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Abstract—A general wireless networking problem is formulated to jointly
optimize end-to-end user rates, routes, link capacities, transmitted power,
and power allocation across subcarriers and fading states. It has been
recently shown that such general wireless networking problems in the
presence of fading, while non-convex, have zero Lagrangian duality gap. In
this paper the optimality of two different layered architectures is derived
as a consequence of this result.

I. INTRODUCTION

Communication networks are deployed to transport information from

generating sources to intended destinations. There are different ways

in which a given network can accomplish this task, but among them

there are some that optimize properly chosen criteria. Optimal design

is one of the most promising alternatives for future wireless networks

[1], [2]. This paper is concerned with fundamental properties of such

optimal wireless networks. In particular the optimality of certain layered

architectures is proved.

The first optimal layered architecture considered coincides with

the conventional layers used in wired networks. The second optimal

architecture is based on layers and layer interfaces. Layers maintain

variables of interest to the network, while interfaces maintain auxiliary

variables. Layers exchange variables only with adjacent interfaces and

interfaces only with adjacent layers. Over time the network finds an

optimal operating point that maximizes a given utility. Although the

architectures presented here are novel, similar architectures have been

reported elsewhere, see e.g., [3]. The main contribution of this paper is

to show their optimality in the presence of fading.

II. OPTIMAL WIRELESS NETWORK

Consider an ad-hoc wireless network composed of J user terminals

{Ti}J
i=1. Terminal Ti wants to deliver packets for different application

level flows generically denoted by k, with the flow k intended for

destination T k. Network connectivity is modeled with a graph G(v, e)
with vertices v := [1, J ] and edges e ∈ E connecting pairs of vertices

(i, j) when and only when Ti and Tj can communicate with each

other. Adjacency of i is denoted as n(i) := {j : (i, j) ∈ E}. Each

terminal {Tj}j∈n(i) that can communicate with Ti is referred to as a

neighbor and the set of all neighbors as Ti’s neighborhood. Network

nodes communicate using a set of frequency tones f ∈ F . The channel

from Ti to Tj is denoted as hf
ij and modeled as a random variable.

Channel gains of all network links are collected in the vector h.

Terminals Ti select various variables that determine the flow of

information through the network. For given channel realizations h,

terminal Ti determines a power profile pf
ij(h) used for sending packets

to Tj on the tone f when the channel vector realization is h. Power

profiles determine Ti’s power consumption pi and the capacity cij of

the Ti → Tj link. For every flow k, Ti sends packets to neighboring

terminals {Tj}j∈n(i) at an average rate rk
ij . Likewise it receives packets

from neighbors at a rate rk
ji. Finally, variables ak

i determine the

rate at which Ti accepts packets of the flow k from applications.

These variables are not independent of each other. They must satisfy

constraints that will be explained shortly [cf. (2)-(4)].
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Network design calls for selecting powers pi, link capacities cij ,

rates rk
ij , arrivals ak

i and power profiles pf
ij(h) that are optimal in some

sense. Thus, concave Uk
i (ak

i ) and convex Vi(pi) functions, respectively,

representing the value of rate ak
i and the cost of power pi are introduced.

The optimal operating point is then defined as the set of variables

solving the optimization problem

P = max
X
i,k

Uk
i (ak

i )−
X

i

Vi(pi) (1)

cij ≤ Eh

" X
f∈F

Cij

“
hf ,pf (h)

”#
(2)

pi ≥ Eh

" X
j∈N (i)

X
f∈F

pf
ij(h)

#
(3)

ak
i ≤

X
j∈n(i)

“
rk

ij − rk
ji

”
,

X
k

rk
ij ≤ cij . (4)

Of the two constraints in (4) the first one requires the rate ak
i at

which packets are accepted from applications to be smaller than

the difference between the aggregate departure rates (to neighbors)P
j∈n(i) rk

ij and arrival rates (from neighbors)
P

j∈n(i) rk
ji. The second

constraint requires the total rate
P

k rk
ij sent from Ti to Tj for all

flows to be smaller than the link’s capacity cij . The constraint in (3)

states that the average power consumption pi is obtained by summing

over all links j ∈ n(i) and tones f ∈ F and taking expected value

over channel realizations h. The capacity constraint in (2) is a similar

average over fading states and tones. The function Cij(h
f,pf (h)) maps

channels and powers into link capacities so that the capacity cf
ij(h) of

the link Ti → Tj on the tone f is Cij(h
f,pf (h)). The function C(·) is

determined by terminal’s capabilities and operating conditions. If, e.g.,

terminals perform single user detection, link capacity is determined by

the signal to noise plus interference ratio (SINR). Refer to [4] for a

more detailed account of the model in (1)-(4).

All problem variables have to be non-negative, but this is left implicit

in (1)-(4). Also implicit in (1)-(4) are power constraints pi ≤ pmax i

and pf
ij(h) ≤ pmax, arrival rate requirements ak

min i ≤ ak
i ≤ ak

max i

and upper bound constraints cij ≤ cmax and rk
ij ≤ rmax on link

capacities and link flow rates. These constraint define a box B of

feasible variables. They will be implicit in general and make explicit

when demanded by clarity. For future reference define the vector valued

power distribution p(h) with components pf
ij(h) and X the set of

primal variables cij , pi, rk
ij and ak

i for all possible subindexes – i.e.,

all i and all j ∈ n(i) for cij , all i for pi and so on. Further define

f(X) as the utility function in (1) and h [X,p(h)] ≥ 0 the constraints

(2)-(4) so that (1)-(4) can be written in generic form as

P = max
(X,p(h))∈B

f(X); st h [X,p(h)] ≥ 0 (5)

where B :=
˘
(X,p(h)) : 0≤pf

ij(h)≤pmax, 0≤pi≤pmax i, a
k
min i≤

ak
i ≤ak

max i, 0≤cij≤cmax, 0≤rk
ij≤rmax

¯
is the box outlined above.

The function C(·) in (2), and as a consequence h [X,p(h)] in (5), is

not concave in general. Therefore, (1) is a difficult optimization prob-

lem. This difficulty notwithstanding, properties of wireless networks can

be derived from properties of (1). For this purpose introduce multipliers
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Λ and the Lagrangian

L[X,p(h),Λ] = f(X) + ΛT h [X,p(h)] . (6)

The dual function is obtained by maximizing the Lagrangian over the

primal variables

g[Λ] = max
(X,p(h))∈B

L[X,p(h),Λ] (7)

where the maximization is performed over the set of primal variables

satisfying the box constraints. The dual problem is finally defined as

D = min
Λ≥0

g[Λ]. (8)

Because (1)-(4) is non-convex it may be the case that D > P , implying

that working with the dual problem entails loss of optimality. However,

it has been proved that as long as the cumulative distribution function

of the fading channels is continuous the duality gap is null [4]:

Theorem 1 (Ribeiro-Giannakis 2008) Let P denote the solution of
the primal problem (1) and D the solution of its dual in (8). If the
channel cumulative distribution function (cdf) is continuous, then

P = D. (9)

Because of Theorem 1 the dual problem in (8) can be solved in lieu

of the primal problem (5). This paper explains how this result can be

exploited to show the optimality of separating the optimization of wire-

less networks into layers. Subsequently, the paper studies subgradient

descent algorithms and shows that it induces an optimal separation in

layers and layer interfaces.

III. OPTIMALITY OF LAYERING

An implication of Theorem 1 is the optimality of conventional

layering in wireless networking problems. As is usually the case, the

Lagrangian exhibits a separable structure in the sense that it can be

written as a sum of terms that depend on a few primal variables. Define

components of the Lagrange multipliers Λ so that λij is associated with

the capacity constraints in (2), μi with the power constraint in (3), and

νk
i and ξij with the flow and rate constraints in (4). The Lagrangian

can then be written as

L
h
X,p(h),Λ

i
=

X
i,k

Uk
i (ak

i )−
X

i

Vi(pi) (10)

+
X
i,j

λij

2
4Eh

" X
f∈F

Cij

“
hf ,pf (h)

”#
− cij

3
5

+
X

i

μi

2
4pi − Eh

" X
j∈N (i)

X
f∈F

pf
ij(h)

#3
5

+
X
i,k

νk
i

2
4 X

j∈N (i)

“
rk

ij − rk
ji

”
− ak

i

3
5 +

X
ij

ξij

"
cij −

X
k

rk
ij

#
.

Rearranging terms in (10) and assuming that the optimal dual argument

Λ∗ is available, we can write

L[X,p(h),Λ∗] =
X
i,k

“
Uk

i (ak
i )− νk

j

∗
ak

j

”
+

X
i

“
μ∗

i pi − Vi(pi)
”

+
X
i,j

“
ξ∗ij − λ∗

ij

”
cij +

X
i,j,k

“
νk

i

∗ − νk
j

∗ − ξ∗ij
”
rk

ij

+ Eh

2
4X

i,j,f

λ∗
ijCij

“
hf ,pf (h)

”
− μ∗

i pf
ij(h)

3
5 . (11)

ß

p∗(h)← max
0≤p

f
ij(h)≤pmax

hP
i,j,f λ∗

ijCij

“
hf ,pf (h)

”
− μ∗

i pf
ij(h)

i

p∗i ← max0≤pi≤pmax i

ˆ
μ∗

i pi − Vi(pi)
˜

p∗i

c∗ij ← max0≤cij≤cmax

h“
ξ∗ij − λ∗

ij

”
cij

i
c∗ij for j ∈ n(i)

rk
ij

∗ ← max0≤rk
ij≤rmax

h“
νk

i
∗ − νk

j
∗ − ξ∗ij

”
rk
ij

i
and all k

rk
ij

∗
for j ∈ n(i)

ak
i
∗ ← maxak

min i≤ak
i ≤ak

max i

ˆ
Uk

i (ak
i )− νk

i
∗
ak

i

˜
ak

i
∗

for all k

Layers at terminal Ti

Fig. 1. Having zero duality gap the wireless networking problem can be
separated in layers without loss of optimality. Therefore, we can consider
separate optimization problems to determine arrival rates ak

i
∗

, link rates rk
ij

∗
,

link capacities c∗ij , and average transmitted power p∗i . The physical layer
problem can be further separated in per-fading-state subproblems. It cannot,
alas, be separated in per-terminal problems for general link capacity functions

Cij

“
hf ,pf (h)

”
. Thus, the challenge in wireless networking is not as much in

cross-layer optimization as in cross-terminal optimization of the physical layer.

The zero duality gap implies that if Λ∗ is known we can, instead of

solving (1), solve the (separable) problem

P = D = d[Λ∗] = max
X,p(h)

L[X,p(h),Λ∗] (12)

where the maximization is constrained to the X and p(h) that satisfy

the box constraints.

Because primal variables are decoupled in the Lagrangian

L[X,p(h),Λ∗] [cf. (11)], the maximization required in (12) can be

split into smaller maximization problems involving less variables. This

separability can be used to prove the next theorem; see [4] for the proof.

Theorem 2 Layer separability. Let λ∗
ij , μ∗

i , νk
i
∗
, and ξ∗ij denote the

optimal dual variables that solve (8). Consider the sub-problems

P (ak
i ) = max

ak
min i≤ak

i ≤ak
max i

h
Uk

i (ak
i )− νk

i

∗
ak

i

i
(13)

P (rk
ij) = max

0≤rk
ij≤rmax

h“
νk

i

∗ − νk
j

∗ − ξ∗ij
”

rk
ij

i
(14)

P (cij) = max
0≤cij≤cmax

ˆ`
ξ∗ij − λ∗

ij

´
cij

˜
(15)

P (pi) = max
0≤pi≤pmax i

[μ∗
i pi − Vi(pi)] . (16)

Define further the per-fading state optimal power allocation problem

p(h) = max
0≤p

f
ij(h)≤pmax

X
i,j,f

λ∗
ijCij

“
hf ,pf (h)

”
− μ∗

i pf
ij(h) (17)

Then, the optimal utility yield P in (1) is given by

P =
X
i,k

P (ak
i ) +

X
i,j,k

P (rk
ij) +

X
i,j

P (cij) +
X

i

P (pi) + Eh

h
P [p(h)]

i

(18)

i.e., the primal problem (1) can be separated into the (sub-) problems
(13)-(17) without loss of optimality.

The rate problem in (13) dictates the amount of traffic allowed into the

network. It therefore solves the flow control problem at the transport
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layer; see Fig. 1. Likewise, (14) represents the network layer routing

problem, (15) determines link-level capacities at the data link layer

and (16) is the (link layer) average power control problem. Eq. (17)

represents resource allocation at the physical layer. Therefore, it is

a consequence of Theorem 2 that layering, in the sense of problem

separability as per (18) is optimal in faded wireless networks.

IV. COMPUTATION OF OPTIMAL LAGRANGE MULTIPLIERS

Solving the optimal wireless networking problem in (1) can be

reduced to finding the optimal dual variables Λ∗ of (8). Because the

dual function g(Λ) is convex, descent algorithms can be used to find

Λ∗. However, g(Λ) need not be differentiable, and it certainly will

not be in some cases. The challenge is therefore to find such descent

direction. This prompts the definition of subgradient that we introduce

next.

Definition 1 Subgradient We say that ǧ(Λ0) is a subgradient of the
convex dual function g(Λ) at Λ = Λ0 if for every Λ ≥ 0 we have

g(Λ) ≥ g(Λ0) + ǧT (Λ0)(Λ−Λ0). (19)

The hyperplane g(Λ0) + ǧT (Λ0)(Λ − Λ0) = 0 defined by the

subgradient direction ǧ(Λ0) and the point (Λ0, g(Λ0)) supports g(Λ)
in the sense that it touches g(Λ) at Λ = Λ0 and is below g(Λ) at any

other point. The fundamental property of a subgradient is that it always

points toward the optimal argument. Formally, let Λ = Λ∗ in (19), and

reorder terms to obtain

ǧT (Λ0)(Λ0 −Λ∗) ≥ g[Λ0]− g(Λ∗) = g[Λ0]−D ≥ 0 (20)

where we replaced g(Λ∗) = D and use the fact that D is the minimum

value of g(Λ). Given that the inner product of ǧT (Λ0)(Λ0 − Λ∗) is

positive, (20) proves that the angle between ǧT (Λ0) and Λ0−Λ∗ is less

than π/2. Therefore, the negative of the subgradient points “towards”,

i.e., with an angle of less than π/2 radians, the optimal argument.

A subgradient of the dual function can be obtained from the ar-

guments that maximize the Lagrangian for given Λ multipliers as

detailed by the following theorem. This as well as subsequent results in

Theorems 4 - 6 are known for finite-dimensional optimization problems,

[5]. We present them here for the (infinite-dimensional) variational

problem (5). The proofs here are patterned after those in [5]; see [4].

Theorem 3 With Λ0 ≥ 0 an arbitrary dual variable and X†(Λ0)
primal variables that maximize the Lagrangian function in (6) for Λ =
Λ0 “

X†(Λ0),p
†(h,Λ0)

”
∈ arg max

(X,p(h))∈B
L[X,p(h),Λ0]. (21)

Then a subgradient of the dual function at Λ = Λ0 is given by

ǧ(Λ0) = h
h
X†(Λ0),p

†(h,Λ0)
i
. (22)

In general, there is more than one argument maximizing (21). Therefore

the arg max operator does not specify a value but a set, as signified by

the ∈ symbol in (21). We interpret X†(Λ) as any element of this set.

A. Subgradient descent algorithm

A descent algorithm to compute optimal multipliers Λ∗ and minimum

dual value D = P is obtained using the subgradient of the dual

function described in Theorem 3. With iterations indexed on t, start

with given dual variables Λ(t) and compute arguments [X(t),p(h, t)]
that maximize the Lagrangian in (6),

[X(t),p(h, t)] ∈ arg max
(X,p(h))∈B

L[X,p(h),Λ(t)]

= arg max
(X,p(h))∈B

f(X) + ΛT (t)h[X,p(h)] (23)

Using (22) we have that a subgradient of the dual function at Λ = Λ(t)
is given by ǧ(t) := ǧ[Λ(t)] = h[X(t),p(h, t)]. Therefore, the dual

variable is updated as

Λ(t + 1) =
h
Λ(t)− εtǧ(t)

i+

=
h
Λ(t)− εth[X(t),p(h, t)]

i+

. (24)

where [·]+ denotes the componentwise maximum of 0 and the value

between parenthesis and εt is a properly selected step-size; see The-

orems 5 and 6. Because the negative of the subgradient −ǧ(t) points

towards Λ∗ it is expected that iterates of (24) are progressively closer

to Λ∗. As the following standard result shows, this is indeed true in

some sense.

Theorem 4 Consider the subgradient descent iteration in (24) and
define the dual value at iteration t as g(t) := g[Λ(t)]. Let G :=
max(X,p(h))∈B

‚‚h[X,p(h)]
‚‚ be a bound on the norm of the subgra-

dient of the dual function. The 2-norm distances
‚‚Λ(t)−Λ∗‚‚ of iterates

Λ(t) to the optimal argument Λ∗ at times t and t+1 satisfy the relation
‚‚Λ(t + 1)−Λ∗‚‚2 ≤ ‚‚Λ(t)−Λ∗‚‚2

+ ε2t G
2 − 2εt

ˆ
g(t)−D

˜
. (25)

Because all primal variables are constrained to the bounded region B,

the bound G on the subgradient norm is finite. Given that D denotes

the minimum of g(t) it is clearly true that g(t) − D ≥ 0. Thus, at

each iteration the distance between the current dual iterate Λ(t) and

the optimal dual variable Λ∗ is reduced by (at least) 2εt

ˆ
g(t) − D

˜
and increased by (at most) ε2t G

2. For small εt we expect the reduction

2εt

ˆ
g(t) − D

˜
to dominate the increase ε2t G

2 and consequently for

Λ(t) to approach Λ∗.

For fixed step size εt = ε for all t, however, there is a limit

on how close Λ(t) can come to Λ∗. For any given ε, ε2G2 will

eventually become larger than 2ε
ˆ
g(t)−D

˜
preventing the optimality

gap
ˆ
g(t)−D

˜
to go to zero. This is not a limitation of the analysis but a

consequence of the fact that for non-differentiable functions the norm of

the subgradient ‖ǧ(Λ)‖ does not necessarily vanish as Λ approaches

Λ∗. Therefore, the iteration in (IV-A) is not convergent. Rather, the

iterates Λ(t) approach Λ∗ until ε2G2 starts dominating 2ε
ˆ
g(t)−D

˜
.

This motivates the use of vanishing step-size sequences, i.e.,

limt→∞ εt = 0, so that as the duality gap
ˆ
g(t) − D

˜
approaches

zero, so does εt. This allows for 2εt

ˆ
g(t) − D

˜
to always dominate

ε2t G
2 leading to the following classical convergence result.

Theorem 5 Consider the subgradient descent iteration in (24) with
vanishing step sizes εt. Require the sum of step sizes to be divergent,
i.e.,

∞X
t=1

εt = ∞, lim
t→∞

εt = 0. (26)

Then, the limit of the sequence of iterates Λ(t) exists and

lim
t→∞

Λ(t) = Λ∗. (27)

The conditions (26) on the step-size sequence are certainly minimal.

E.g., sequences of the form εt = ε1/(t+ ε2)
α with α > 0 for arbitrary

positive constants ε1 and ε2 satisfy (26). Nonetheless, constant step

sizes εt = ε for all t, are still desirable in some cases. In this case it

can be proven that as t →∞, Λ(t) “stays close” to Λ∗.

Theorem 6 Consider the subgradient descent iteration in (24)

with constant step sizes εt = ε for all t. With G :=
max(X,p(h))∈B

‚‚h[X,p(h)]
‚‚ the subgradient norm bound of Theorem

4, it holds:
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(i) The best dual value at time t, gbest(t) := mins∈[0,t] g(t), converges
to a value within εG2/2 of the optimum D, i.e.,

lim
t→∞

gbest(t)−D ≤ εG2/2. (28)

(ii) The average of the dual iterates Λ̄(t) := (1/t)
Pt

s=1 Λ(s),
converges to a point whose optimality gap is less than εG2/2, i.e.,

g
h

lim
t→∞

Λ̄(t)
i
−D ≤ εG2/2. (29)

As commented after Theorem 4, the subgradient descent algorithm

(23) - (24) does not necessarily converge for fixed step sizes. Nonethe-

less, a reasonable approximation to Λ∗ is achieved by Λbest(t) defined

as the argument for which g[Λbest(t)] = gbest(t). The quality of this

approximation is measured in the optimality gap g[Λbest(t)]−D that

can be made arbitrarily small with adequately selected step size ε.

By its own definition Λbest(t) is the best approximation to Λ∗ that

can be obtained by (23) - (24) with fixed step sizes. Finding Λbest(t),

though, requires access to the dual values g(t), which might not be

available; see e.g., Section IV-B. In such circumstances a similarly good

approximation to Λ∗ is the average Λ̄(t) of iterates Λ(t).

B. Layers and layer interfaces

Implementing the subgradient descent iteration (23)-(24) uncovers

details in the interaction between layers. Returning to the explicit

Lagrangian L[X,p(h),Λ(t)] notation used in (10) and reordering

terms in the same manner as done for Λ = Λ∗ in (11) the primal

iteration in (23) becomes

L[X,p(h),Λ(t)] =
X
i,k

“
Uk

i (ak
i )− νk

j (t)ak
j

”
+

X
i

“
μi(t)pi −Vi(pi)

”

+
X
i,j

“
ξij(t)− λij(t)

”
cij +

X
i,j,k

“
νk

i (t)− νk
j (t)− ξij(t)

”
rk

ij

+ Eh

2
4X

i,j,f

λij(t)Cij

“
hf ,pf (h)

”
− μi(t)p

f
ij(h)

3
5 . (30)

Proceeding with the same line of argument used in Theorem 2, the

maximization required for the primal iteration (23) can be separated

in specific subproblems associated with each of these variables. The

elements of X(t) in (23) are thus

ak
i (t) = max

ak
min i≤ak

i ≤ak
max i

h
Uk

i (ak
i )− νk

i (t)ak
i

i
(31)

rk
ij(t) = max

0≤rk
ij≤rmax

h“
νk

i (t)− νk
j (t)− ξij(t)

”
rk

ij

i
(32)

cij(t) = max
0≤cij≤cmax

[(ξij(t)− λij(t)) cij ] (33)

pi(t) = max
0≤pi≤pmax i

[μi(t)pi − Vi(pi)] (34)

Also, in the last term of (30), the maximization can be brought into the

expected value operator. The elements of the power distribution p(h; t)
in (23) can thus be computed separately for each fading state h, i.e.,

p(h; t) = max
0≤p

f
ij(h)≤pmax

2
4X

i,j,f

λij(t)Cij

“
hf ,pf(h)

”
−μi(t)p

f
ij(h)

3
5.

(35)

The subgradient ǧ(t) = h[X(t),p(h; t)] can be likewise separated. The

components of the vector function h[X(t),p(h; t)] are as specified in

(2)-(4). Therefore, the dual iteration (24) can be written explicitly as

νk
i (t+1) = νk

i (t) + εt

2
4 X

j∈n(i)

“
rk

ij(t)− rk
ji(t)

”
− ak

i (t)

3
5 (36)

ξij(t+1) = ξij(t) + εt

"
cij(t)−

X
k

rk
ij(t)

#
(37)

λij(t+1)= λij(t)+ εt

2
4Eh

" X
f∈F

Cij

“
hf ,pf (h; t)

”#
−cij(t)

3
5 (38)

μi(t+1) = μi(t) + εt

2
4pi − Eh

" X
j∈N (i)

X
f∈F

pf
ij(h; t)

#3
5 (39)

The argument to be optimized in (31) is solely parameterized by νk
i (t).

Thus, given the multiplier νk
i (t) associated with the flow conservation

constraint, ak
i (t) is determined. Likewise, rk

ij(t) is determined by flow

conservation multipliers νk
i (t) and νk

j (t) and link capacity constraints

multipliers ξij(t). In general, all the primal iterations (31)-(35) depend

on multipliers associated with no more than two types of constraints.

The dual iterations (38)-(39) have a similar property. The update of

μi(t) in (39) for instance, depends on the total power pi(t) and the

power distribution p(h; t). In general, the multipliers’ updates depend

on no more than two different types of primal variables.

The fact that primal and dual variable updates depend on only two

types of variables prompts a interpretation of (31)-(39) in terms of layers

and layer interfaces. The flow control problem (31) is associated with

the transport layer, the link rate problem (32) with the routing layer, link

capacity (33) and power control (34) problems are solved at the link

layer and power distribution (35) pertains to the physical layer. Because

the dual variables in (31)-(35) are not optimal, it becomes necessary

to communicate variables across layer interfaces. These interfaces are

defined by the dual variable updates (36)-(39). Thus, the update of

multipliers νk
i (t) in (36) defines the interface between the network and

transport layer and (37) the link to network layer interface. Because

there are two problems being solved at the link layer, (38) defines the

interface between the physical layer and the link capacity subproblem

and (39) between physical layer and power control subproblem.

Fig. 2 shows a schematic representation of the layers and their inter-

faces. At the bottom of the stack the physical layer solves (35) to find the

power distribution p(h; t). Due to coupling that in general is introduced

by the function Cij

`
hf ,pf (h)

´
the physical layer optimization cannot

be separated in per-terminal optimization problems and is therefore

represented as a common substrate supporting per-terminal stacks. To

compute p(h; t) the physical layer receives multipliers λij(t) and μi(t)
from the physical-link interface.

At the link layer each terminal maintains variables representing the

average link capacities cij(t) to neighbors Tj , j ∈ n(i) and the average

transmitted power pi(t). These are computed by solving (33) and (34).

In turn, this requires dual variables λij(t) and μi(t) communicated

from the physical-link interface and ξij(t) communicated from the link-

network interface.

As is true for physical and link, all layers compute network variables

of interest based on dual variables received from adjacent interfaces.

That way, the network layer maintains variables rk
ij for neighbors

j ∈ n(i) and flows k that determine local routing decisions. These

are updated as per (32) using multipliers ξij(t) received from the link-

network interface and νk
i and νk

j , j ∈ n(i) from the network-transport

interface. The transport layer, finally, keeps variables ak
i determining the

rate at which packets pertaining to the k-th flow are accepted into the

network by terminal Ti. These are updated as per (31) using multipliers

νk
i received from the network-transport interface.
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p(h, t) = max
0≤p

f
ij(h)≤pmax

hP
i,j,f λij(t)Cij

“
hf ,pf (h)

”
− μi(t)p

f
ij(h)

i
� �
� �

μi(t + 1) = μi(t) + εt

"
pi − Eh

"
P

j∈N (i)

P
f∈F pf

ij(h; t)

##
μi

λij(t+1) = λij(t) + εt

"
Eh

"
P

f∈F Cij

“
hf ,pf (h; t)

”#
−cij(t)

#
λij for j ∈ n(i)

� �
� �

pi(t) = max0≤pi≤pmax i [μi(t)pi − Vi(pi)] pi

cij(t) = max0≤cij≤cmax [(ξij(t)− λij(t)) cij ] cij for j ∈ n(i)

� �
� �

ξij(t + 1) = ξij(t) + εt

ˆ
cij(t)−P

k rk
ij(t)

˜
ξij for j ∈ n(i)

� �
� �

rk
ij(t) = max0≤rk

ij≤rmax

ˆ`
νk

i (t)− νk
j (t)− ξij(t)

´
rk

ij

˜
and all k

rk
ij for j ∈ n(i)

� �
� �

νk
i (t + 1) = νk

i (t) + εt

hP
j∈n(i)

`
rk

ij(t)− rk
ji(t)

´− ak
i (t)

i
νk

i for all k

� �
� �

ak
i (t) = maxak

min i≤ak
i ≤ak

max i

ˆ
Uk

i (ak
i )− νk

i (t)ak
i

˜
ak

i for all k

Layers and interfaces at terminal Ti

Fig. 2. The subgradient descent iteration (31)-(39) can be interpreted in terms of layers and layer interfaces. Layers keep variables of interest to the network,
e.g., link transmission rates rk

ij at the network layer, that they update according to primal iterations (31)-(35). Layer interfaces maintain (auxiliary) dual variables
updated as per the dual iterations (36)-(39). Communication of variables across layers and interfaces is restricted to adjacent entities; i.e., layers receive variables
from, and transmit to, adjacent interfaces. Interfaces exchange variables with adjacent layers. Note that in general the physical layer optimization problem cannot
be separated in per-terminal problems.

Interfaces in turn, update dual variables using information received

from adjacent layers. The physical-link interface computes dual vari-

ables λij(t) for j ∈ n(i) and μi(t). This is fitting because the multipli-

ers λij(t) and μi(t) are respectively associated with the link capacity

(2) and power (3) constraints that relate physical-level variables p(h)
and link-level quantities cij and pi. The updates (38) and (39) carried

at the physical-link interface require variables p(h; t) communicated

from the physical layer and variables cij(t) and pi(t) from the link

layer.

Likewise, the link-network interface keeps one multiplier ξij(t) per

neighbor Tj , j ∈ n(i). These are associated with the rate constraints in

(4) that couple link variables cij and network variables rk
ij . Updates of

ξij(t) are specified in (37), being determined by variables cij(t) and

rk
ij(t) respectively communicated from the link and network layers.

The network-transport interface, finally, maintains dual variables νk
i (t)

associated with the flow conservation constraints in (4) that couple

network rk
ij and transport ak

i variables. These νk
i (t) variables are

updated as per (36) using rk
ij(t) and ak

i (t) received from the network

and transport layer respectively.

As time progresses, interfaces’ variables λij(t), μi(t), ξij(t) and

νk
i (t) converge to optimal multipliers λ∗

ij , μ∗
i , ξ∗ij and νk

i
∗

[cf. Theorem

5] – or a point close to them if the step size εt is fixed [cf. Theorem

(6)] – enabling computation of optimal network variables p∗(h), p∗
i ,

c∗ij rk
ij

∗
and ak

i
∗
.

V. CONCLUDING REMARKS

General wireless networking optimization problems in the presence

of fading are non-convex but have zero duality gap [4]. This paper

has described how the separability of wireless networking problems

into layers follows from this result. An architecture based in layers

and layer interfaces was shown to be optimal as a consequence of

the implementation of a subgradient descent algorithm for the dual

function. Similar architectures have been reported elsewhere. The main

contribution of this paper is to show that this architecture is optimal1.
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