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ABSTRACT
This paper proposes an optimal architecture for wireless networks based
on layers and layer interfaces. In the presence of fading the architecture
is shown to be optimal. The result follows from a subgradient descent
algorithm on the dual function of a generic wireless networking opti-
mization problem. The fact that these non-convex optimization problems
have nonetheless zero duality gap is exploited.
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1. INTRODUCTION

Optimal design is one of the most promising alternatives for future wire-
less networks [1, 2]. Desired operating points are defined as solutions
of optimization problems. Fundamental properties of wireless networks
and protocols are obtained from characteristics of these optimization
problems and algorithms that solve them. An interesting observation is
that even if the might be suboptimal, layered architectures follow from
the decomposition of Lagrangian dual problems [3]. Contrary to estab-
lished wisdom, it has been shown recently that in the presence of fading
layered architectures are in fact optimal [5].

The goal of this paper is to introduce an optimal architecture based
on layers and layer interfaces. Layers maintain variables of interest to
the network, while interfaces maintain auxiliary variables. Layers ex-
change variables only with adjacent interfaces and interfaces only with
adjacent layers. Over time the network finds an optimal operating point
that maximizes a given utility. Although the architecture presented here
is novel, similar architectures have been reported elsewhere, see e.g., [3].
The main contribution of this paper is to show its optimality in the pres-
ence of fading.

2. OPTIMALWIRELESS NETWORK

Consider an ad-hoc wireless network composed of J user terminals
{Ti}

J
i=1. Terminal Ti wants to deliver packets for different application

level flows generically denoted by k, with the flow k intended for desti-
nation T k. Network connectivity is modeled with a graph G(v, e) with
vertices v := [1, J ] and edges e ∈ E connecting pairs of vertices (i, j)
when and only when Ti and Tj can communicate with each other; see
Fig. 1. The adjacency of i is denoted n(i) := {j : (i, j) ∈ E}. Each
terminal {Tj}j∈n(i) that can communicate with Ti will be referred to as
a neighbor and the set of all neighbors as Ti’s neighborhood. Network
nodes communicate using a set of frequency tones f ∈ F . The channel
from Ti to Tj is denoted as hf

ij and modeled as a random variable.
Channel gains of all network links are collected in the vector h.

Terminals Ti select various variables that determine the flow of in-
formation through the network. For given channel realizations h, ter-
minal Ti determines a power profile pf

ij(h) used for sending packets to
Tj on the tone f when the channel vector realization is h. Power pro-
files determine Ti’s power consumption pi and the capacity cij of the
Ti → Tj link. For every flow k, Ti sends packets to neighboring termi-
nals {Tj}j∈n(i) at an average rate rk

ij . Likewise it receives packets from
neighbors at a rate rk

ji. Finally, variables ak
i determine the rate at which

Ti accepts packets of the flow k from applications. These variables are
not independent of each other. They must satisfy constraints that will be
explained shortly [cf. (2)-(4)].

Network design calls for selecting powers pi, link capacities cij ,
rates rk

ij , arrivals ak
i and power profiles pf

ij(h) that are optimal in some
sense. Thus, concave Uk

i (ak
i ) and convex Vi(pi) functions, respectively,

representing the value of rate ak
i and the cost of power pi are introduced.

The optimal operating point is then defined as the set of variables solving
the optimization problem

P = max
X
i,k

Uk
i (ak

i )−
X

i

Vi(pi) (1)

cij ≤ Eh

" X
f∈F

Cij

“
h

f, pf (h)
”#

(2)

pi ≥ Eh

" X
j∈n(i)

X
f∈F

pf
ij(h)

#
(3)

ak
i ≤

X
j∈n(i)

“
rk

ij − rk
ji

”
,

X
k

rk
ij ≤ cij . (4)

Of the two constraints in (4) the first one requires the rate ak
i at which

packets are accepted from applications to be smaller than the difference
between the aggregate departure rates (to neighbors)

P
j∈n(i) rk

ij and
arrival rates (from neighbors)

P
j∈n(i) rk

ji. The second constraint re-
quires the total rate

P
k rk

ij sent from Ti to Tj for all flows to be smaller
than the link’s capacity cij . The constraint in (3) states that the average
power consumption pi is obtained by summing over all links j ∈ n(i)
and tones f ∈ F and taking expected value over channel realizations h.
The capacity constraint in (2) is a similar average over fading states and
tones. The function Cij(h

f, pf (h))maps channels and powers into link
capacities so that the capacity cf

ij(h) of the link Ti → Tj on the tone f

is Cij(h
f, pf (h)). The function C(·) is determined by terminal’s capa-

bilities and operating conditions. If, e.g., terminals perform single user
detection, link capacity is determined by the signal to noise plus inter-
ference ratio (SINR). Please refer to [5] for a more detailed account of
the model in (1)-(4).

All problem variables have to be non-negative, but this is left implicit
in (1)-(4). Also implicit in (1)-(4) are power constraints pi ≤ pmax i and
pf

ij(h) ≤ pmax, arrival rate requirements ak
min i ≤ ak

i ≤ ak
max i and

upper bound constraints cij ≤ cmax and rk
ij ≤ rmax on link capacities

and link flow rates. These constraint define a boxB of feasible variables.
They will be implicit in general and make explicit when demanded by
clarity. For future reference define the vector valued power distribution
p(h) with components pf

ij(h) andX the set of primal variables cij , pi,
rk

ij and ak
i for all possible subindexes – i.e., all i and all j ∈ n(i) for

cij , all i for pi and so on. Further define f(X) as the utility function
in (1) and h [X , p(h)] ≥ 0 the constraints (2)-(4) so that (1)-(4) can be
written in generic form as

P = max
(X ,p(h))∈B

f(X); st h [X , p(h)] ≥ 0 (5)

where B :=
˘
(X , p(h)) : 0≤pf

ij(h)≤pmax, 0≤pi≤pmax i, a
k
min i≤

ak
i ≤ak

max i, 0≤cij≤cmax, 0≤rk
ij≤rmax

¯
is the box outlined above.

The functionC(·) in (2), and as a consequence h [X , p(h)] in (5), is
not concave in general. Therefore, (1) is a difficult optimization problem.
This difficulty notwithstanding, properties of wireless networks can be
derived from properties of (1). For this purpose introduce multipliers Λ
and the Lagrangian

L[X , p(h),Λ] = f(X) + Λ
T
h [X , p(h)] . (6)

The dual function is obtained by maximizing the Lagrangian over the
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primal variables

g[Λ] = max
(X ,p(h))∈B

L[X , p(h),Λ] (7)

where we emphasize the maximization is performed over the set of pri-
mal variables satisfying the box constraints. The dual problem is finally
defined as

D = min
Λ≥0

g[Λ]. (8)

Because (1)-(4) is non-convex it may be the case that D > P , implying
that working with the dual problem entails loss of optimality. However,
it has been proved that as long as the cumulative distribution function of
the fading channels is continuous the duality gap is null [5]:

Theorem 1 (Ribeiro-Giannakis 2008) Let P denote the solution of the
primal problem (1) and D the solution of its dual in (8). If the channel
cumulative distribution function (cdf) is continuous, then

P = D. (9)

Because of Theorem 1 the dual problem in (8) can be solved in lieu of the
primal problem (5). THis fact can be exploited to show that if optimal
Lagrange multipliers are known, layering can be rendered optimal in
wireless networking [5]. In this paper we study a subgradient descent
algorithm and show that it induces an optimal separation in layers and
layer interfaces.

3. COMPUTATION OF OPTIMAL LAGRANGE MULTIPLIERS

Solving the optimal wireless networking problem in (1) can be reduced
to finding the optimal dual variablesΛ∗ of (8). Because the dual function
g(Λ) is convex, descent algorithms can be used to find Λ

∗. However,
g(Λ) need not be differentiable, and it certainly will not be in some
cases. The challenge is therefore to find such descent direction. This
prompts the definition of subgradient that we introduce next.

Definition 1 Subgradient We say that ǧ(Λ0) is a subgradient of the
convex dual function g(Λ) at Λ = Λ0 if for every Λ ≥ 0 we have

g(Λ) ≥ g(Λ0) + ǧ
T (Λ0)(Λ−Λ0). (10)

The hyperplane g(Λ0) + ǧT (Λ0)(Λ−Λ0) = 0 defined by the subgra-
dient direction ǧ(Λ0) and the point (Λ0, g(Λ0)) supports g(Λ) in the
sense that it touches g(Λ) at Λ = Λ0 and is below g(Λ) at any other
point. The fundamental property of a subgradient is that it always points
toward the optimal argument. Formally, letΛ = Λ

∗ in (10), and reorder
terms to obtain

ǧ
T (Λ0)(Λ0 −Λ

∗) ≥ g[Λ0]− g(Λ∗) = g[Λ0]−D ≥ 0 (11)

where we replaced g(Λ∗) = D and use the fact that D is the minimum
value of g(Λ). Given that the inner product of ǧT (Λ0)(Λ0 − Λ

∗) is
positive, (11) proves that the angle between ǧT (Λ0) andΛ0−Λ

∗ is less
than π/2. Therefore, the negative of the subgradient points “towards”,
i.e., with an angle of less than π/2 radians, the optimal argument.

A subgradient of the dual function can be obtained from the argu-
ments that maximize the Lagrangian for given Λ multipliers as detailed
by the following theorem. This as well as subsequent results in Theo-
rems 3 - 5 are known for finite-dimensional optimization problems, [4].
We present them here for the (infinite-dimensional) variational problem
(5). The proofs here are patterned after those in [4]; see [5].

Theorem 2 With Λ0 ≥ 0 an arbitrary dual variable and X†(Λ0) pri-
mal variables that maximize the Lagrangian function in (6) forΛ = Λ0“

X
†(Λ0), p

†(h,Λ0)
”
∈ arg max

(X ,p(h))∈B
L[X , p(h),Λ0]. (12)

Then a subgradient of the dual function at Λ = Λ0 is given by

ǧ(Λ0) = h
h
X

†(Λ0), p
†(h, Λ0)

i
. (13)

In general, there is more than one argument maximizing (12). Therefore
the arg max operator does not specify a value but a set, as signified by
the ∈ symbol in (12). We interpretX†(Λ) as any element of this set.

3.1. Subgradient descent algorithm

A descent algorithm to compute optimal multipliers Λ
∗ and minimum

dual value D = P is obtained using the subgradient of the dual func-
tion described in Theorem 2. With iterations indexed on t, start with
given dual variables Λ(t) and compute arguments [X(t), p(h, t)] that
maximize the Lagrangian in (6),

[X(t),p(h, t)] ∈ arg max
(X ,p(h))∈B

L[X , p(h),Λ(t)]

= arg max
(X ,p(h))∈B

f(X) + Λ
T (t)h[X , p(h)] (14)

Using (13) we have that a subgradient of the dual function at Λ = Λ(t)
is given by ǧ(t) := ǧ[Λ(t)] = h[X(t), p(h, t)]. Therefore, the dual
variable is updated as

Λ(t + 1) =
h
Λ(t)− εtǧ(t)

i+

=
h
Λ(t)− εth[X(t), p(h, t)]

i+

. (15)

where [·]+ denotes the componentwise maximum of 0 and the value be-
tween parenthesis and εt is a properly selected step-size; see Theorems
4 and 5. Because the negative of the subgradient −ǧ(t) points towards
Λ

∗ it is expected that iterates of (15) are progressively closer to Λ
∗. As

the following standard result shows, this is indeed true in some sense.

Theorem 3 Consider the subgradient descent iteration in (15) and
define the dual value at iteration t as g(t) := g[Λ(t)]. Let G :=
max(X ,p(h))∈B

‚‚h[X , p(h)]
‚‚ be a bound on the norm of the sub-

gradient of the dual function. The 2-norm distances
‚‚Λ(t) − Λ

∗
‚‚ of

iteratesΛ(t) to the optimal argument Λ∗ at times t and t + 1 satisfy the
relation

‚‚Λ(t + 1)−Λ
∗
‚‚2
≤

‚‚Λ(t)−Λ
∗
‚‚2

+ ε2t G
2 − 2εt

ˆ
g(t)−D

˜
. (16)

Because all primal variables are constrained to the bounded region B,
the bound G on the subgradient norm is finite. Given thatD denotes the
minimum of g(t) it is clearly true that g(t)−D ≥ 0. Thus, at each iter-
ation the distance between the current dual iterate Λ(t) and the optimal
dual variableΛ∗ is reduced by (at least) 2εt

ˆ
g(t)−D

˜
and increased by

(at most) ε2t G
2. For small εt we expect the reduction 2εt

ˆ
g(t)−D

˜
to

dominate the increase ε2t G
2 and consequently forΛ(t) to approach Λ

∗.
For fixed step size εt = ε for all t, however, there is a limit on how

close Λ(t) can come to Λ
∗. For any given ε, ε2G2 will eventually be-

come larger than 2ε
ˆ
g(t)−D

˜
preventing the optimality gap

ˆ
g(t)−D

˜
to go to zero. This is not a limitation of the analysis but a consequence
of the fact that for non-differentiable functions the norm of the subgradi-
ent ‖ǧ(Λ)‖ does not necessarily vanish asΛ approachesΛ∗. Therefore,
the iteration in (3.1) is not convergent. Rather, the iteratesΛ(t) approach
Λ

∗ until ε2G2 starts dominating 2ε
ˆ
g(t)−D

˜
.

This motivates the use of vanishing step-size sequences, i.e.,
limt→∞ εt = 0, so that as the duality gap

ˆ
g(t) − D

˜
approaches

zero, so does εt. This allows for 2εt

ˆ
g(t) − D

˜
to always dominate

ε2tG
2 leading to the following classical convergence result.

Theorem 4 Consider the subgradient descent iteration in (15) with van-
ishing step sizes εt. Require the sum of step sizes to be divergent, i.e.,

∞X
t=1

εt =∞, lim
t→∞

εt = 0. (17)

Then, the limit of the sequence of iterates Λ(t) exists and

lim
t→∞

Λ(t) = Λ
∗. (18)

The conditions (17) on the step-size sequence are certainly minimal.
E.g., sequences of the form εt = ε1/(t + ε2)

α with α > 0 for arbi-
trary positive constants ε1 and ε2 satisfy (17). Nonetheless, constant
step sizes εt = ε for all t, are still desirable in some cases. In this case it
can be proven that as t →∞,Λ(t) “stays close” to Λ

∗.
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Theorem 5 Consider the subgradient descent iteration in (15) with con-
stant step sizes εt = ε for all t. WithG := max(X ,p(h))∈B

‚‚h[X , p(h)]
‚‚

the subgradient norm bound of Theorem 3, it holds:

(i) The best dual value at time t, gbest(t) := mins∈[0,t] g(t), converges
to a value within εG2/2 of the optimum D, i.e.,

lim
t→∞

gbest(t)−D ≤ εG2/2. (19)

(ii) The average of the dual iterates Λ̄(t) := (1/t)
Pt

s=1 Λ(s), con-
verges to a point whose optimality gap is less than εG2/2, i.e.,

g
h

lim
t→∞

Λ̄(t)
i
−D ≤ εG2/2. (20)

As commented after Theorem 3, the subgradient descent algorithm
(14) - (15) does not necessarily converge for fixed step sizes. Nonethe-
less, a reasonable approximation to Λ

∗ is achieved by Λbest(t) defined
as the argument for which g[Λbest(t)] = gbest(t). The quality of this
approximation is measured in the optimality gap g[Λbest(t)] − D that
can be made arbitrarily small with adequately selected step size ε.

By its own definition Λbest(t) is the best approximation to Λ
∗ that

can be obtained by (14) - (15) with fixed step sizes. Finding Λbest(t),
though, requires access to the dual values g(t), which might not be avail-
able; see e.g., Section 3.2. In such circumstances a similarly good ap-
proximation to Λ

∗ is the average Λ̄(t) of iterates Λ(t).

3.2. Layers and layer interfaces

Implementing the subgradient descent iteration (14)-(15) uncovers de-
tails in the interaction between layers. Define components of the La-
grange multipliers Λ so that λij is associated with the capacity con-
straints in (2), μi with the power constraint in (3), and νk

i and ξij with
the flow and rate constraints in (4). Using this explicit notation the La-
grangianL[X , p(h),Λ(t)] used for the primal iteration in (14) becomes

L[X , p(h),Λ(t)] = (21)

=
X
i,k

“
Uk

i (ak
i )− νk

j (t)ak
j

”
+

X
i

“
μi(t)pi − Vi(pi)

”

+
X
i,j

“
ξij(t)−λij(t)

”
cij +

X
i,j,k

“
νk

i (t)−νk
j (t)−ξij(t)

”
rk

ij

+ Eh

2
4X

i,j,f

λij(t)Cij

“
h

f, pf (h)
”
− μi(t)p

f
ij(h)

3
5 .

Except for the last termEh [
P

i,j,f
λij(t)Cij

“
hf, pf (h)

”
−μi(t)p

f
ij(h)],

the Lagrangian L[X , p(h),Λ(t)] is a sum of terms that depend on one
primal variable only. The first term is a weighted sum of ak

i variables
for all i, k, the second sums different powers pi, the third one sums all
links capacities cij and the last one does the same for all rk

ij . Therefore,
the maximization required for the primal iteration (14) can be separated
in specific subproblems associated with each of these variables. The
elements ofX(t) in (14) are thus

ak
i (t) = max

ak
min i

≤ak
i
≤ak

max i

h
Uk

i (ak
i )− νk

i (t)ak
i

i
(22)

rk
ij(t) = max

0≤rk
ij

≤rmax

h“
νk

i (t)− νk
j (t)− ξij(t)

”
rk

ij

i
(23)

cij(t) = max
0≤cij≤cmax

[(ξij(t)− λij(t)) cij ] (24)

pi(t) = max
0≤pi≤pmax i

[μi(t)pi − Vi(pi)] (25)

Also, in the last term of (21), the maximization can be brought into the
expected value operator. The elements of the power distribution p(h; t)
in (14) can thus be computed separately for each fading state h, i.e.,

p(h; t) = max
0≤p

f
ij

(h)≤pmax

2
4X

i,j,f

λij(t)Cij

“
h

f ,pf(h)
”
−μi(t)p

f
ij(h)

3
5.

(26)
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Fig. 1. Connectivity graph of an example wireless network.

The subgradient ǧ(t) = h[X(t),p(h; t)] can be likewise separated.
The components of the vector function h[X(t), p(h; t)] are as specified
in (2)-(4). Therefore, the dual iteration (15) can be written explicitly as

νk
i (t+1) = νk

i (t) + εt

2
4 X

j∈n(i)

“
rk

ij(t)− rk
ji(t)

”
− ak

i (t)

3
5 (27)

ξij(t+1) = ξij(t) + εt

"
cij(t)−

X
k

rk
ij(t)

#
(28)

λij(t+1)= λij(t)+ εt

2
4Eh

" X
f∈F

Cij

“
h

f , pf (h; t)
”#
−cij(t)

3
5 (29)

μi(t+1) = μi(t) + εt

2
4pi − Eh

" X
j∈n(i)

X
f∈F

pf
ij(h; t)

#3
5 (30)

The argument to be optimized in (22) is solely parameterized by
νk

i (t). Thus, given the multiplier νk
i (t) associated with the flow conser-

vation constraint, ak
i (t) is determined. Likewise, rk

ij(t) is determined
by flow conservation multipliers νk

i (t) and νk
j (t) and link capacity con-

straints multipliers ξij(t). In general, all the primal iterations (22)-(26)
depend on multipliers associated with no more than two types of con-
straints. The dual iterations (29)-(30) have a similar property. The up-
date of μi(t) in (30) for instance, depends on the total power pi(t) and
the power distribution p(h; t). In general, the multipliers’ updates de-
pend on no more than two different types of primal variables.

The fact that primal and dual variable updates depend on only two
types of variables prompts a interpretation of (22)-(30) in terms of layers
and layer interfaces. The flow control problem (22) is associated with the
transport layer, the link rate problem (23) with the routing layer, link ca-
pacity (24) and power control (25) problems are solved at the link layer
and power distribution (26) pertains to the physical layer. Because the
dual variables in (22)-(26) are not optimal, it becomes necessary to com-
municate variables across layer interfaces. These interfaces are defined
by the dual variable updates (27)-(30). Thus, the update of multipliers
νk

i (t) in (27) defines the interface between the network and transport
layer and (28) the link to network layer interface. Because there are
two problems being solved at the link layer, (29) defines the interface
between the physical layer and the link capacity subproblem and (30)
between physical layer and power control subproblem.

Fig. 2 shows a schematic representation of the layers and their in-
terfaces. At the bottom of the stack the physical layer solves (26) to find
the power distribution p(h; t). Due to coupling that in general is intro-
duced by the function Cij

`
hf , pf (h)

´
the physical layer optimization

cannot be separated in per-terminal optimization problems and is there-
fore represented as a common substrate supporting per-terminal stacks.
To compute p(h; t) the physical layer receives multipliers λij(t) and
μi(t) from the physical-link interface.

At the link layer each terminal maintains variables representing the
average link capacities cij(t) to neighbors Tj , j ∈ n(i) and the av-
erage transmitted power pi(t). These are computed by solving (24) and
(25). In turn, this requires dual variables λij(t) and μi(t) communicated
from the physical-link interface and ξij(t) communicated from the link-
network interface.

2559



p(h, t) = max
0≤p

f
ij

(h)≤pmax

hP
i,j,f

λij(t)Cij

“
hf, pf (h)

”
− μi(t)p

f
ij(h)

i
� �
	 	

μi(t + 1) = μi(t) + εt

"
pi − Eh

"
P

j∈n(i)

P
f∈F

pf
ij(h; t)

##
μi

λij(t+1) = λij(t) + εt

"
Eh

"
P

f∈F
Cij

“
hf , pf (h; t)

”#
−cij(t)

#
λij for j ∈ n(i)

� �
	 	

pi(t) = max0≤pi≤pmax i
[μi(t)pi − Vi(pi)] pi

cij(t) = max0≤cij≤cmax
[(ξij(t)− λij(t)) cij ] cij for j ∈ n(i)

� �
	 	

ξij(t + 1) = ξij(t) + εt

ˆ
cij(t)−

P
k

rk
ij(t)

˜
ξij for j ∈ n(i)

� �
	 	

rk
ij(t) = max0≤rk

ij
≤rmax

ˆ`
νk

i (t)− νk
j (t)− ξij(t)

´
rk

ij

˜
and all k

rk
ij for j ∈ n(i)

� �
	 	

νk
i (t + 1) = νk

i (t) + εt

hP
j∈n(i)

`
rk

ij(t)− rk
ji(t)

´
− ak

i (t)
i

νk
i for all k

� �
	 	

ak
i (t) = maxak

min i
≤ak

i
≤ak

max i

ˆ
Uk

i (ak
i )− νk

i (t)ak
i

˜
ak

i for all k

Layers and interfaces at terminal Ti

Fig. 2. The subgradient descent iteration (22)-(30) can be interpreted in terms of layers and layer interfaces. Layers keep variables of interest to the
network, e.g., link transmission rates rk

ij at the network layer, that they update according to primal iterations (22)-(26). Layer interfaces maintain
(auxiliary) dual variables updated as per the dual iterations (27)-(30). Communication of variables across layers and interfaces is restricted to adjacent
entities; i.e., layers receive variables from, and transmit to, adjacent interfaces. Interfaces exchange variables with adjacent layers. Note that in
general the physical layer optimization problem cannot be separated in per-terminal problems.

As is true for physical and link, all layers compute network vari-
ables of interest based on dual variables received from adjacent inter-
faces. That way, the network layer maintains variables rk

ij for neighbors
j ∈ n(i) and flows k that determine local routing decisions. These
are updated as per (23) using multipliers ξij(t) received from the link-
network interface and νk

i and νk
j , j ∈ n(i) from the network-transport

interface. The transport layer, finally, keeps variables ak
i determining

the rate at which packets pertaining to the k-th flow are accepted into the
network by terminal Ti. These are updated as per (22) using multipliers
νk

i received from the network-transport interface.
Interfaces in turn, update dual variables using information received

from adjacent layers. The physical-link interface computes dual vari-
ables λij(t) for j ∈ n(i) and μi(t). This is fitting because the multi-
pliers λij(t) and μi(t) are respectively associated with the link capacity
(2) and power (3) constraints that relate physical-level variables p(h)
and link-level quantities cij and pi. The updates (29) and (30) carried at
the physical-link interface require variables p(h; t) communicated from
the physical layer and variables cij(t) and pi(t) from the link layer.

Likewise, the link-network interface keeps one multiplier ξij(t) per
neighbor Tj , j ∈ n(i). These are associated with the rate constraints
in (4) that couple link variables cij and network variables rk

ij . Updates
of ξij(t) are specified in (28), being determined by variables cij(t) and
rk

ij(t) respectively communicated from the link and network layers. The
network-transport interface, finally, maintains dual variables νk

i (t) asso-
ciated with the flow conservation constraints in (4) that couple network
rk

ij and transport ak
i variables. These νk

i (t) variables are updated as
per (27) using rk

ij(t) and ak
i (t) received from the network and transport

layer respectively.
As time progresses, interfaces’ variables λij(t), μi(t), ξij(t) and

νk
i (t) converge to optimal multipliers λ∗

ij , μ∗
i , ξ∗ij and νk

i

∗ [cf. Theorem
4] – or a point close to them if the step size εt is fixed [cf. (5)] – enabling

computation of optimal network variables p∗(h), p∗
i , c∗ij rk

ij

∗ and ak
i

∗.

4. CONCLUDING REMARKS

This paper has described the separability of wireless networking prob-
lems into layers and layer interfaces. This was shown as a consequence
of the implementation of a subgradient descent algorithm for the dual
function. Similar architectures have been reported elsewhere. The main
contribution of this paper is to show that this architecture is optimal.

The algorithmic complexity incurred by the layered architecture in
Fig. 2 is determined by the complexity of the optimal power allocation
problem (26). The design of optimal wireless networks requires algo-
rithms to efficiently solve this problem in a distributed manner.
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