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Abstract—This paper develops algorithms to ensure that agents
of a mobile micro autonomous system (MMAS) maintain integrity
of communication flows as they move to accomplish their task.
Due to inherent uncertainties in estimation of wireless channels, we
advocate a stochastic approach whereby achievable communication
rates of point-to-point links are regarded as random variables
with known means and variances. To achieve reliable end-to-end
communication flows, terminals route their traffic through various
alternative paths to reduce the effect of uncertainty in individual
link rates. The proposed algorithms are optimal and robust in that
routes are obtained as solutions of optimization problems subject to
constraints on minimum required rates and maximum acceptable
variances. Algorithms are tested in an event-based simulator that
uses an accurate data-driven model of radio communications
to model both the structure of code running independently on
multiple robots as well as the transmission of messages via a real
radio. Simulation results corroborate that rates of end-to-end flows
are maintained at target levels despite variations in the rates of
individual links.

I. INTRODUCTION

Mobile micro autonomous systems (MMAS) are composed
of micro robots that are deployed as a team to accomplish a
given task. To coordinate their actions, agents of the MMAS
maintain reliable communication flows between each other and,
possibly, with a central command center. Even though main-
taining integrity of the communication flows may not be a goal
per se, it is nonetheless a prerequisite for task accomplishment.
Therefore, it is necessary to devise mechanisms to prompt
MMAS agents to self configure a multihop wireless network
to route information of prescribed communication flows. Since
wireless links between agents change as they move, a more
accurate statement is that it is necessary to design joint routing
and mobility control algorithms that guarantee integrity of
communication flows.

The problem of controlling mobility while ensuring integrity
of the communication network dates back to the work on con-
nectivity preserving rendezvous [1]. Over time, this has become
an important problem in robotics with an extensive literature
devoted to the preservation of links, the increase of network
connectivity metrics, and recovery from disconnected topologies
[2]–[10]. All of these works rely on disc models that identify
the existence of a link with some form of physical proximity
and define connectivity in terms of topological properties of the
resulting graph.

Although the use of disc models and topological connectivity
is consistent with early approaches to wireless networking [11],
[12], it has long being recognized that identifying proximity
with reliable communication is somewhat arbitrary, because
even small differences in locations might result in dramatic dif-
ferences in signal strength due to small scale fading [13], [14].

A more accurate model is to consider a link rate function that
maps pairs of terminal positions to achievable communication
rates. These functions can be as simple as measuring packet
error probabilities [15], [16] or may involve more complex
models accounting for fading and power adaptation [17], [18].
Either way, supporting communication flows becomes not a
question of maintaining a connected graph, but of determining
routing variables compatible with achievable point-to-point rates
that yield target end-to-end communication rates. This is the
approach advocated in this paper.

In the context of MMAS, the foremost challenge in deter-
mining routing variables is the variability of wireless channels
and the consequent difficulty of predicting signal strength and
communication rates, see e.g., Section IV-A. Indeed, since
agents are moving, there is no time to estimate channels accu-
rately as is done for terminals in fixed positions. Furthermore,
channels at future positions cannot be measured and have to be
estimated based on propagation models. Given this limitation it
is natural to model link rates as random variables and design
routing and mobility control algorithms based on statistical
characterizations, e.g., means and variances, of link capacities.

An important observation is that if point-to-point link capac-
ities become random, so do the rates of end-to-end commu-
nication flows. The design goal then becomes one of ensuring
performance of end-to-end communication flows in a probabilis-
tic sense leading to robust routing formulations [19]. In robust
routing, the goal is to exploit spatial diversity by restricting
robot’s movements so that they stay within possible commu-
nication range of various peers. The uncertainty in end-to-end
transmission rates is thus reduced as the deviations of point-
to-point capacities from their estimates in different individual
links tend to cancel each other. Robust routing is formulated
here through the solution of pertinent optimization problems;
see Section II. In these problems, target values in end-to-end
average rates and variances are imposed as constraints. Since
this still leaves leeway in the selection of routing variables,
two separate optimality criteria are considered: maximization
of average rate and minimization of variance.

Optimal routing variables are then used as inputs to mobility
control algorithms that balance movement along a task gradient
with the preservation of communication rates; see Section III.
Specifically, we use means and variances of individual links to
determine the probability that actual end-to-end rates stay above
prescribed minimum required levels. Movements of agents
are then constrained to regions that ensure that actual rates
stay above minimum rates with high probability. The resultant
algorithms are then tested in an event-based simulator that
uses an accurate data-driven model of radio communications
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to model both the structure of code running independently on
multiple robots as well as the transmission of messages via a
real radio; see Section IV. We conclude the paper in Section V.

II. OPTIMAL ROBUST ROUTING

Consider a MMAS composed of J agents, let {xi}Ji=1

denote their corresponding positions, and denote as x :=
[xT

1 , . . . ,x
T
J ]T a vector grouping all positions. With agents i

and j at positions xi and xj it is possible to deliver information
from i to j at a rate of R(xi,xj) units of information per
units of time. The function R(xi,xj) depends on, e.g., distances
and the interference environment, but due to significant uncer-
tainties inherent to wireless propagation it is not possible to
predict R(xi,xj) accurately. We therefore resort to a statistical
characterization whereby R(xi,xj) is regarded as a random
quantity with known mean R̄(xi,xj) and variance R̃(xi,xj).
For some pairs of terminals (i, j) we may have R̄(xi,xj) = 0
indicating that we expect that direct communication between i
and j is not possible. Define then the neighborhood of i as the
set n(i) := {j : R̄(xi,xj) 6= 0} containing indices of terminals
j with which i can communicate directly.

In order to accomplish their task, agents have to support K
information flows generically indexed by k. The set of desti-
nations of the k-th information flow is denoted as dest(k) and
we let ak

i for all i /∈ dest(k) denote the rate at which terminal
i generates packets belonging to the k-th flow. Communication
integrity requires information generation rates ak

i to exceed
prescribed values.

In order to deliver information from generating sources i
to intended destinations in dest(k), agents rely on stochastic
multihop communication through neighboring terminals. In
every time slot, agent i chooses to serve the flow k by sending
packets to the next hop j, with probability αk

ij . Considering
that when j is chosen as the next destination, R(xi,xj) units
of information are transmitted, the average rate at which k-flow
packets leave terminal i is

∑
j∈n(i) α

k
ijR(xi,xj). Similarly, the

average rate at which k-flow packets are received at terminal i
is
∑

j∈n(i) α
k
jiR(xj ,xi). The difference between the outgoing

rate and the incoming rate determines the amount of information
ak

i at which i can accept packets for the k-th flow. Therefore,
we have that for all i /∈ dest(k) it must be

ak
i (α,x) =

∑
j∈n(i)

αk
ijR(xi,xj)− αk

jiR(xj ,xi), (1)

where for future reference we define the vector α grouping all
routing variables αk

ij . Notice that in (1) it holds that αk
ji = 0

for j ∈ dest(k), since destinations do not transmit their own
packets. We must also have

∑
j∈n(i),k α

k
ij ≤ 1 since the αk

ij are
a set of probabilities at terminal i. Probabilities αk

ij effectively
determine the routing of information through the MMAS. Our
goal is to determine routing variables αk

ij to support prescribed
rates.

If R(xi,xj) is random, it follows from (1) that available
communication rates ak

i are also random. Therefore, the goal
of determining routing variables αk

ij to support prescribed rates
is expressed in a stochastic sense. For doing so, note that the

expected value of ak
i (α,x) is

āk
i (α,x) :=E

(
ak

i (α,x)
)

=
∑

j∈n(i)

αk
ijR̄(xi,xj)− αk

jiR̄(xj ,xi),

(2)

while the variance of ak
i (α,x) is

ãk
i (α,x) :=var

(
ak

i (α,x)
)

=
∑

j∈n(i)

αk
ij

2
R̃(xi,xj)+αk

ji

2
R̃(xj ,xi).

(3)

The interpretation of (2) and (3) is that variables αk
ij control

the probability distribution of achievable rates ak
i (α,x). We

can thus define target average rates ā0 and variances ã0 and
state the problem of ensuring communication integrity as the
determination of routing variables αk

ij that yield average rates
āk

i (α,x) ≥ ā0 and variances ãk
i (α,x) ≤ ã0 that respectively

exceed and do not exceed their corresponding targets.
Achieving target rates and variances still leaves leeway in

the determination of αk
ij . This motivates the introduction of

optimality criteria and corresponding optimization problems to
select a particular set of αk

ij among all those that satisfy the
stated constraints. Introduce then a utility function U

(
āk

i (α,x)
)

to measure the value of average rate and consider the optimiza-
tion problem that maximizes the social value

∑
i,k U

(
āk

i (α,x)
)

subject to achieving target rates and variances, i.e.,

α(x) = argmax
∑
i,k

U
(
āk

i (α,x)
)

s.t. ā0 ≤ āk
i (α,x) ≤

∑
j∈n(i)

αk
ijR̄(xi,xj)− αk

jiR̄(xj ,xi)

ã0 ≥
∑

j∈n(i)

αk
ij

2
R̃(xi,xj) + αk

ji

2
R̃(xj ,xi)∑

j∈n(i),k

αk
ij ≤ 1, αk

ij ≥ 0. (4)

In (4) we use the mean and variance expressions in (2) and (3)
and we also state explicitly the constraints on the probabilities
αk

ij .
Alternatively, we can introduce a cost function V

(
ãk

i (α,x)
)

associated with variance ãk
i (α,x) and minimize the global cost∑

i,k V
(
ãk

i (α,x)
)
, i.e,

α(x) = argmin
∑
i,k

V
(
ãk

i (α,x)
)

s.t. ã0 ≥ ãk
i (α,x) ≥

∑
j∈n(i)

αk
ij

2
R̃(xi,xj) + αk

ji

2
R̃(xj ,xi)

ā0 ≤
∑

j∈n(i)

αk
ijR̄(xi,xj)− αk

jiR̄(xj ,xi)∑
j∈n(i),k

αk
ij ≤ 1, αk

ij ≥ 0. (5)

Analogously to (4), the minimization in (5) is with respect to
routing variables that achieve target rates and variances.

Variables αk
ij that solve (4) and (5) achieve target rates

and variances. In (4) the indeterminacy for choice of αk
ij is

resolved by prioritizing large expected rates. In (5) the degrees
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Algorithm 1 Routing and mobility control algorithm
Require: Average rate function R̄(x,y). Rate variance function

R̃(xi,xj). Task potential φ(x). Initial positions x(0).
1: for t = 0, T, 2T, . . .∞ do {repeat for the life of the network}
2: Solve (4) or (5) to find optimal routes α(t) := α(x(t))

3: Route packets using probabilities α(t)

4: Compute velocities vi(t) = ∇φ
`
xi(t)

´
5: repeat {backtracking line search along task gradient}
6: Compute candidate future positions

yi(t+ T ) = yi(t) + Tvi(t)

7: Compute average rates and variances at candidate positions

āk
i (t+ T ) = āk

i (α(t),yi(t+ T ))

ãk
i (t+ T ) = ãk

i (α(t),yi(t+ T ))

8: Compute minimum probability margin

ν(t) = min
i,k

»
(āk

i (t+ T )− amin)/
q
ãk

i (t+ T )

–
9: Backtrack velocities vi(t) = βvi(t)

10: until margin ν(t) >
p

(1/ε)

11: Move to xi(t+ T ) = xi(t) + T (vi(t)/β)

12: end for

of freedom are used to prioritize small variability around target
rates.

III. ROUTING AND MOBILITY CONTROL

The MMAS objective is determined by a task potential φ(xi),
whose gradient ∇φ(xi) determines the agents’ movement. To
be more specific introduce a time step T and let xi(t) denote
the position of agent i at time t = kT . The candidate velocity of
agent i is then set to vi(t) = ∇φ

(
xi(t)

)
so that the candidate

position yi(t+ T ) of i at time t+ T is

yi(t+ T ) = xi(t) + Tvi(t). (6)

As agents move, however, they have to maintain individual com-
munication links capable of supporting required flow rates. As-
sume then that optimal routing variables α(t) := α(x(t)) have
been computed for current positions x(t) and define a minimum
acceptable rate amin ≤ a0. If agents move to candidate positions
yi(t + T ) as per (6), end-to-end rates ak

i

(
α(t),y(t + T )

)
are

determined by (1). For the MMAS to be able to service k-
th flow traffic originating at agent i, ak

i

(
α(t),y(t + T )

)
must

exceed amin, i.e., we must have ak
i

(
α(t),y(t + T )

)
> amin.

Recalling that rates ak
i

(
α(t),y(t+ T )

)
in (1) are random, we

further define a small target probability ε and require ak
i ≥ amin

with probability at least 1− ε. Equivalently

Pr
[
ak

i

(
α(t),y(t+ T )

)
≤ amin

]
< ε. (7)

To compute the probabilities in (7) it is necessary to make
a hypothesis on the probability distribution of ak

i

(
α(t),y(t +

T )
)
, which in turns depends on the distribution of R

(
yi(t +

T ),yj(t+T )
)

and R
(
yj(t+T ),yi(t+T )

)
for all neighbors j ∈

n(i). Without making any assumptions, however, it is possible
to bound the probabilities in (7) using Chebyshev’s inequality
to obtain an expression in terms of means āk

i (α(t),y(t + T ))
and variances ãk

i (α(t),y(t+ T )) as determined by (2) and (3)
respectively. To simplify notation, define means and variances
at target positions as

āk
i (t+ T ) = āk

i

(
α(t),y(t+ T )

)
ãk

i (t+ T ) = ãk
i

(
α(t),y(t+ T )

)
. (8)

From Chebyshev’s inequality we then conclude that a sufficient
condition for (7) to be true is

νk
i (t) :=

āk
i (t+ T )− amin√

ãk
i (t+ T )

≥
√

1
ε
, (9)

where we defined the probability margin νk
i (t).

Using specific assumptions on the distribution of
ak

i

(
α(t),y(t + T )

)
tighter bounds can be obtained. If,

e.g., we assume that ak
i

(
α(t),y(t + T )

)
has a Gaussian

distribution, (7) is equivalent to

νk
i (t) :=

āk
i (t+ T )− amin√

ãk
i (t+ T )

≥ C−1(1− ε), (10)

where C−1(x) is the inverse of the standard Gaussian cumula-
tive distribution function. The expression in (10) and the bound
in (9) have different right hand sides, but both of them are
completely determined by the probability margin νk

i (t).
In order to ensure that communications of all flows k and

nodes i are serviced by the MMAS the margins νk
i (t) have

to satisfy (9) (or (10) if a Gaussian model is used). Since this
need not be satisfied by candidate positions yi(t+T ) computed
from (6) we perform a backtracking search on the vector v(t).
Specifically, we define the minimum probability margin ν(t) as

ν(t) := min
i,k

νk
i (t) = min

i,k

[
āk

i (t+ T )− amin√
ãk

i (t+ T )

]
. (11)

If the minimum probability margin ν(t) ≥
√

1/ε we move with
velocity vi(t) to candidate position yi(t+ 1). If ν(t) <

√
1/ε

we scale the velocity to vi(t) = βvi(t) using some backtracking
parameter β ∈ (0, 1) and restart the process with the candidate
position associated with the scaled velocity. The process is
repeated until ν(t) ≥

√
1/ε.

The routing and mobility control algorithm is summarized
in Algorithm 1. The inputs to the algorithm are the mean
rate function R̄(x,y), the rate variance function R̃(xi,xj), the
task potential φ(x), and initial positions x(0). Parameters ε,
β, amin, ā0, and ã0 also need to be specified. At any point
in time, optimal routes α(t) := α(x(t)) are computed by
solving either (4) or (5) (Step 2). Routing variables α(t) are
used to route packets between times t and t+ T (Step 3). The
velocity vector is then computed using the task gradient (Step
4) before proceeding to a backtracking search with the objective
of getting all constraints in (9) to be satisfied (steps 5-10).
By ensuring that (9) is satisfied for all i, k, the backtracking
search ensures satisfaction of (7) for all i, k and consequently
that all nodes and flows are serviced by the MMAS with high
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Fig. 1. Log-fading model fit to experimental data. Note that deviations from
this mean function can be modeled by a Rician fading model or approximated
by a non-zero-mean Gaussian

probability. The backtracking search starts with the computation
of candidate positions yi(t+T ) (Step 6). Rate expected values
āk

i (t+T ) and variances ãk
i (t+T ) at the target position yi(t+T )

using current optimal routes α(t) are then found (Step 7). The
minimum probability margin ν(t) is then computed (Step 8)
and the velocity v(t) is backtracked according to the parameter
β (Step 9). Upon exiting the backtracking search, the velocity
has been scaled to a value compatible with integrity of end-
to-end communication flows. The terminal then moves with
velocity vi(t)/β to position xi(t + T ) = xi(t) + T (vi(t)/β).
The algorithm then proceeds to the re-computation of optimal
routes by solving either (4) or (5) (Step 2).

IV. RESULTS

Our end goal is to deploy these algorithms experimentally on
a team of 10 to 15 small ground robots. Here we develop the
software architecture and methods but keep the implementation
in the realm of an event-based simulator that uses an accurate
data-driven model of radio communications to model both the
structure of code running independently on multiple robots as
well as the transmission of messages via a real radio.

As an implementation detail, note that the optimization
problem in (4) and (5) is a quadratic program (QP) and can
be solved efficiently with the open-source library CGAL [20].
It is also true that this problem can be solved with a distributed
sub-gradient descent algorithm without any centralization of
information.

-80 -70 -60 -50
RSSI HdBmL

0.5

0.6

0.7

0.8

0.9

1.0

Reliability

Fig. 2. Here we depict the received signal strength to link reliability mapping.
Note that the dashed lines represent ±σ of the received signal strength. Even
taking this into account, the experimental data is over estimated by the model
(most likely due to non constant noise levels in the environment).

A. Communication Models

The robust approaches to wireless networking and mobility
presented above are motivated by communication models that
are stochastic in nature. We are interested in implementation of
these methods on small, inexpensive, low power radio devices
such as Zigbee (implementing the IEEE 802.15.4 standard). As
a metric for current communication capability, these devices
supply the user with received signal strength. Thus we will
determine models necessary to map received signal strength to
communication reliability or rate.

1) Radio Signal Propagation: Radio propagation is a com-
plex multi-scale process. Received power is a function of
distance from the source, shadowing due to obstacles, and multi-
path phenomena that arise as a result of reflections and refrac-
tions. While spatially and temporally averaged behavior can be
fit to deterministic fading models, small-scale fading can cause
variations to received signal strength on the order of ±5 dBm
over small length scales. Though small-scale fading can be
modeled by complex ray-tracing methods, it is perhaps more
readily represented probabilistically by a Rician (when there is
line-of-sight) or Rayleigh (for non-line-of-sight) distributions.
Thus, the received power (in dBm) can be given by

PdBm = L0 − 10n · log(‖xs − x‖)︸ ︷︷ ︸
Fading

− f(xs, x)︸ ︷︷ ︸
Shadowing

− ε︸︷︷︸
Multipath

(12)

where L0 is the measured power at 1 m from the source, n is
the decay exponent, and xs, x are the positions of the source
and receiver respectively, f(·, ·) is a non-smooth function that
describes shadowing, and ε is drawn from a Rayleigh or Rician
distribution.

Though (as shown in our previous work [14] and depicted in
Fig. 1) a dense sampling of a particular environment can yield
accurate parameter estimation, we wish to deploy our methods
in unknown environments that can not be sampled a priori.

2) Communication Rate: Directly from [21], bit error rate
(pb) and received power level Pr are a function of the modula-
tion scheme but can be generically related by

pb ∝ erfc

(√
constant× Pr

N × f

)
(13)
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Fig. 3. Snapshots of the simulation progressing from initial configuration in Fig. 3(a) to the final deployment in 3(d). Robots must maintain communication
to the stationary access point (red robot on the left side of the configuration). As robot 4 moves to the right, it transitions from a single hop connection to the
access point to a multi-hop configuration. Also note that as nodes reach regions of lower received signal strength, they split packets between multiple routes in
order to minimize variance.

where N is the noise spectral density (noise power per hertz),
f is the raw channel bit rate, and erfc(x) is the complementary
error function. Zigbee (802.15.4) employs a modulation scheme:
O-QPSK with half-sine pulse shaping (MSK) with 16 channels
spaced at 5 Mhz and has transmission rates of 250 kb/s [22].
Based on our experimental results, we use

pb = erfc

√
Pr

N
(14)

(with N = −80 dBm for our environment) to approximately
relate the received signal strength with packet error rate.

The stochastic model of received signal strength can be
applied to the communication rate mapping by a Taylor series
expansion

var [pb(Pr)] ≈ (p′b(E [Pr]))2var [Pr] . (15)

With an additional uniform variance applied to account for
a non-constant noise level, the mapping from received signal
strength to link reliability is depicted in Fig. 2.

B. Simulation Environment

In order to facilitate a realistic simulation that can be easily
transitioned to an experimental system, we employ a hardware
abstraction layer and robotics operating system (ROS) [23]. At
it’s most simple, ROS provides a messaging system between

independent pieces of software (whether algorithmic or a hard-
ware driver). For example, we are able to construct a radio
communications simulator that relies on (12), (14), and (15)
while presenting exactly the same interface that a real Zigbee
radio driver would provide.

In this way, we strove to follow the same methods we would
in an experimental implementation. For instance, the current
link estimates R̄, R̃ in step 2 of Alg. 1 are determined by
probing the network and computing statistics on packet arrivals
over a short time window (2 s for these results) while the link
predictions in step 7 of Alg. 1 are computed based on the
models in (12)-(15). This type of methodology will enable a
quick transition to ground robots with low-power radio devices.

C. Coverage problem

In this work, we define the coverage problem to be a velocity
controller that seeks to disperse robots into the environment.
Individual robot velocities are chosen to drive away from their
neighbors. In this case, we are defining neighbors as robots with
whom we can currently communicate.

While dispersing, we seek to maintain desired end-to-end
rates amin = 0.2 from each robot back to the access point.
Figure 3 depicts a simulation trial of the coverage problem.

In this example, the initial configuration leads most robots to
maintain single-hop connections to the access point and their

1272



50 100 150 200 250
Time

0.2

0.4

0.6

0.8

1.0

Direct Link to AP - E@RHxi,x0LD

4

1
2

3

Fig. 4. Clearly, as the nodes disperse they move farther from the access point,
resuling in decreased link capacity to the access point. Specifically, note that
robot 4’s link drops below the point of being able to support the desired rate –
causing it to route packets through its neighbors.
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Fig. 5. Variance on the end-to-end rate of each robot back to the access
point. While our routing solution is seeking to minimize the sum of end-to-end
variances, robot 4 acheives the lowest variance when it stops sending packets
directly to the access point and instead splits them between neighbors.

motions are limited primarily by the capacity of that single link.
However, the robot on the far right in Fig. 3(d) moves such that
its minimum rate cannot be maintained by a direct link to the
access point (as depicted in Fig. 4) and it splits its packets
between neighbors so they are then routed back to the access
point. This splitting actually serves to decrease the variance on
this particular end-to-end rate as shown in Fig. 5.

V. CONCLUSIONS

Robust algorithms to ensure integrity of end-to-end commu-
nication flows in mobile micro autonomous systems (MMAS)
were developed. Salient features of the proposed algorithms are:
(i) Connectivity is defined as the ability to support end-to-end
communication rates at a minimum prescribed level and not
as a topological property of a graph. (ii) Uncertainty in the
estimation of channel strength is incorporated into a statistical
characterization of connectivity. (iii) The algorithms exploit
spatial diversity to guarantee reliable end-to-end communication
despite uncertain properties of point-to-point links.

The proposed algorithms were tested in an event-based
simulator that uses an accurate data-driven model of radio
communications to model both the structure of code running
independently on multiple robots as well as the transmission of
messages via a real radio. Simulation results corroborated that
rates of end-to-end flows are maintained at target levels despite
variations in rates of individual links.
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