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ABSTRACT

This paper develops near-optimal designs of wireless networks in
the presence of fading. The novel approach optimizes jointly ap-
plication level rates, routes, link capacities, power consumption and
physical layer parameters. The physical layer is interference lim-
ited with terminals distributing their power budget among frequency
tones, neighboring nodes and fading states. The present contribution
builds on recent results establishing the optimality of layered archi-
tectures and develops physical layer resource allocation algorithms
that are seamlessly integrated into layered architectures without loss
of optimality.

Index Terms— optimization methods, interference, ad-hoc net-
works, multi-hop, cross-layer designs

1. INTRODUCTION

It has long been recognized that proper design of wireless networks
requires revamping the approach used in wireline networks [1]. At
the core of this effort is a challenge to conventional layering that
has led to the emergence of cross-layer wireless networking. One
of the most promising approaches in this effort is optimal wireless
network design. The best operating point is defined as the solution
of an optimization problem and protocols follow from algorithms
used for their solution; see e.g., [1], [2]. Interestingly, layers emerge
naturally from the decomposition of the Lagrangian associated with
optimal wireless networking formulations [3]. A recent development
has shown that layered architectures not only emerge naturally but
are in fact optimal [4]. The story has in some sense come full circle.
The consequence of the optimality of layered architectures is that
the difficulty in wireless networks is not in cross-layer design but in
solving the resource allocation problem at the physical layer.

The challenge is thus to develop algorithms to find solutions to
physical layer resource allocation problems. To this end, the present
paper starts with a formulation to jointly optimize application level
rates, routes, link capacities, power consumption and power alloca-
tion across frequency tones, neighboring terminals and fading states
(Sec. 2). The optimality of layered architectures is then leveraged
to introduce a subgradient descent algorithm that provides seamless
and optimal integration of physical layer resource allocation with
the remaining layers (Sec. 3). Focus then turns to the physical layer
resource allocation problem. As this problem turns out to be in-
tractable, approximate solutions are justified. The one developed
here is inspired by the SCALE algorithm used for digital subscriber
lines (DSL) [5]. Implementation of this algorithm is presented in
Sec. 4 and corresponding numerical results in Sec. 5.
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2. PROBLEM STATEMENT

Consider a wireless ad-hoc network as in [2], [4], comprising a set
of terminals (nodes) denoted by V . Two nodes i, j form a link when
they can communicate with each other; the communication between
nodes is bidirectional. The set of nodes that a node i ∈ V can com-
municate with forms the neighborhood of i that is denoted byN (i).

Packets generated at each node correspond to possibly differ-
ent applications and are destined for different nodes. Such packet
streams from various applications are called commodities and are
generically denoted by k. For simplicity and concreteness, consider
the general scenario where: (i) each node is a destination of a single
commodity (i.e., there are as many commodities as nodes); and (ii)
each terminal accepts traffic (commodities) for all other terminals.
The transport layer protocol of the network is responsible to main-
tain the end-to-end flow of packets from node i to the destination of
every commodity k that enters the node. The average rate of such
flow is denoted by ak

i . Clearly, commodities that have as destination
node i never actually enter node i. Hence, the set of commodities
that can enter node i is Ki := V \ {i}.

Moreover, there are flows associated with the network layer.
Specifically, each node i will transmit to its neighbors j ∈ N (i)
packets of each commodity k ∈ Ki at an average rate denoted by
rk

ij , called network-layer rate or multicommodity flow. The rk
ij are

essentially routing variables, because they dictate how the packets
from the various commodities are forwarded to the outgoing links
of node i. As such, they pertain to the network layer. Hence, at
node i there are exogenous packet arrivals with rate ak

i (i.e., from the
transport layer) and endogenous packet arrivals with rates rk

ji from
neighbors j ∈ N (i). Packets also leave node i with rates rk

ij towards
neighbors j ∈ N (i). Clearly, these rates satisfy a flow conservation
constraint

ak
i ≤

∑
j∈N (i)

rk
ij −

∑
j∈N (i),j �=k

rk
ji ∀ i, ∀ k ∈ Ki. (1)

Link (i, j) carries total average rate
∑

k∈Ki
rk

ij that cannot ex-
ceed the capacity of the link, denoted by cij . This gives rise to the
link capacity constraint∑

k∈Ki

rk
ij ≤ cij ∀ i, ∀ j ∈ N (i). (2)

Link capacities cij in wireless networks are not fixed, but depend
on the specific physical and medium access control (MAC) layers,
as well as on the allocation of network resources. In the consid-
ered network model, terminals have a set of tones F := {1, . . . , F}
available for transmission. It is further assumed that link (i, j) over
tone f has power gain coefficient hf

ij which captures fading effects.
The focus in the present work is on non-orthogonal medium access,
where different terminals are allowed to use the same frequency to
transmit, and treat other terminals’ transmissions as noise. Network
resources here are power allocations pf

ij(h) for link (i, j) over tone

f as a function of the power gains hf
ij collected in the vector h.
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The key quantity dictating the link capacity is the signal-to-
interference-plus-noise ratio (SINR). The (instantaneous) SINR of
link (i, j) over tone f is given by

γf
ij := hf

ijp
f
ij(h)

/[
σf

j +
∑

(k,l)∈Iij

hf
kjp

f
kl(h)

]
(3)

where σf
j is the noise variance at node j over tone f , and Iij is a set

of links causing interference to (i, j). This set consists of the links
carrying: (i) other incoming transmissions for j over f ; (ii) outgoing
transmissions from j; and (iii) transmissions originating fromN (j).
Note that the SINR depends on power allocations pf

ij(h) as well as
on h; this dependence is not shown for brevity.

Supposing capacity-achieving codebooks, and letting Eh denote
expectation over h, the ergodic capacity cij of link (i, j) is

cij = Eh

⎡
⎣∑

f∈F

ln
(
1 + γf

ij

)⎤⎦ . (4)

Two kinds of power constraints will be considered. The first
will be spectral mask or instantaneous power constraints, expressed
as 0 ≤ pf

ij(h) ≤ pf
ij max. The second refers to the average power

consumed by a node in the network. Specifically, the average power
is defined as pi := Eh

[∑
j∈N (i)

∑
f∈F pf

ij(h)
]
, and is assumed

constrained by a power budget pi max, i.e., 0 ≤ pi ≤ pi max.
Intended arrival rates ak

i in practical networks lie within
application-specific bounds expressed as ak

i min ≤ ak
i ≤ ak

i max.
Furthermore, the network designer may wish to impose upper bounds
on link capacities cij and multicommodity flows rk

ij , that is 0 ≤
cij ≤ cij max and 0 ≤ rk

ij ≤ rij max. The notation X will be used
for all average variables, i.e., ak

i , rk
ij , cij , pi for all i ∈ V , j ∈ N (i),

k ∈ Ki. Then, all previously mentioned ‘box’ constraints can be
conveniently written using the set notation

B :={X,p(h) : 0 ≤ pf
ij(h) ≤ pf

ij max, 0 ≤ pi ≤ pi max,

ak
i min≤ ak

i ≤ak
i max, 0≤ cij ≤cij max, 0≤rk

ij≤rij max}. (5)

Higher exogenous arrival rates ak
i are in general more desirable;

this is captured by utility functions Uk
i (ak

i ) that are selected strictly
increasing and concave. Moreover, average power consumption may
be penalized by cost functions Vi(pi), selected strictly increasing
and convex. Optimal wireless networking refers to selecting (aver-
age) variables ak

i , rk
ij , cij , pi and instantaneous power allocations

pf
ij(h), such that constraints (1), (2), (4), (5) are respected, while the

total network utility is maximized and the total cost minimized:

max
{X,p(h)}∈B

∑
i,k∈Ki

Uk
i (ak

i )−
∑

i

Vi(pi) (6a)

ak
i ≤

∑
j∈N (i)

rk
ij −

∑
j∈N (i),j �=k

rk
ji ∀k ∈ Ki, ∀i (6b)

∑
k∈Ki

rk
ij ≤ cij ∀j ∈ N (i), ∀i (6c)

cij ≤ Eh

⎡
⎣∑

f

ln
(
1 + γf

ij

)⎤⎦ ∀j ∈ N (i), ∀i (6d)

Eh

[ ∑
j∈N (i)

∑
f∈F

pf
ij(h)

]
≤ pi ∀i. (6e)

Let νk
i , ξij , λij , μi be Lagrange multipliers for constraints (6b),

(6c), (6d) and (6e), respectively. The Lagrangian of (6) reduces after
straightforward rearrangements to (Λ collectively denotes all multi-
pliers)

L(Λ,X,p(h)) =
∑

i,k∈Ki

(
Uk

i (ak
i )− νk

i ak
i

)
+

∑
i

(μipi − Vi(pi))

+
∑

i,j∈N (i)

(ξij − λij) cij +
∑

i,j∈N (i)
f∈F

Eh

[
λij ln

(
1 + γf

ij

)
− μip

f
ij(h)

]

+
∑

i,j∈N (i)
k∈Ki,j �=k

(
νk

i − νk
j − ξij

)
rk

ij +
∑

i,j∈N (i)
j∈Ki

(
νj

i − ξij

)
rj

ij . (7)

The dual function and the dual problem are, respectively,

g(Λ) := max
(X,p(h))∈B

L(Λ,X,p(h)) (8)

min
Λ≥0

g(Λ). (9)

Due to constraint (6d), problem (6) is non-convex. Remarkably
though, problem (6) has zero duality gap, whenever the cumulative
distribution function (cdf) of h is continuous, i.e., under all practi-
cal fading models [4]. (See references in [4] for related results in
other contexts.) This result means that one may solve the dual prob-
lem (9) without loss of optimality. This is desirable, because the dual
problem is a convex optimization problem [6, Sec. 5.1], and also its
solution effects separation into conventional layers (see [4] and the
discussion in the next section).

On the other hand, a task needed in the solution of the dual prob-
lem is maximization of the Lagrangian (cf. (8)). Such maximization
is computationally intractable (in terms of seeking an exact maxi-
mizer), due to the term ln

(
1 + γf

ij

)
in (7). The present paper’s main

contribution is to tackle the solution of (9) (and hence of (6)) for a
network whose physical layer is characterized by link capacities as
in (4), i.e., when terminals use the simple strategy of treating non-
intended transmissions as noise.

This will be achieved by utilizing a subgradient descent algo-
rithm for the solution of (9), described in Sec. 3. The subgradient
iterations will be paired in Sec. 4 with a suitable approximation al-
gorithm, aiming at evaluating (8).

3. SUBGRADIENT METHOD

Subgradient iterations will be used for the solution of (9), as the dual
problem is typically non-differentiable [6, Sec. 6.3]. Specifically,
rewrite all constraints in (6) with 0 on the right-hand side of the in-
equalities, and let all left-hand side functions be collectively denoted
by v(X,p(h)); also let t be the iteration index. Then the iterates
Λ(t) obtained via the subgradient method, with initial Λ(0) ≥ 0

are

(X(t),p(h; t)) ∈ argmax
(X,p(h))∈B

L(Λ(t),X,p(h)) (10a)

Λ(t + 1) =
[
Λ(t) + εtv(X(t),p(h; t))

]+
(10b)

where εt is the stepsize (depending on t in general), and [.]+ denotes
elementwise projection onto the nonnegative reals.

Due to the separable structure of the Lagrangian, (10a) becomes

ak
i (t) ∈ argmax

ak
i min

≤ak
i
≤ak

i max

[
Uk

i (ak
i )− νk

i (t)ak
i

]
(11a)

rk
ij(t) ∈ argmax

0≤rk
ij

≤rij max

{
(νk

i (t)− νk
j (t)− ξij(t)

)
rk

ij if j �= k

(νj
i (t)− ξij(t)

)
rj

ij o/w

(11b)

cij(t) ∈ argmax
0≤cij≤cij max

[
(ξij(t)− λij(t))cij

]
(11c)
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and

pi(t) ∈ argmax
0≤pi≤pi max

[
μi(t)pi − Vi(pi)

]
(11d)

p(h; t) ∈ argmax
0≤p

f
ij

(h)≤p
f
ij max

∑
i,f,j∈N (i)

[
λij(t) ln

(
1 + γf

ij

)
−μi(t)p

f
ij(h)

]
.

(11e)

Eq. (11e) is obtained by noting that the part of (7) that involves the
Eh[.] operator can be maximized if the term inside the expectation
is maximized for each fading state h. Equations (11a)–(11e) can
be interpreted as separating the solution of the wireless networking
problem into conventional layers [4]. In particular, (11a) solves the
flow control problem at the transport layer; (11b) performs routing
at the network layer; (11c) and (11d) address the link rate control
and (average) power control at the data link layer; and (11e) solves
the power allocation at the physical layer.

Subgradient iterations (10b) can also be written explicitly as

νk
i (t + 1) =

[
νk

i (t)+εt

(
ak

i (t)−
∑

j∈N (i)

rk
ij(t) +

∑
j∈N (i)

j �=k

rk
ji(t)

)]+

(12a)

ξij(t + 1) =

[
ξij(t) + εt

( ∑
k∈Ki

rk
ij(t)− cij(t)

)]+

(12b)

λij(t + 1) =

[
λij(t)+εt

(
cij(t)−Eh

[∑
f

ln
(
1+γf

ij(t)
)])]+

(12c)

μi(t + 1) =

⎡
⎣μi(t)+εt

⎛
⎝Eh

⎡
⎣ ∑
j∈N (i),f

pf
ij(h; t)

⎤
⎦−pi(t)

⎞
⎠

⎤
⎦

+

. (12d)

Iterations (12) will converge to the optimal dual variables, when-
ever the stepsize sequence (εt) is non-summable diminishing, i.e., it
satisfies

∑∞
t=0 εt = ∞, limt→∞ εt = 0 [7, Sec. 2.2].

In order to perform iterations (12), the solution of (11) is needed.
The solution of (11a)–(11d) (as a function of the Lagrange multipli-
ers) is straightforward given the concavity of the respective objec-
tives and the box constraints. But the solution of (11e) is consider-
ably more challenging. In particular, (11e) bears resemblance with
the problem of power control in deterministic DSL channels, see
e.g., [5] and references therein. This problem is known to be NP-
hard [8]. The solution of (11e) will be undertaken in the ensuing
section, via a suitable approximation algorithm.

After the solution of (11) is obtained, the subgradients in (12a),
(12b) are readily evaluated. On the other hand, (12c) and (12d) in-
volve the expectation Eh[.]. This can be evaluated via Monte Carlo
whenever the cdf of h is known, by drawing independent realizations
of h, and solving (11e) for each of them.

Remark 1 Apart from the optimal dual variables, it is important
to obtain the optimal (primal) solution of (6), e.g., rates ak

i . It
is possible to recover optimal primal variables from the sequence
(X(t),p(h, t)) obtained as a byproduct of the subgradient method
(cf. (10a)), even though (6) is nonconvex. This is omitted here due to
space limitations; see [9] for details.

4. APPROXIMATION ALGORITHM

An approximate solution to (11e) is pursued here, based on the
SCALE algorithm [5]. In particular, instead of solving (11e) di-
rectly, the solution of a sequence of successive convex approxima-
tions of (11e) is sought. Such an approximation is

max
0≤p

f
ij

(h)≤p
f
ij max

∑
i,f,j∈N (i)

[
λij(t)α

f
ij ln γf

ij−μi(t)p
f
ij(h)

]
(13)

where αf
ij are properly selected weights and γf

ij is the SINR given
by (3). Each approximation (13) is solved exactly (for fixed weights);
the weights are then updated; and subsequently the new approxima-
tion is solved. The powers obtained as the solution of the last prob-
lem in this procedure are approximate solutions of (11e). In what
follows, the algorithm for solving (13) is described, and then the
method for updating the weights is given.

Problem (13) is decomposable per tone, i.e., one can solve

max
0≤p

f
ij

(h)≤p
f
ij max

∑
i,j∈N (i)

[
λij(t)α

f
ij ln γf

ij−μi(t)p
f
ij(h)

]
. (14)

Using the method in [5], (14) may be recast as a convex problem.
For its solution the following iteration is used, indexed by τ (note
that t is constant here, and the dependence of pf

ij on h is dropped):

pf
ij(τ+1)=

⎡
⎢⎢⎣ λij(t)α

f
ij

μi(t) +
∑

(m,n):(i,j)∈Imn

λmn(t)α
f
mnh

f
in

σ
f
n+

∑
(k,l)∈Imn

h
f
kn

p
f
kl

(τ)

⎤
⎥⎥⎦

p
f
ij max

0
(15)

where [.]ba denotes projection onto [a, b]. The following can be shown1:

Lemma 1 Iterations (15) converge to the global optimum of (14)
from any initialization 0 ≤ pf

ij(0) ≤ pf
ij max.

Note that although (13) or equivalently the per tone problems (14)
can be solved each time optimally, the powers obtained as successive
solutions of (13) converge in general to local optimizers of (11e).

Now attention is turned to the weights αf
ij . Specifically, each

time problem (14) is solved (i.e., upon convergence of (15)), the
weights are updated according to αf

ij = γf
ij/(1 + γf

ij); see [5,

Sec. III] for details. Here the SINRs γf
ij are evaluated at the powers

obtained upon convergence of (15). Then the weights are kept fixed,
and a new problem (13) is solved. This procedure ends when the
sequence of powers obtained as solutions of (13) converges (or prac-
tically, after a prespecified number of approximations). The weights
are initialized with αf

ij = 1 (high-SINR approximation).

5. NUMERICAL RESULTS

Consider the wireless network in Fig. 1, placed on a 300m × 100m
regular grid. Transmissions occur on five bands centered around five
tones over which the channels hf

ij are Rayleigh. Average channel

power h̄f
ij is determined by a path loss model h̄f

ij :=KPL(dij/d0)
−δ

with KPL = 0.1, δ = 2, d0 = 20m, and dij is the distance be-
tween nodes i and j. The self-interference gain hf

jj is set to 10 dB.
Channels are independent across links, tones and time, while the
noise power at terminal j over tone f is set to σf

j = mini∈N (j) h̄f
ij

(W/Hz). Each terminal has an average power constraint pi max =
5 W/Hz and uses a flat spectral mask pf

ij max = 5 W/Hz.

The utilities for rates ak
i (rate rewards) are logarithmic, i.e.,

Uk
i (ak

i ) = ln ak
i , while the power cost functions Vi(pi) are quadratic,

i.e., Vi(pi) = p2
i for all i. The arrival rate requirements are set to

ak
i max = 14 bps/Hz and ak

i min = 1.4 · 10−4 bps/Hz. The up-
per bound cij max on the link capacities is simply the largest among
the maximum link capacities when there is no interference, while
the upper bound rij max on flows rk

ij is set to rij max = cij max. The
stepsize is εt = .75/(1+ .002t); the total number of convex approx-
imations is 7 (including the initial approximation); and the number
of iterations (15) per approximation is 50. The expected value Eh[.]
was approximated via Monte Carlo using 10 realizations.

1The proof is omitted due to space limitations; it is adapted from [5].
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Fig. 1. A wireless ad-hoc network with its physical dimensions in-
dicated; and incoming rates with node 8 as destination.
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Fig. 2. Link capacities.

Routes are specified by the routing variables rk
ij . Consider the

flow k = 8 consisting of packets transmitted to terminal 8. Terminal
8 is depicted in Fig. 1 as a square while the remaining terminals are
shown as circles with area proportional to the total (endogenous plus
exogenous) rate that arrives to that terminal and has terminal 8 as
destination, i.e., a8

i +
∑j �=8

j∈N (i) r8
ji. This represents the amount of

packets for terminal 8 that each node handles. Observe that packets
accumulate as we move from terminal 1 closer to terminals 6 and 7.

Link capacities are shown in Fig. 2. The width of each arrow
is proportional to the average capacity cij of the corresponding link.
Notice that certain links have larger capacity than others, with the
links (2,1), (3,1), (6,8) and (7,8) having the largest capacities. The
reason is that these links experience the least interference, as the re-
ceiving terminals 1 and 8 are the “furthest” among all other nodes
in the network. Corroborating intuition, the aforementioned links
with the transmitting and receiving ends reversed, such as (1,2), have
smaller capacities because the receiving ends, which are now 2, 3, 6,
and 7, have more interfering neighbors than terminals 1 and 2. Also
observe that the ‘diagonal’ links such as (3,4) have smaller capac-
ities than the links which correspond to the edges of the ‘squares’,
e.g., (2,4) and (5,4). This is expected, because the distance between
terminals 3 and 4 is larger than the distance between terminals 2 and
4 (100m), or, between 5 and 4 (100m).

Fig. 3 depicts the average power pi consumed per terminal i.
Notice that all terminals use approximately the same average power;
however, the ‘middle nodes’, i.e., 4 and 5, require slightly higher
power, consistent with the fact that nodes in the middle have more
neighbors and are likely to handle a larger share of the overall traffic.
The fact that all terminals use approximately the same average power
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Power consumption (average)

Terminal i

p
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(W

/H
z)

Fig. 3. Average power consumption at the network terminals.

is partly due to the symmetry of the network, as well as the chosen
utilities Vi(pi) = p2

i . In particular, utility Vi(pi) was selected with
relatively high weights for all terminals so as to render the average
power consumption approximately uniform across terminals, which
may be desirable in an ad-hoc network. Recall that the designer is
flexible to control the average power expenditure through appropri-
ate selection of power costs Vi(pi).2
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