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Abstract—We discuss the design of robust protocols that despite poor
knowledge about network connectivity achieve consistent performance.
Optimal routes and schedules are obtained to (i) maximize a social
network utility subject to a variance constraint; and (ii) minimize a
variance cost subject to a minimum yield. Corresponding optimiza-
tion problems are formulated and shown to be convex under mild
conditions usually satisfied in practice. Protocols are obtained relying
on dual decomposition algorithms that compute the solution of these
optimization problems in a distributed manner. The resulting protocols
yield utilities that come close to the prescribed requirement even when
channel estimates are rough.

I. INTRODUCTION

In a wireless ad-hoc network the determination of routes and
schedules is complicated by the difficulty of acquiring knowledge
about network connectivity. Because of the rapidly changing topol-
ogy, it is likely that user terminals have access only to information
regarding their immediate neighborhood. Even information about
neighbors, e.g., achievable rates in a one-hop radius, is difficult to
acquire. In practice, decisions about packet’s transmission have to
be made based on rough estimates of network connectivity. In this
context, the design of robust protocols that despite poor knowl-
edge about network connectivity achieve consistent performance
becomes of interest.

In a wireless ad-hoc network, packet scheduling and routing
are fundamental problems. The scheduling problem answers the
question of how should terminals divide their transmission time
among the different information flows they are serving. The routing
problem deals with finding a convenient next hop for the packets
of the scheduled flow. The landmark work in [7], [8] offers a
joint solution to these three problems through the “back-pressure”
algorithm whereby routing-scheduling decisions are based on the
difference between queue lengths of adjacent terminals. The back-
pressure algorithm, however, requires perfect knowledge of the
achievable rates between any pair of terminals.

In [5] and [6] we have advocated stochastic routing and schedul-
ing protocols. The idea is to forward packets at random according
to probabilities that are then chosen to optimize pertinent criteria.
The context in these works is to cope with channel reliability issues
in line with the contributions of e.g., [3] and [4]. Nonetheless, it
is apparent that random packet forwarding can be leveraged to
deal with uncertain knowledge of network connectivity. By divid-
ing traffic between different routes, stochastic routing-scheduling
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protocols reduce the effect of channel estimation errors. While
complete cancellation of these is unlikely, it is certainly possible
to make end-to-end communication rates less sensitive to channel
estimation errors.

The goal of this paper is to design robust routing-scheduling
protocols. In particular, we will define two different kinds of
optimal routes and schedules:

Maximum utility. A social rate utility is maximized subject to a
constraint in the maximum allowable variance. These proto-
cols are rate optimal while guaranteeing a bounded departure
from the optimal yield.

Minimum variance. A variance cost is minimized subject to a
minimum required rate utility. These protocols aim at pro-
viding a minimum quality of service while minimizing the
uncertainty brought about by channel estimation errors.

Both of these problems will be formulated (Section II) and
their tractability discussed (Section III). We will show that under
mild constraints in the utility functions the resulting optimiza-
tion problems are convex (Section III-A). Even though convexity
ensures problem tractability, the communication cost associated
with collecting reliability estimates at a central location followed
by percolation of the optimal routing matrix may be prohibitive.
This motivates the introduction of routing protocols based on local
communications only that as time progresses converge to the opti-
mal routing matrix (Section IV). We finally present corroborating
simulations (Section V) and conclude the paper (Section VI).

II. PROBLEM FORMULATION

Consider a wireless ad-hoc network with J terminals {Ui}J
i=1

collaborating to support a set of ongoing communications. Without
loss of generality, suppose that the first K terminals {Uk}K

k=1

are destinations of packets randomly generated at other terminals,
with ρki denoting the rate at which Ui generates packets whose
intended destination is Uk. To exemplify notation consider a
network with J/2 bidirectional communications between pairs of
nodes Ui, Uk(i). In this case we would have that: i) every node
is a destination, i.e., K = J ; ii) the arrival rate is null except
for communicating pairs, i.e., ρki = 0 when k != k(i); and iii)
arrival rates ρki != 0 if and only if ρik != 0. In general, some
nodes may not be receiving packets in which case K < J ; some
Uk node may receive packets from more than one source implying
that ρki != 0 for more than one i; and some Ui node may not be
sending packets resulting in ρki = 0, ∀ k. We assume that the
random processes generating packets are stationary and define the
vectors ρk := [ρk1, . . . , ρkJ ]T of rates with destination Uk. We
further convene ρkk = 0.
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Network connectivity is described by the pairwise rates Rij that
are defined as the rate at which Ui can transmit packets to Uj . We
arrange these probabilities in the reliability matrix R with (i, j)-
th entry Rij . The matrix R is a function of the transmitted power
and other parameters pertaining to the physical and medium access
layers but is assumed given for our purposes. With a certain margin
of error, elements Rij of R can be measured by channel probing
as will be discussed in Section II-B.

A. Stochastic routing-scheduling and queue stability

At each time slot, a terminal Ui that decides to transmit a packet
is faced with a scheduling and a routing decision. Of the intended
destinations {Uk}K

k=1,k !=i, node Ui has to decide which one it
is going to serve, i.e., schedule, in the current slot. Given that
it chooses to send a packet whose final destination is Uk, node
Ui chooses a convenient next hop {Uj}J

j=1,j !=i, i.e, Ui routes the
packet through Uj .

These are modelled jointly through Tkij that denotes the prob-
ability of Ui scheduling Uk, and routing the packet through
Uj . Consequently, at any slot, say the n-th, Ui selects a final
destination Uk and a next hop Uj with the pair (Uk, Uj) chosen
with probability Tkij . Packets are then moved from Ui to Uj at a
rate Rij . Since we are assuming that in any slot Ui cannot serve
more than one node we have that

K∑

k=1

J∑

i=1

Tkij ≤ 1, ∀ j != k. (1)

Note that the sum of probabilities is allowed to be less than one
so that some probability can be assigned for not transmission at
all. We also have Tkkj = 0, ∀ j and Tkii = 0, ∀ i, respectively
meaning that a destination Uk does not forward its own packets and
that Ui does not route packets through itself. For future reference
define the matrix Tk ∈ RJ×J , with (i, j)-th element Tkij .

To characterize the evolution of packets through the network
define a third matrix Kk with elements Kkij denoting the rate at
which packets with final destination Uk move from Ui’s to Uj’s
queue. This rate is the product of the rate Tkij at which the pair
of destination and next hop (Uk, Uj) is chosen by Ui and the rate
Rij at which packets are communicated in such case. Therefore,
for i != j it holds

Kkij = TkijRij , i != j. (2)

Given a set of rates {ρk}K
k=1 and a set of scheduling-routing

matrices {Tk}K
k=1 the question arises of whether all queues in

the network are stable. To ensure such stability it is sufficient to
require that for all queues the aggregate arrival rates are smaller
than the aggregate departure rate. Consider the queue at Ui for
packets with final destination Uk. The aggregate departure rate of
the queue is the sum of the rates at which packets are forwarded
to other terminals, i.e.,

∑J
j=1,j !=i Kkij . The aggregate arrival rate

is the sum of the rates at which packets are forwarded from other
terminals, i.e.,

∑J
j=1,j !=i Kkji, plus the rate ρki at which packets

are generated at Ui. To ensure stable ques it thus must hold

ρki +
J∑

j=1,j !=i

Kkji =
J∑

j=1,j !=i

Kkij (3)

For a set of routing-scheduling matrices {Tk}K
k=1, the constraints

in (1), (2) and (3) define a set of rates {ρk}K
k=1 that ensure stability

of all queues. The {ρk}K
k=1 set is such that if any rate ρkj is

increased, at least one queue in the network becomes unstable.
From (3) an expression for the rates {ρk}K

k=1 can be obtained.
Ideally, this could be used as the basis to find routing matrices
{Tk}K

k=1 satisfying some optimality criteria. Unfortunately, we
do not have access to the rates Rij but to estimates of it. This
motivates the robust routing-scheduling problems that we formulate
next.

B. Robust routes and schedules

To model the fact that the transmission rates Rij are estimated,
we consider that they are random with known mean and variance:

R̂ij := E(Rij) (4)

Σij := E

[(
Rij − R̂ij

)2
]

> 0

implying that the rate in (3) is also random. We further assume
that reliability estimates are never perfect, i.e., Σij > 0 whenever
R̂ij != 0. Rate means are grouped in the matrix R̂ with elements
R̂ij and rate variances in the matrix Σ with elements Σij .

The goal here is to design robust routing algorithms that are
defined as follows:

(P1) Maximize a social utility function of the rates’ expected value
E(ρki) subject to a constraint in the maximum tolerable
variance var(ρki)

{T∗
k}K

k=1 =arg max f0

[{
E(ρki)

}
k,i

]
(5)

s.t. gm

[{
var(ρki)

}
k,i

]
≤ g0m m ∈ [1, M ]

where f0

[{
E(ρki)

}
k,i

]
denotes the mean social utility and

gm

[{
var(ρki)

}
k,i

]
for m ∈ [1, M ] describe M prescribed

tolerances on variance utilities. The constraints (1)-(3) as well
as other ones describing mean and variances to be derived
later on are implicit to the problem (6).

(P2) Minimize a social cost function of the variances var(ρki)
subject to a minimum requirement on a function of the
expected rate E(ρki):

{T∗
k}K

k=1 =arg min g0

[{
var(ρki)

}
k,i

]
(6)

s.t. fm

[{
E(ρki)

}
k,i

]
≥ f0m m ∈ [1, M ]

where fm

[{
E(ρki)

}
k,i

]
for m ∈ [1, M ] describe

M pre-specified mean rate utility requirements and
g0

[{
var(ρki)

}
k,i

]
the social variance cost.

The goal of this paper is to: (i) compute the means E(ρki)
and variances var[ρki] as functions of R̂, {Tk}K

k=1 and Σ; (ii)
establish cases in which (5) and (6) are convex optimization
problems; and (iii) introduce a distributed implementation of (5)-
(6).

III. ROBUST ROUTING-SCHEDULING OPTIMIZATION PROBLEMS

To compute the mean and variance of ρ in terms of R̂ and Σ,
start by substituting (2) in (3) and reorder terms in the latter to
obtain

ρki =
J∑

j=1,j !=i

RijTkij −
J∑

j=1,j !=i

RjiTkji (7)
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which shows that ρ is a linear function of the reliability matrix R.
Since R is usually sparse many terms in the sum in (7) are null.

To make this explicit, we define the set c(i) := {j : Rij > 0; j !=
i, j ∈ [1, J ]}, representing the indices of terminals {Uj}J

j=1 that
are able to receive packets from Ui. Likewise, define r(i) := {j :
Rji > 0; j != i, j ∈ [1, J ]} as the set of indices corresponding
to terminals {Uj}J

j=1 whose transmission can be received by Ui.
We can thus rewrite (7) as

ρki =
∑

j∈c(i)

RijTkij −
∑

j∈r(i)

RjiTkji (8)

To further simplify notation define ri := Ric(i) and si := Rr(i)i

containing the non-zero elements of the i-th row and column of
R, respectively. In the same way define tki := Tk,i,c(i) and t′i :=
Tk,r(i),i to write

ρki = rT
i tki − sT

i t′ki. (9)

From (9) we can readily express E(ρki) in terms of the mean
R̂ := E(R) in (4). Noting that E(ri) = E(Ri,c(i)) = R̂i,c(i) and
E(si) = E(Rr(i),i) = R̂r(i),i we can take expected value in (9)
to obtain

E(ρki) = R̂T
i,c(i)tki − R̂T

r(i),it
′
ki := r̂T

i tki − ŝT
i t′ki (10)

where we defined r̂i := R̂i,c(i) and ŝi := R̂r(i),i.
The rate variance var(ρki) can be analogously expressed in

terms of the Σij in (4). Indeed, using the variance definition
var(ρki) := E

[
(ρki − E(ρki))

2] and the fact that link rate
estimates Rij are assumed independent it follows readily that

var[ρki] =
∑

j∈c(i)

T 2
kijΣij +

∑

j∈r(j)

T 2
kjiΣji (11)

To simplify notation define the vectors ai := Σi,c(i) and bi :=
Σr(i),i. Define then the diagonal matrices Ai := diag(ai) and
Bi := diag(bi) so that (12) can be rewritten as

var[ρki] = tT
kiAitki + t′

T
kiBit

′
ki (12)

A. Convexity of robust routing problems

Substituting (10) and (12) into (5) and (6), we obtain an
optimization problem that can, in principle, be solved to obtain the
optimal matrices {T∗

k}K
k=1. Solving these optimization problems

might, or might not be tractable. Under proper conditions however,
we can guarantee that (5) and (6) are convex, as we assert in the
following proposition.

Proposition 1 Consider the optimal robust routing problems in
(5) and (6) and assume that (h1) the functions fm

[{
E(ρki)

}
k,i

]

are concave for m ∈ [0, M ]; and (h2) the functions
gm

[{
var(ρki)

}
k,i

]
are convex and nondecreasing in each argu-

ment for m ∈ [0, M ]. Then, the optimization problems in (5) and
(6) are convex.

Proof: Since matrices Tk are constrained by a set of linear
inequalities [cf. (1)], to prove that the problem in (5) is convex, it
suffices to prove that: i) g0

[{
var(ρki)

}
k,i

]
is a convex function

of the routing matrices {Tk}K
k=1; and ii) fm

[{
E(ρki)

}
k,i

]
for

m ∈ [1, M ] is a concave function of {Tk}K
k=1. Correspondingly,

(6) will be convex as long as: iii) f0

[{
E(ρki)

}
k,i

]
is a concave

function of {Tk}K
k=1; and iv) gm

[{
var(ρki)

}
k,i

]
for i ∈ [1, M ]

is a convex function of {Tk}K
k=1. Thus, the claim follows if

(c1) fi

[{
E(ρki)

}
k,i

]
is a concave function of {Tk}K

k=1; and

(c2) gi

[{
var(ρki)

}
k,i

]
is a convex function of {Tk}K

k=1 for
m ∈ [0, M ].

The latter follows from the composition rules of convex analysis
[2, Sec.3.2.4]. Indeed, E[ρki] is a linear function of tki and
t′ki. Composition of the concave function fm

[{
E(ρki)

}
k,i

]
[cf.

(h1)] with the linear functions E[ρki] [cf. (10)], yields a concave
function implying (c1). To prove (c2) recall that var(ρki) is a
positive definite quadratic form with variables tki and t′ki, and thus
convex (indeed, strictly convex). The composition of the convex
and nondecreasing in each argument function gm

[{
var(ρki)

}
k,i

]

[cf. (h2)] with the convex function var(ρki) [cf. (12)] is convex
establishing (c2).
Under the (mild) restrictions (h1) and (h2) on the utility functions
fm

[{
E(ρki)

}
k,i

]
and cost functions gm

[{
var(ρki)

}
k,i

]
, Propo-

sition (1) ensures tractability of (5) and (6). Consequently, interior
point methods can be used to solve these problems with affordable
complexity in the order O(J3.5).

The conditions (h1) and (h2) are satisfied in many practical
cases. Some examples are given next.

Maximum rate utility with bounded variance. A typical example
of a problem of the form in (P1) is to consider the maximization
of a weighted sum of rates

∑
k,i wkiE(ρki). The variance of the

individual rates is further upper bounded by a certain tolerance v0j

yielding the problem

max
∑

k,i

wki

(
r̂T

i tki − ŝT
i t′ki

)
(13)

s.t. var(ρki) ≤ v0ki, tki ≥ 0,
∑

k

tT
ki1 ≤ 1

The functions f0

[{
E(ρki)

}
k,i

]
:=

∑
k,i wkiE(ρki) and

gki

[{
var(ρki)

}
k,i

]
= var(ρki) satisfy the hypotheses (h1) and

(h2) of Proposition 1 proving that the problem in (13) is convex.
This can be verified by noting that the argument to be optimized
is a linear function of the tki and t′ki, and that the constraint
var(ρki) ≤ v0ki is a positive definite quadratic form on tki and
t′ki.

Different rate utilities can be used in the argument of (13). E.g.,
the minimum rate utility mink,i[E(ρki] = mink,i

(
r̂T

i tki − ŝT
i t′ki

)

is considered a fairer alternative since it maximizes the rate
of the least favored terminal. The sum of logarithms utility∑

k,i log[E(ρki)] =
∑

k,i log
(
r̂T

i tki − ŝT
i t′ki

)
, is regarded as an

intermediate point between weighted sum and minimum rate.

Minimum variance with rate guarantees. Alternatively, we may
aim to comply with a minimum rate requirement ρ0ki for each
source-destination pair Ui, Uk, while minimizing, e.g., the sum of
variances. The problem in this case is

min
∑

i,k

tT
kiAitki + t′

T
kiBit

′
ki (14)

s.t. r̂T
i tki − ŝT

i t′ki ≥ ρ0ki, tki ≥ 0,
∑

k

tT
ki1 ≤ 1
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It is easy to verify that the functions in (14) satisfy (h1) and (h2)
the convexity of the problem then follows from Proposition 1. If the
R̂ estimate were perfect, (14) would guarantee rates ρ0ki. In the
presence of estimation uncertainty, (14) attempts the same while, in
some sense, maximizing the likelihood of this actually happening.

We have shown that finding the optimal solution to (5)-(6)
incurs affordable computational complexity. However, it requires
all reliability estimates R̂ and variances Σ, to be available at a
central location, so that the optimization problem can be solved and
the optimal routing matrices {T∗

k}K
k=1 distributed to the individual

nodes. The drawbacks of this centralized approach are: i) a large
communication cost to collect R̂ and Σ and to distribute {T∗

k}K
k=1;

ii) considerable delay to compute {T∗
k}K

k=1; and iii) mismatch
with the lack of infrastructure typical of ad-hoc networks. These
motivates distributed algorithms that we pursue next.

IV. ROBUST ROUTING PROTOCOLS

To develop a robust routing protocol, we introduce iterative
algorithms to solve (P1) and (P2) in a distributed fashion. In such
distributed algorithm Ui is interested in computing a sequence of
iterates tki(n) such that as n → ∞ we have limn→∞ tki(n) =
t∗ki, with {t∗ki}k,i denoting the solution of a problem of the
form (P1) or (P2) for given functions fm

[{
E(ρki)

}
k,i

]
and

gm

[{
var(ρki)

}
k,i

]
.

Throughout this section we assume that

[A1] Terminal Ui can communicate with Uj if and only if Uj can
communicate with Ui, i.e., Rij != 0 if and only if Rji != 0.

A distributed algorithm can be developed using dual decomposi-
tion techniques. For simplicity of exposition we concentrate on the
problem in (14). A distributed optimization algorithm separates the
original problem in J sub-problems involving variables tj only.
Even though the objective of the optimization problem in (14)
is a summation of quadratic functions that depend on the local
variables tki and the constraints tki ≥ 0 and

∑
k tT

ki1 ≤ 1 depend
on tki only, such separation cannot be achieved for the problem
in (14). Indeed, the constraints r̂T

i tki − ŝt
it

′
ki ≥ ρ0ki involve the

local variables tki, and the variables t′ki that contains transmission
probabilities corresponding to Ui’s neighboring terminals.

This hurdle can be overcome by resorting to the dual problem.
Define vectors of Lagrange multipliers λk := [λk1, . . . , λkJ ]T

with the multiplier λki associated with the constraint r̂T
i tki −

ŝt
it

′
ki ≥ ρ0ki and write the Lagrangian:

L ({tki}k,i, {λk}k) = (15)
∑

i,k

tT
kiAitki + t′

T
kiBit

′
ki + λki

(
ρ0ki − r̂T

i tki + ŝT
i t′ki

)

that is defined over the set {tki : tki ≥ 0,
∑

k tT
ki1 ≤ 1}.

The dual function is then defined as

q ({λk}k) = min
{tki:tki≥0,

∑
k tT

ki1≤1}
L ({tki}k,i, {λk}k) . (16)

Since the problem in (14) is convex strong duality holds and the
optimal value of (14) can be found as max{λk≥0} q ({λk}k).

An interesting observation is that the Lagrangian can be sepa-
rated in J “local” Lagrangian containing tki variables only. This
property also allows a separable computation of the gradient of the

dual function. These two properties are introduced in the following
proposition.

Proposition 2 Define the vectors λ′
ki := λk,c(i) containing the

multipliers of Ui’s neighbors associated with final destination Uk

and the diagonal matrix Λki := λkiI−diag(λ′
ki). Define then the

local Lagrangian:

Li

(
{tki, λki, λ

′
ki}k

)
=

∑

k

2tT
kiAitki − r̂T

j Λkitki + λkiρ0ki.

(17)
We then have that

(i) The (global) Lagrangian L ({tki}k,i, {λk}k) in (16) is the
sum of the local Lagrangians Li ({tki, λki, λ

′
ki}k) in (17),

i.e.,

L ({tki}k,i, {λk}k) =
∑

i

Li

(
{tki, λki, λ

′
ki}k

)
. (18)

(ii) Let

tki({λk}k) := arg min
{tki≥0,

∑
k tT

ki1≤1}
k,i

L ({tki}k,i, {λk}k)

(19)

be the arguments minimizing the Lagrangian in (16) for
given multipliers {λk}k. Then tki({λk}k) is the argument
minimizing the local Lagrangian, i.e.,

tki ({λk}k) = arg min
{tki≥0,

∑
k tT

ki1≤1}
k

Li

(
{tki, λki, λ

′
ki}k

)
.

(20)

(iii) The derivative of the dual function with respect to λki is given
by

∂q ({λk}k)
∂λki

= ρ0ki − r̂t
itki({λk}k) + ŝT

i t′ki({λk}k) (21)

with tki({λk}k) and t′ki({λk}k) the solutions of (20).

Proof: Consider the sum of the local Lagrangians in (17) and
use the definition of Λki := λkiI − diag(λ′

ki) to write.
∑

i

Li

(
{tki, λki, λ

′
ki}k

)
= (22)

∑

k,i

2tT
kiAitki + λkiρ0ki − λkir̂

T
i tki + r̂T

kidiag(λ′
ki)tki

The sum of the first terms in (22) is equivalent to
∑

k,i

2tT
kiAitki =

∑

k,i

∑

j∈c(i)

2ΣijT
2
kij

=
∑

k,i

∑

j∈c(i)

ΣijT
2
kij +

∑

k,i

∑

j∈c(i)

ΣjiT
2
kji

=
∑

k,i

tT
kiAitki + t′

T
kiBit

′
ki (23)

where in the first equality we used the definition of Ai; in the
second equality we separated the sums and used the assumption
c(i) = r(i); and in the third equality we used the definitions of
Ai and Bi.
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The sum of the last terms in (22) can be written as
∑

k,i

r̂T
i diag(λ′

ki)tki =
∑

k,i

∑

j∈c(i)

λkjR̂ijTkij

=
∑

k,j

λkj

∑

i∈c(j)

R̂ijTkij

=
∑

k,j

λkj ŝ
T
j t′kj (24)

where in the first equality we use the definitions of r̂t
i and tki; in

the second equality we interchange the order of summations and
use the assumption c(i) = r(i); and in the last equality we use the
definitions of ŝt

j and t′j .
Substituting (23) and (24) in (22) we obtain

∑

i

Li

(
{tki, λki, λ

′
ki}k

)
= (25)

∑

k,i

tT
kiAitki + t′

T
kiBit

′
ki + λkiρ0ki − λkir̂

T
i tki + λkI ŝ

T
i t′ki.

Since the right hand sides of (25) and (16) coincide, (18) follows.
To prove (20) use (18) to write the optimal argument

tki ({λk}k) as

tki ({λk}k) = arg min
{tki≥0,

∑
k tT

ki1≤1}
k,i

∑

i

Li

(
{tki, λki, λ

′
ki}k

)
.

(26)

The only term in the summation in (26) that contains tki is
Li ({tki, λki, λ

′
ki}k) from where (20) follows.

To obtain the result in (21) note that since Ai is positive definite
(Ai is a diagonal matrix with strictly positive elements) it is
invertible. Thus, for any set {λk}k there exists unique minimizers
tki ({λk}k) of L ({tki}k,i, {λk}k). The result then follows from
Danskin’s Theorem, [1, pp. 737] stating that: i) if there is a unique
Lagrangian minimizer – i.e., a unique set {tki ({λk}k)}k,i solving
(16) – the dual function is differentiable; and ii) the derivative of
the dual function with respect to λki is given by the constraint
violations ρ0ki − r̂t

itki({λk}k) + ŝT
i t′ki({λk}k).

Using the separability properties described by Proposition 2 we can
propose a distributed routing protocol. Indeed, since a gradient of
the dual function can be computed using local and neighboring
iterates, we can define a routing protocol by using a gradient
ascent algorithm on the dual function. The routing protocol and the
corresponding optimality claim is presented in the next proposition

Proposition 3 Consider a routing protocol in which terminal Uj

updates local primal and dual iterates denoted by tki(n) and
λki(n) respectively. The iterates are updated according to the
following rules:

[P1] Receive dual iterates λ′
ki(n) from neighboring terminals

{Uj}j∈c(i).
[P2] Update the local primal iterates tki(n) using

tki(n) =
[
A−1

i (δi(n)1 + Λki)
]+

. (27)

where [·]+ denotes projection to the nonnegative orthant and
δi(n) ≥ 0 is chosen so that

∑
k tT

ki(n)1 = 1. If for making∑
k tT

ki(n)1 = 1 it is required that δi(n) < 0 we set δi(n) =
0.

[P3] Transmit the primal iterates tki(n) to neighboring terminals
{Uj}j∈c(i).

[P4] Receive primal iterates t′i(n) from neighboring terminals
{Uj}j∈c(i).

[P5] Update the local dual iterates using

λki(n+1) =
[
λki(n) + c

(
ρ0ki − r̂t

itki(n) + ŝT
i t′ki(n)

)]+
.

(28)
with c > 0 a properly selected step size.

[P6] Transmit the dual iterates λki(n + 1) to neighboring termi-
nals {Uj}j∈c(i).

For sufficiently small step size c, as n → ∞, the local iterates
tki(n) converge to the optimal robust routes t∗ki solving the
optimization problem in (14), i.e.,

lim
n→∞

tki(n) = t∗ki (29)

Proof: Start by noting that (27) is the solution of the local
Lagrangian optimization in (17), i.e., tki(n) in (27) is such that

tki(n) = arg min
{tki≥0,

∑
k tT

ki1≤1}
k

Li

(
{tki, λki, λ

′
ki}k

)
. (30)

Thus, according to (21) we have

∂q ({λk}k)
∂λki

= ρ0ki − r̂t
itki(n) + ŝT

i t′ki(n). (31)

Consequently, the iteration in (28) is tantamount to gradient ascent
for optimizing q ({λk}k), implying that for sufficiently small c

lim
n→∞

λki(n) = λ∗ki (32)

with {λ∗
k}k = arg max{λk≥0}k

q ({λk}k). But since the dual
function is differentiable, convergence of λki(n) implies conver-
gence of tki(n).

Steps [P1] and [P6] simply ensure that dual iterates are properly
communicated and received. Steps [P3] and [P4] do the same for
the primal iterates.
The distributed routing protocol [P1]-[P6] overcomes the limi-
tations of a centralized implementation detailed at the end of
Section III. Indeed, note that the proposed protocol i) requires
communication with one-hop neighbors only, and ii) relies on
knowledge of Rij estimates and variances that either Ui or Ui’s
neighbors have available. Interestingly, there is no optimality
penalty associated with this reduction in communication cost. The
optimal routing matrix solving (14) and its corresponding optimal
utility are eventually achieved by [P1]-[P6].

V. SIMULATIONS

We consider a wireless ad-hoc network with J = 100 nodes
randomly deployed in a rectangle of dimensions 5Km. × 3Km..
To determine the average rate at which terminals can communicate
with each other we let terminals transmit at random with proba-
bility 0.2. In every slot, consider the indicator variable ei(n) = 1
if Ui transmitted in the n-th slot and ei(n) = 0 otherwise. Letting
pi denote the transmission power of Ui and hij(n) the gain in the
channel Ui → Uj at the n-th time slot. We have

γij(n) =
hij(n)pi

σj + (1/S)
∑J

l=1,l!=i el(n)hlj(n)pl

(33)

where γij(n) denotes the instantaneous SINR in the Ui → Uj

link for the slot n, σj = −90db the noise power at Uj , and S =
32 the spreading gain common to all nodes in the network. The
channels hij(n) are assumed Rayleigh distributed with mean h̄ij ,
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Fig. 1. Convergence of the algorithms in Proposition 3 to the required
rates ρk(i),i = 0.2 for a set of 10 representative communicating pairs. Not
all of the rates converge to ρk(i),i = 0.2 because of the mismatch between
the actual R and the measured R̂. However, while the estimates have a
25% error, the achieved rates are within 5% of the required rate.

known at the receiver end, and independent across terminals and
time. The mean channel power obeys an exponential pathloss law
h̄ij = κd(Ui, Uj)

α where d(Ui, Uj) denotes the distance between
Ui and Uj , and κ = 1 and α = 3.4 are constants. By convention,
hii(n) = +∞ to ensure that Ui does not transmit and receive
simultaneously.

With the SINR γij(n) in (33) a capacity achieving code
achieves a rate Rij(n) = log[1 + γij(n)]. Each Rij element
of the matrix R is the time average of Rij(n), i.e., Rij =
limN→∞(1/N)

∑N
n=1 Rij(n). The rates are then normalized so

that the maximum rate Rij is equal to one. Every Ui node wants
to deliver packets to a randomly chosen destination at a rate
ρk(i),i = 0.2.

The R̂ij estimates are randomly generated according to a uni-
form distribution in [(1 − 0.25)Rij , (1 + 0.25)Rij ]. This entails
a 25% uncertainty in reliability estimates. The variance of the
estimates is Σij = (0.5R2

ij)/12.

The convergence of the algorithms in Proposition 3 to the
required rates ρk(i),i = 0.2 is illustrated in Fig. 1 for a set of
10 representative communicating pairs. Interpreting convergence
as the point at which the achieved rate is 90% of the required
rate (ρk(i),i(n) = 0.18 in the example) the protocol converges in
between 20 to 40 iterations.

Note that not all of the rates converge to ρk(i),i = 0.2. This is
because of the mismatch between the actual R and the measured
R̂. However, by minimizing the sum of the variances of ρk(i),i

the variation of the achieved rates is greatly reduced. While the
estimates have a 25% error, the achieved rates are within 5% of
the required rate.

The type of routes achieved by the protocol in Proposition 3 is
illustrated in Fig. 2. Note how the packets are divided among a
large number of neighbors.
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Fig. 2. Number of packets handled by each nodes in 500 time slots. The
communication between the node marked with the blue (left) triangle to
the node marked by the green (right) triangle is showcased.

VI. CONCLUSIONS

We introduced robust routing-scheduling protocols for wireless
ad-hoc networks that reduce the uncertainty on network utility
yield due to channel estimation errors. The protocols were defined
as solutions of optimization problems that either maximize an
average social network utility subject to a variance constraint;
or, alternatively, minimize a variance cost subject to a minimum
required rate yield. Conditions under which these problems are
convex were found and shown to be not very restrictive. A dis-
tributed implementation based on dual decomposition techniques
was then proposed. Although the communication cost to compute
the optimal routes is thus significantly reduced, it was shown that
there is no performance penalty with respect to optimal routes
computed by a centralized algorithm.

Simulations corroborated that even with rough channel estimates
– with up to 25% error – actual and prescribed utility yields turn
out very close – within 5% of each other.
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