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Abstract— We develop a generalization of the backpressure (BP) algorithm
to find routes and schedules in wireless ad-hoc networks. Different from
BP that schedules links that maximize queue differentials, the proposed
stochastic soft (SS)BP algorithm randomizes schedules across links and
flows with significant queue differentials. We show that SSBP shares the
fundamental property of BP, namely, that if given arrival rates can be
supported by some routing-scheduling policy, they can be supported by
SSBP. Simulations illustrate SSBP’s improvement in delay performance.

I. INTRODUCTION

This paper studies joint routing and scheduling in wireless ad-hoc
networks where nodes collaborate in delivering information for each
other. Packets arrive at source nodes for delivery to given destinations.
Since direct links between source and destination are unlikely, packets
are routed through neighboring nodes. At every time slot, terminals
have to select flows to service and next hops for the corresponding
packets. The objective is to design a mechanism to determine routes
and schedules to guarantee delivery of information.

A joint solution to this routing and scheduling problem is offered
by the backpressure (BP) algorithm [1]. Nodes compute the difference
between their queue lengths and the queues of neighboring nodes for
every flow. The flow and neighbor that maximize the queue difference is
scheduled for transmission. BP can be proved to be an optimal policy in
that if given arrival rates can be supported by some routing-scheduling
policy, they can be supported by BP. However, maximizing queue
differentials is sensitive to random variations. While inconsequential for
queue stability, this may increase delays significantly.

Such sensitivity to random events is a drawback in wireless networks
since unreliability is a defining property of wireless channels. In wired
networks, link reliabilities are very close to 1. In a wireless network
however, different reliability values may and indeed happen in practice,
as testified by experimental measurements [2] and the usefulness of
routing protocols based on link reliability metrics; see e.g., [3]–[5].

Our goal is to design stochastic soft (SS)BP algorithms by randomiz-
ing schedules across links and flows with significant queue differentials
– as opposed to scheduling maximum queue differential only. Using
a supermartingale argument we show that such soft policies share the
fundamental property of BP, namely, that if given arrival rates can be
supported by some routing-scheduling policy, they are supported by
SSBP. Simulations illustrate SSBP’s improvement in delay performance.

II. ROUTING AND SCHEDULING IN WIRELESS NETWORKS

Consider a wireless network composed of J nodes {Nj}Jj=1 sup-
porting K information flows {F k}Kk=1. The destination of flow F k is
Ndest(k). Define the indicator variable Ak

i (t) ∈ {0, 1} to denote the
arrival of a packet belonging to flow F k at node Ni. The arrival process
is assumed stationary with expected value E

ˆ
Ak

i (t)
˜

= ak
i . Nodes

maintain queues Qk
i for each flow, being qk

i (t) the number of packets
belonging to flow F k queued at node Ni. Packets are assumed of fixed
length and information is measured in number of packets. Generalization
to packets of varying length is straightforward but complicates notation.

Following the work in [3]–[5] we capture channel reliability by
considering that successful packet reception occurs randomly. Let the
indicator variable Rij(t) ∈ {0, 1} denote the event that a packet
transmitted by node Ni is correctly decoded by node Nj . The set of
terminals that can decode Ni’s transmissions, i.e., those with indices

n(i) := {j : Pr {Rij(t)} > 0} are said to compose the neighborhood
of Ni. At time slot t, node Ni determines a flow F k to service and
a suitable next hop Nj for packets of this flow. The indicator variable
Tk

ij(t) ∈ {0, 1} marks this event. We further constrain nodes to transmit,
at most, one packet per time slot. Therefore, at most one Tk

ij(t) variable
can be nonzero for given i. As is customary, e.g. [6], we assume that
if Tk

ij(t) = 1 but the corresponding queue length is qk
i (t) = 0, node

Ni transmits a dummy packet. A dummy packet is also transmitted if
Tk

ij(t) = 0 for all j, k. Dummy packets render decoding events Rij(t)
independent of schedules Tk

ij(t) = 1 and are added for tractability
purposes. We denote as rij := E [Rij(t)] the reliability of the link from
Ni to Nj .

The number of packets in the queue Qk
i increases whenever a packet

is accepted from upper layers, i.e. when Ak
i (t) = 1; or; when a flow

F k packet is transmitted by a neighboring node, i.e., Tk
ji(t) = 1 and

successfully decoded, i.e., Rji(t) = 1. The number of packets qink

i (t)
added to the queue Qk

i (t) at time t is therefore

qin
k

i (t) = Ak
i (t) +

X
j∈n(i)

Tk
ji(t)Rji(t)I

n
qk

j (t) 6= 0
o

(1)

where we added the requirement I {qij(t) 6= 0} to signify that dummy
packets are transmitted but not added to the receiving node’s queue.

Similarly, a packet leaves Qk
i when node Ni schedules flow F k in any

of its links, i.e., Tk
ij(t) = 1 and the corresponding neighbor successfully

decodes the transmitted packet, i.e., Rij(t) = 1. Thus, the number of
packets qoutk

i subtracted from Qk
i at time t is

qoutk

i (t) =
X

j∈n(i)

Tk
ij(t)Rij(t)I

n
qk

i (t) 6= 0
o
. (2)

where as in (1) we include I
˘
qk

i (t) 6= 0
¯

because flow packets are
transmitted only if Qk

i is not empty. The number of packets at queue
Qk

i evolves according to

qk
i (t+ 1) = qk

i (t) + qin
k

i − q
outk

i (3)

with qink

i (t) given by (1) and qoutk
i (t) given by (2). Indicator variables in

(1) obviously satisfy I
˘
qk

j (t) 6= 0
¯
≤ 1. When qk

i (t) 6= 0, the indicator
variable for packet transmission in (2) is I

˘
qk

i (t) 6= 0
¯

= 1. From these
two observations it follows that when qk

i (t) 6= 0 it is possible to upper
bound qk

i (t+ 1) as

qk
i (t+ 1) ≤ qk

i (t) + Ak
i (t)+

X
j∈n(i)

Tk
ji(t)Rji(t)−Tk

ij(t)Rij(t) (4)

Our goal is to determine transmission stochastic processes {Tk
ij(N)}i,j,k

to guarantee that all queue lengths remain bounded. Because queue
lengths depend on random arrivals and packet decodings this can only
be guaranteed probabilistically. Upon defining the vector q(t) grouping
all queue lengths we say that {Tk

ij(N)}i,j,k guarantees stability if

lim
Q→∞

Pr
n

max
t
‖q(t)‖ ≤ Q

o
= 1. (5)

I.e., with probability 1, no queue becomes arbitrarily large. The condition
in (5) follows if there exists Q0 such that for arbitrary time T0,

Pr


min
t≥T0
‖q(t)‖ ≤ Q0

˛̨
q(T0)

ff
= 1. (6)
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I.e., if for any current queue state q(T0) all queues almost surely become
small at some future time. We will use (6) in subsequent proofs.

Processes {Tk
ij(N)}i,j,k to ensure queue stability can be derived by

finding variables {tkij}i,j,k in the set

T :=

24{tkij}i,j,k :
X

j∈n(i)

“
tkijrij − tkjirji

”
− ak

i > 0,
X
j,k

T k
ij ≤ 1

35 (7)

and selecting Tk
ij(t) independently across time with E

ˆ
Tk

ij(t)
˜

= tkij
for all times t. Indeed, with schedules Tk

ij(t) having this property and
{tkij}i,j,k ∈ T it follows from the update bound in (4) that qk

i (t)
obeys a supermartingale equation when qk

i (t) 6= 0. Validity of (6)
then follows from the supermartingale convergence theorem [8, Theorem
E7.4]. Assuming that for given arrival rates {ak

i }i,k there exist variables
{tkij}i,j,k satisfying (7) we will develop an algorithm to determine Tk

ij(t)
so that queues are stable in the sense of (5).

Start considering functions f
`
tkij
´

convex and non-increasing but
otherwise arbitrary and define the following optimization problem

P =max
X
i,j,k

f
“
tkij

”
(8)

s.t.
X

j∈n(i)

“
tkijrij − tkjirji

”
− ak

i ≥ 0,
X
j,k

T k
ij ≤ 1.

Further consider multipliers λk
i and define the problem Lagrangian

L(t,λ) :=
X
i,j,k

f
“
tkij

”
+
X
i,k

λk
i

» X
j∈n(i)

“
tkijrij − tkjirji

”
− ak

i

–
(9)

with the constraint
P

j,k T
k
ij ≤ 1 left implicit. Vectors t and λ group all

transmission rates {tkij}i,j,k and all dual variables {λk
i }i,k respectively.

Define now the dual function and dual problem as

D = min
λ≥0

g(λ) = min
λ≥0

maxP
j,k T k

ij≤1
L(t,λ). (10)

Since the dual function is convex it can be minimized by a descent
algorithm. For doing this we compute a subgradient s(λ(t)). For given
λ(t) consider the Lagrangian maximizers

t(t) := argmaxP
j,k T k

ij≤1

L(t,λ(t)). (11)

As it usually happens, the Lagrangian in (9) can be reordered to allow
a separable maximization. Indeed, rewrite (9) as

L(t,λ) :=
X
i,j,k

f
“
tkij

”
+ tkij

“
λk

i rij − λk
j rji

”
−
X
i,k

λk
i a

k
i (12)

and notice that tkij appears in only one term of the summation. The
maximization in (11) can then be simplified to (with ti(t) grouping
variables {tkij}j,k)

ti(t) := argmax
tT
i 1≤1

f(ti) +
X
j,k

tkij

“
λk

i rij − λk
j rji

”
. (13)

Define now the subgradient components by evaluating the constraints in
(8) for t = t(t)

sk
i (λ(t)) :=

X
j∈n(i)

“
tkij(t)rij − tji(t)

krji

”
− ak

i . (14)

The subgradient s(t) with components sk
i (t) has the important property

of being a descent direction for the dual function g(λ(t)). In particular
we have [7, Section 3.2]

sT (λ(t)) (λ(t)− λ∗) ≥ g(λ(t))−D > 0. (15)
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Fig. 1. Connectivity graph of an example wireless network.

It follows from (15) that the angle between sT (λ(t)) and λ(t)−λ∗ is
smaller than π/2. It is in this sense that sT (λ(t)) is a decent direction
for the dual function at g(λ(t)). We can then propose the descent update

λk
i (t+ 1) =

24λk
i (t)−

X
j∈n(i)

“
tkij(t)rij − tji(t)

krji

”
− ak

i

35+

(16)

where we used the componentwise expression of s(λ(t)) in (14). Dual
subgradient descent consists of iterative application of (16) and (13).

Notice the similarity of (16) and (4) that has been first observed in [6].
Ignore for the time being that (16) is an equality and (4) an inequality and
interpret tkij(t) as the expected value of Tk

ij(t), i.e., tkij(t) = E
ˆ
Tk

ij(t)
˜
.

Since ak
i = E

ˆ
Ak

i (t)
˜

and rij = E [Rij(t)] for the dominant system,
we can interpret (16) as an averaged version of (4). This similarity is
used in the next section to develop stochastic BP algorithms.

III. STOCHASTIC BACKPRESSURE ALGORITHMS

Let node Ni know its own queue lengths qk
i (t) and the queue lengths

of neighboring terminals qk
j (t), for j ∈ n(i). Given this information,

Ni computes variables ti(t) as

ti(t) := argmax
tT
i 1≤1

f(ti) +
X
j,k

tkij

“
qk

i (t)rij − qk
j (t)rji

”
. (17)

Flow F k is scheduled in the link i, j with probability tkij(t). Notice that
as a consequence tkij(t) = E

ˆ
Tk

ij(t)
˜
.

This section proves that this routing-scheduling algorithm stabilizes
queues in the sense of (5). We start with the following lemma.

Lemma 1 Consider queues evolving as per (3) with qin
k

i (t) as in (1)
and qoutk

i (t) as in (2). Assume E
ˆ
Ak

i

˜
= ak

i and that events Rij(t) and
Tk

ij(t) are independent with E [Rij(t)] = rij and E
ˆ
Tk

ij(t)
˜

= tkij(t).
Update the latter averages tkij(t) as per (17) with functions f(tkij) non-
increasing. Then,

E
h‚‚q(t+1)−λ∗

‚‚2 ˛̨
q(t)

i
≤
‚‚q(t)−λ∗

‚‚2
+Ŝ2−2[g(q(t))−D]. (18)

Proof : Start noting that because f(tkij) is non-decreasing, whenever
qk

i (t) = 0, the transmission probability tkij = 0, for all j ∈ n(i) [cf.
(17)]. Indeed, let k0 be a flow for which qk0

i (t) = 0. The summand
involving tk0

ij in (17) becomes

tk0
ij

“
qk0

i (t)rij − qk0
j (t)rji

”
= −tk0

ij

“
qk0

j (t)rji

”
. (19)

Thus tk0
ij appears as factor in a negative linear term and as argument in a

non-increasing function. Consequently, the maximization in (17) yields
as optimal argument tk0

ij = 0.
Recall now that tkij is the probability of the event Tk

ij(t), it follows
then that Tk

ij(t) = 0 if qk
i (t) = 0, or equivalently if I

˘
qk

i (t) 6= 0
¯

= 0.
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Algorithm 1 Stochastic soft backpressure algorithm (SSBP)

1: Receive queue length information qk
j (t) from neighbors j ∈ n(i).

2: Compute transmit rates as [cf. (37)]
tkij(t) = 1

2

ˆ
qk

i (t)rij − qk
j (t)rji − wi(t)

˜+
3: Select j, k with probability tkij(t).
4: Transmit to Nj , packets for flow F k.
5: Broadcast queue length information qk

i .

This is a good property, because it says that flow F k is not scheduled
by Ni if there are no packets to be transmitted. For the purpose of this
proof it implies that the expressions for packets added and subtracted
from the queue Qk

i simplify to qink

i (t) = Ak
i (t)+

P
j∈n(i) Tk

ji(t)Rji(t)

[cf. (1)] and qoutk
i (t) =

P
j∈n(i) Tk

ij(t)Rij(t) [cf. (2)]. Thus the queue
update in (3) becomes

qk
i (t+ 1) =qk

i (t) + Ak
i (t) +

X
j∈n(i)

Tk
ji(t)Rji(t)− Tk

ij(t)Rij(t)

:=qk
i (t) + Sk

i (t) (20)

where we defined the queue update Sk
i (t) := qk

i (t+ 1)− qk
i (t). Denote

as S(t) the vector of queue updates so that we can write q(t + 1) =
q(t) + S(t).

Consider now the expected value of Sk
i (t)

E
h
Sk

i (t)
˛̨
q(t)

i
= E

24Ak
i (t)+

X
j∈n(i)

Tk
ji(t)Rji(t)−Tk

ij(t)Rij(t)
˛̨
q(t)

35
= ak

i (t) +
X

j∈n(i)

“
tji(t)

krji − tkij(t)rij

”
= −sk

i (q(t)) (21)

where the first equality follows from the hypotheses E
ˆ
Ak

i

˜
= ak

i ,
E [Rij(t)] = rij and E

ˆ
Tk

ij(t)
˜

= tkij(t). The second equality follows
from the definition of ti(t) in (17) and the subgradient’s definition in
(14). This is the key observation for the proof.

To complete the derivation use the vector version of the relation in
(20) to express the squared distance‚‚q(t+1)−λ∗

‚‚2
=
‚‚q(t) + S(t)− λ∗

‚‚2

=
‚‚q(t)−λ∗

‚‚2
+
‚‚S(t)

‚‚2
+ 2ST (t) (q(t)− λ∗)

(22)

Condition both sides of (22) on q(t) and take expected values to obtain

E
h‚‚q(t+1)−λ∗

‚‚2 ˛̨
q(t)

i
=
‚‚q(t)−λ∗

‚‚2 (23)

+ E
h‚‚S(t)

‚‚2 ˛̨
q(t)

i
+ 2E

h
ST (t)

˛̨
q(t)

i h
q(t)− λ∗

i
Substitute the second term E

h‚‚S(t)
‚‚2 ˛̨

q(t)
i

for its bound Ŝ2 and the

expected value E
ˆ
ST (t)

˛̨
q(t)

˜
for its expression in (21) to obtain

E
h‚‚q(t+1)−λ∗

‚‚2 ˛̨
q(t)

i
=
‚‚q(t)−λ∗

‚‚2
+Ŝ2−2sT (λ(t)) (q(t)−λ∗)

(24)

Substituting the subgradient property in (15) into (24) yields (18).

The term g[q(t)]−D in (18) is always positive. Therefore, if we could
neglect the term Ŝ2, it would follow from Lemma 1 that

‚‚q(t)−λ∗
‚‚2 is

a supermartingale. As it turns out, it is likely that Ŝ2 can be neglected.
If queue lengths q(t) become large, g[q(t)] also does and eventually
g[q(t)] − D exceeds Ŝ2. Thus, for large queue lengths

‚‚q(t)−λ∗
‚‚2

behaves like a supermartingale. This observation is used to prove the
following theorem.

Theorem 1 Consider queues evolving in accordance with (1)-(3) with
transmission probabilities ti(t) given by (17). Assume the same hy-
potheses of Lemma 1. Let queue lengths q(T0) at time T0 be given and
define gb

ˆ
t
˛̨
q(T0)

˜
:= minu∈[T0,t] g(q(u)). Such best value almost

surely converges to within Ŝ2/2 of D, i.e.,

lim
t→∞

gb
h
t
˛̨
q(T0)

i
−D ≤ Ŝ2/2 a.s. (25)

Proof : For simplicity of exposition let T0 = 0 and denote gb(t) =
gb
ˆ
t
˛̨
q(T0)

˜
−D. Let also g(t) := g(q(t)). Start defining the process

α(t) to track
‚‚q(t)−λ∗

‚‚2 until the gap g(t)−D falls below Ŝ2/2 for
the first time, i.e.,

α(t) :=
‚‚q(t)−λ∗

‚‚2I
n
gb(t)−D > Ŝ2/2

o
. (26)

Similarly, define the process

β(t) :=
h
2[g(t)−D]− Ŝ2

i
I
n
gb(t)−D > Ŝ2/2

o
(27)

that follows 2[g(t) − D] − Ŝ2 until g(t) − D falls below Ŝ2/2 for
the first time. Let also, A(0 : t) be a sequence of nested σ-algebras
measuring α(t), β(t) and q(t). It will be shown that α(t) and β(t)
satisfy E

ˆ
α(t)

˛̨
A(0 : t)

˜
≤ α(t) − β(t), wherefore they comply with

the hypotheses of the supermartingale convergence theorem [8, Theorem
E7.4] with respect to the sequence of σ-algebras A(0 : t).

To prove this, start separating the latter expectation in the cases when
α(t) = 0 and α(t) 6= 0 to write

E
ˆ
α(t)

˛̨
A(0 : t)

˜
=E

ˆ
α(t)

˛̨
q(t), α(t) = 0

˜
Pr {α(t) = 0} (28)

+ E
ˆ
α(t)

˛̨
q(t), α(t) 6= 0

˜
Pr {α(t) 6= 0} .

Start considering the case when α(t) = 0. The definitions in (26) and
(27) dictate that if α(t) = 0, then it must be β(t) = 0 and α(t+1) = 0.
The following equality is therefore evident because all terms are zero

E
ˆ
α(t+ 1)

˛̨
q(t), α(t) = 0

˜
= α(t)− β(t). (29)

When α(t) 6= 0 the values of α(t) and β(t) are completely determined
by q(t). Therefore, conditioning on A(0 : t) is equivalent to condition-
ing on q(t). The conditional expected value of s(t+ 1) then satisfies

E
ˆ
α(t+ 1)

˛̨
q(t), α(t) 6= 0

˜
= E

h‚‚q(t+1)−λ∗
‚‚2I
n
g(t+ 1)−D ≥ Ŝ2/2

o ˛̨
q(t)

i
(30)

≤ E
h‚‚q(t+1)−λ∗

‚‚2 ˛̨
q(t)

i
(31)

≤
‚‚q(t)−λ∗

‚‚2
+ Ŝ2 − 2[g(t)−D] (32)

= α(t)− β(t). (33)

The equality in (30) follows from the definition of α(t+ 1) in (26) and
noting that because α(t) 6= 0 gb(t + 1) − D ≤ Ŝ2/2 if and only if
g(t + 1) − D ≤ Ŝ2/2. The first inequality in (31) is true because the
indicator term is not larger than 1. The inequality in (32) follows from
Lemma 1. The last equality (33) simply uses the definitions of α(t) and
β(t) in (26) and (27) respectively.

Substituting (29) and (33) into (28), it finally follows

E
ˆ
α(t)

˛̨
A(0 : t)

˜
≤
h
α(t)− β(t)

ih
Pr {α(t) = 0}+ Pr {α(t) 6= 0}

i
= α(t)− β(t). (34)

Given (34) and the fact that processes α(t) and β(t) are non-negative
by definition if follows from the supermartingale convergence theorem
that: (i) α(t) converges w.p.1.; and (ii) the sum

P∞
t=1 β(t) < ∞ is

almost surely finite [8, Theorem E7.4]. Writing the latter consequence
in terms of the explicit value of β(t) in (27) yields
∞X

t=1

β(t) =

∞X
t=1

h
2[g(t)−D]−Ŝ2

i
I
n
gb(t)−D ≥ Ŝ2/2

o
≤ ∞ w.p.1.

(35)
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Fig. 2. Soft BP algorithm performs inverse waterfilling in the weighted queue
backlogs qk

i (t)rij − qk
j (t)rji.

In particular, almost sure convergence of the sum in (35) implies that

lim inf
t→∞

h
2[g(t)−D]− Ŝ2

i
I
n
gb(t)−D ≥ Ŝ2/2

o
= 0 w.p.1.

(36)

The latter is true if either gb(t)−D ≤ Ŝ2/2 for sufficiently large t so that
the indicator function is null or if lim inft→∞

h
2[g(t)−D]− Ŝ2

i
= 0.

From any of these two events, (25) follows.

According to Theorem 1 it holds that for arbitrary δ > 0 g[q(t)] −D
almost surely falls below Ŝ2/2+ δ at least once as t grows. Comparing
this observation with the queue stability condition in (6) we see that the
only difference is that the latter requires ‖q(t)‖ falling below a certain
Q0. This mismatch is simple to solve because when g[q(t)] comes close
to D, q(t) comes close to λ∗.

Corollary 1 If there exist strictly feasible transmission rates {tkij0} ∈ T
such that

P
j∈n(i)

`
tkij0rij − tkji0rji

´
− ak

i ≤ C < 0 for all i, k all
queues are stable.

Proof: If strictly feasible rates tkij0 exist, as required by hypothesis, then
a finite value of the dual function g(λ) implies a finite argument λ. In
particular if g[q(t)] ≤ D+Ŝ2/2 there exists Q0 such that ‖q(t)‖ ≤ Q0.
Since g[q(t)] ≤ D+Ŝ2/2 almost surely as per Theorem 1, ‖q(t)‖ ≤ Q0

with probability 1. Queue stability follows from (6).

IV. SOFT STOCHASTIC BACKPRESSURE ALGORITHM

Functions f(tkij) in (8) can be selected arbitrarily. The SSBP algorithm
is obtained by making f(tkij) = −tkij

2
. The rationale for using this

quadratic function is because descent algorithms in quadratic convex
optimization problems exhibit fast convergence rates. Further note that
with f(tkij) = −tkij

2
the maximization in (17) is a simple quadratic pro-

gram that can be solved analytically yielding transmission probabilities

tkij(t) =
1

2

h
qk

i (t)rij − qk
j (t)rji − wi(t)

i+
(37)

where wi(t) ≥ 0 is selected to ensure that
P

j,k t
k
ij(t) ≤ 1.

The expression for transmission probabilities in (37) dictates that
SSBP performs reverse waterfilling in the weighted queue backlogs
qk

i (t)rij − qk
j (t)rji; see Fig. 2. Water level wi = 0 is used ifP

j,k

ˆ
qk

i (t)rij − qk
j (t)rji

˜+ ≤ 1, a situation that we expect to happen
in lightly loaded nodes. Otherwise, wi(t) > 0 is selected to makeP

j,k

ˆ
qk

i (t)rij − qk
j (t)rji − wi(t)

˜+
= 1.

Operation of SSBP is summarized in Algorithm 1. The core of the
algorithm is the computation of probabilities tkij(t) as per (37) and
the subsequent determination of the scheduled pair j, k (Steps 2-4).
Exchange of queue length information necessary to compute tkij(t)
completes the algorithm (Steps 1 and 5).
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Fig. 3. Total number of packets in the network for backpressure (BP) and
stochastic soft (SS)BP.

A. Simulations

To illustrate the advantage of SSBP with respect to BP in terms
of delay we simulate both algorithms for the network in Fig. 1. Link
reliabilities are selected as rij = 0.5 for links N4 ↔ N7, N5 ↔ N9,
N7 ↔ N11, N9 ↔ N10, N11 ↔ N8, N10 ↔ N6, N8 ↔ N4 and
N6 ↔ N5 and rij = 0.75 for the remaining links. Nodes N1 and
N14 are considered as flow destinations with all other nodes generating
packets at a rate of ak

i = 0.15 packets for delivery to each of them.
The total number of packets queued in the network

P
i,k q

k
i (t) is

shown in Fig. 3. It can be seen that SSBP results in a substantial
reduction in the number of queued packets. Recall that average delay is
roughly proportional to average number of queued packets.

V. CONCLUSIONS

We developed stochastic soft backpressure algorithms (SSBP) for
wireless ad-hoc networks. Schedules are randomized across links and
flows according to time varying scheduling probabilities that are com-
puted by reverse waterfilling on queue differentials. Simulations illustrate
that SSBP exhibits improved delay performance with respect to conven-
tional backpressure. This is due to smaller sensibility to random events
typical of unreliable wireless channels.
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