ξij with
the flow and rate constraints in (13). To simplify notation call X the set of
all primal variables – i.e., αf

ij(h), pf
ij(h), cij , pi, rk

ij and ak
i – and Λ the

set of all dual variables –i.e., λij , μi, νk
i , ξij – and write the Lagrangian as

L [X,Λ] =
X
i,k

Uk
i (ak

i )−
X

i

Vi(pi) (17)

+
X
i,j

λij

2
4Eh

2
4X

f∈F
αf

ij(h)C
“
hf

ijp
f
ij(h)

”35− cij

3
5

+
X

i

μi

2
4pi − Eh

2
4 X

j∈n(i)

X
f∈F

αf
ij(h)pf

ij(h)

3
5
3
5

+
X
i,k

νk
i

2
4 X

j∈n(i)

“
rk

ij − rk
ji

”
− ak

i

3
5+

X
ij

ξij

"
cij −

X
k

rk
ij

#
.

The dual function is obtained by maximizing the Lagrangian over the pri-
mal variables

g[Λ] = max
X
L[X,Λ] (18)

Aαf (h) ≤ 1; αf
ij ∈ {0, 1}

where as in (10) box constraints are implicit. We finally define the dual
problem as

D = min
Λ≥0

g[Λ]. (19)

It is interesting to note that the Lagrangian of the relaxed problem, i.e.,
(10) with αf

ij(h) ∈ [0, 1], is also given by (17). The dual function is
different, though, since the range over which we perform the Lagrangian
maximization changes, i.e.,

g̃[Λ] = max
X
L[X,Λ] (20)

Aαf (h) ≤ 1; αf
ij(h) ∈ [0, 1].

The dual problem is defined analogously yielding the relaxed dual optimum
D̃ = minΛ≥0

g̃[Λ].
The Lagrangian in (17) depends linearly on the indicator variables

αf
ij(h). Therefore, we expect the maximum in (20) to be achieved at a

corner of the polyhedron defined by the constraints Aαf (h) ≤ 1 and

αf
ij(h) ∈ [0, 1]. Since points with αf

ij(h) ∈ {0, 1} are corners of this fea-
sible set the question arises if these are the only possible corners so that the
maximum in (20) coincides with the maximum in (18), i.e., if g̃[Λ] = g[Λ].
This is not true in general, as is well known, but for the subclass of “totally
unimodular” matrices [7, p. 572]. For this subclass we have g̃[Λ] = g[Λ]
something that, in particular, holds true at the minimum value of the dual
functions. This argument establishes the following result1.

Proposition 1 Let P denote the maximum of the primal problem (10), D
the minimum of its dual in (19), P̃ the maximum of the relaxed primal
problem (10) with αf

ij(h) ∈ [0, 1], and D̃ = minΛ≥0
g̃[Λ] the minimum

of the dual relaxed problem with g̃[Λ] as in (20). If the capacity function
C(·) is convex and the matrix A is totally unimodular, then it holds that

P ≤ D = D̃ = P̃ . (21)

Given the intractability of (10) we approach the problem through three,
in principle, different relaxations. The optimal values obtained for totally
unimodular networks are equally good as approximations of the original
problem. The relaxations are different in general and yield approximating
arguments with different properties. When solving the relaxed problem we
obtain infeasible indicator variables, i.e., αf

ij(h) /∈ {0, 1}. When solving
the dual problems, we obtain as a byproduct primal variables that optimize
the Lagrangians [cf. (18) and (20)]. The indicator variables are feasible in
this case, i.e., αf

ij(h) ∈ {0, 1} but other constraints in the primal problem
may be violated. The usefulness of any of the relaxed problems depends
on the difficulty of obtaining a primal feasible solution given the solution
of the relaxed problem and the (further) loss of optimality associated with
this recovery.

4. OPTIMALITY OF DUAL AND CONSTRAINT RELAXATION

The challenges in solving (10) are now clear. For deterministic channels,
the problem is known to be NP-hard. The relaxations discussed in Sec-
tions 3.1 and 3.2 are certainly useful in establishing upper bounds on the
achievable utility, but might or might not shed light on the optimal prob-
lem variables. One would expect that introducing fading should complicate
matters further. It is thus a remarkable fact that in the presence of fading
the duality gap vanishes, i.e., P = D. We state this result in the following
theorem.

Theorem 1 Let P denote the maximum of the primal problem (10), D the
minimum of its dual in (19), P̃ the maximum of the relaxed primal problem
(10) with αf

ij(h) ∈ [0, 1], and D̃ = minΛ≥0
g̃[Λ] the minimum of the dual

relaxed problem with g̃[Λ] as in (20). If the channel cumulative distribution
function (cdf) is continuous, then

P = D. (22)

If in addition the matrix A is totally unimodular, then

P = D = D̃ = P̃ . (23)

1Proofs are available in the journal version of this paper.
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The proof relies on Lyapunov’s convexity theorem [4] first used in the con-
text of physical layer spectrum management for deterministic DSL chan-
nels in [5]. Recall that the link capacity function C(·) is not necessarily
concave in Theorem 1. Even if C(·) is concave, the optimization prob-
lem is still non-convex. The duality gap, however, is null. Continuity of
the channel cdf ensures that no channel realization has positive probability.
This is satisfied by commonly used channel models including Rayleigh,
Rice and Nakagami fading.

When A is totally unimodular any set of primal variables X feasible
for the problem (10) is also feasible for the relaxed problem with αf

ij(h) ∈
[0, 1]. This is in particular true for the arguments X∗ that solve (10). But

since P = P̃ , X∗ is also a solution of the relaxed problem. This implies
that the optimal arguments X̃∗ of the relaxed problem satisfy αf

ij(h) ∈
{0, 1}, and are thus a feasible point of (10). Consequently, the convex
(thus computationally tractable) relaxed problem can be solved instead of
the (difficult) primal problem.

Another implication of Theorem 1 is the optimality of conventional
layering in wireless FDMA networking problems. As is usually the case,
the Lagrangian exhibits a separable structure in the sense that it can be writ-
ten as a sum of terms that depend on a few primal variables. Rearranging
terms in (17) and assuming that the optimal dual argument Λ∗ is available,
we can write

L[X,Λ∗] =
X
i,k

“
Uk

i (ak
i )− νk

j

∗
ak

j

”
+
X

i

“
μ∗

i pi − Vi(pi)
”

(24)

+
X
i,j

“
ξ∗ij − λ∗

ij

”
cij +

X
i,j,k

“
νk

i

∗ − νk
j

∗ − ξ∗ij
”
rk

ij

+
X
i,j,f

Eh

h
αf

ij(h)
h
λ∗

ijC
“
hf

ijp
f
ij(h)

”
− μ∗

i pf
ij(h)

ii
.

The zero duality gap implies that if Λ∗ is known we can, instead of solving
(10), solve the (separable) problem

P = D = g[Λ∗] = max
X
L[X,Λ∗] (25)

where the maximization is constrained to the αf
ij(h) satisfying Aαf (h) ≤

1 and αf
ij(h) ∈ {0, 1}.

Because primal variables are decoupled in the Lagrangian L[X,Λ∗]
[cf. (24)], the maximization in (25) can be split into smaller maximization
problems. This separability can be used to prove the following theorem.

Theorem 2 Let λ∗
ij , μ∗

i , νk
i
∗
, and ξ∗ij denote the optimal dual variables

that solve (19). Consider the sub-problems

P (ak
i ) = max

ak
min i≤ak

i ≤ak
max i

h
Uk

i (ak
i )− νk

i

∗
ak

i

i
(26)

P (rk
ij) = max

0≤rk
ij≤rmax

h“
νk

i

∗ − νk
j

∗ − ξ∗ij
”

rk
ij

i
(27)

P (cij) = max
0≤cij≤cmax

ˆ`
ξ∗ij − λ∗

ij

´
cij

˜
(28)

P (pi) = max
0≤pi≤pmax i

[μ∗
i pi − Vi(pi)] . (29)

Define further the optimal power allocation problem

φf
ij(h) = max

0≤p
f
ij(h)≤pmax

h
λ∗

ijC
“
hf

ijp
f
ij(h)

”
− μ∗

i pf
ij(h)

i
(30)

and the optimal frequency allocation problem

P (h) = max

2
4X

i,j,f

αf
ij(h)φf

ij(h)

3
5 (31)

Aαf (h) ≤ 1, αf
ij(h) ∈ {0, 1}.

Then, the optimal utility yield P in (10) is given by

P =
X
i,k

P (ak
i ) +

X
i,j,k

P (rk
ij) +

X
i,j

P (cij) +
X

i

P (pi) +Eh [P (h)] (32)

i.e., the primal problem (10) can be separated into the (sub-) problems
(26)-(31) without loss of optimality.

The rate problem in (26) dictates the amount of traffic allowed into the net-
work. It therefore solves the flow control problem at the transport layer.
Likewise, (27) represents the network layer routing problem, (28) deter-
mines link-level capacities at the data link layer and (29) is the (physical
layer) average power control problem. Eqs. (30) and (31) represent re-
source allocation at the physical layer. Therefore, it is a consequence of
Theorem 2 that layering, in the sense of problem separability as per (32)
is optimal in faded FDMA wireless networks. Furthermore, (30) and (31)
dictate that the FDMA resource allocation separates into subproblems that
depend on the instantaneous channel realization only.

We remark that Theorem 2 assumes availability of the optimal La-
grange multipliers λ∗

ij , μ∗
i , νk

i
∗
, and ξ∗ij . Finding them, while possible,

is a non-trivial problem that we will address in forthcoming contributions.
However, it has to be appreciated that Theorem 2 establishes two funda-
mental properties of wireless FDMA networks in the presence of fading: i)
the decomposition of the problem into the traditional networking layers can
be optimal; and ii) the separability of the resource allocation problem into
per-fading-state subproblems is possible. None of these properties applies
to static wireless networks with deterministic channels.

5. CONCLUSIONS

We investigated the optimal FDMA networking problem defined in (10).
Among other important questions we set up the following ones: i) how
difficult is it to solve (10), ii) how can one find the optimal solution, iii) how
can this solution be used to design FDMA wireless networking protocols,
and iv) what does the solution say about fundamental properties of FDMA
wireless networking.

In this paper, we tackled questions (i) and (iv). We have shown that
in the presence of fading (10) can sometimes be solved by algorithms with
manageable complexity. This is a remarkable property given the fact that
in deterministic channels the same problem is NP-hard. We further estab-
lished that (10) can be decomposed into layers and fading states without
loss of optimality. We will address (ii) and (iii) in forthcoming papers2.
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