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Abstract—We develop adaptive scheduling and power control
algorithms for random access in a multiple access channel where
terminals acquire instantaneous channel state information but do
not know the probability distribution of the channel. In each time
slot, terminals measure the channel to the common access point.
Based on the observed channel value, they determine whether to
transmit or not and, if they decide to do so, adjust their transmitted
power. We remark that there is no coordination between terminals
and that adaptation is to the local channel value only. It is shown
that the proposed algorithm almost surely maximizes a proportional
fair utility while adhering to instantaneous and average power
constraints. Important properties of the algorithm are adaptivity,
low computational complexity and the ability to handle non-convex
rate functions. Numerical results on a randomly generated network
with heterogeneous users corroborate theoretical results. 1

I. INTRODUCTION

This paper considers wireless random access channels in which
terminals contend for access to a common access point (AP)
as is the case in wireless local area networks and cellular
systems. To exploit favorable channel conditions terminals adapt
their transmitted power and access decisions to the state of the
random fading channels linking them to the AP. The challenges
in developing this adaptive scheme are that terminals have access
to their own channel state information (CSI) only, and that the
probability distribution function (pdf) of the fading channel is
unknown. The goal of this paper is to develop a distributed
learning algorithm to determine optimal transmitted power and
channel access decisions relying on local CSI only.

The idea of adapting medium access and power control to CSI
was first explored in [1] where terminals are allowed to transmit
when channels exceed a predefined threshold. These threshold-
based rules were later proved optimal in [2] and further extended
to networks with different packet reception models, e.g., [3]–[9].
To compute optimal thresholds, however, terminals are assumed
to know the pdf of their fading channels. This is a restrictive
assumption because the channel fading distribution is usually un-
known and can only be estimated based on channel observations.
Overcoming this limitation motivates the development of adaptive
algorithms to learn optimal operating points based on local
CSI [10], [11]. The work in [10] proposes a heuristic adaptive
algorithm for threshold-based schedulers in which the thresholds
are tuned based on local channel realizations in a time window.
The work in [11] develops an online learning algorithm for
transmission probability and power control under rate constraints

1This work was supported by ARO P-57920-NS and NSF CAREER CCF-
0952867.

using game-theoretic approaches. However, neither [10] nor [11]
guarantees global optimality.

The contribution of this paper is to develop an optimal dis-
tributed adaptive algorithm for scheduling and power control.
At each time slot terminals observe their channel states, based
on which they decide whether to transmit or not and select
a power for their communication attempt. As time progresses,
power budgets are satisfied almost surely, while the network
almost surely maximizes a weighted proportional fair utility.

The rest of the paper is organized as follows. System model
and problem formulation are presented in Section II. Section III
develops optimal distributed adaptive algorithms whose almost
sure feasibility and optimality are proved. Numerical results are
provided in Section IV and concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiple access channel with n terminals contend-
ing to communicate with a common AP. Time is divided in
slots identified by an index t. We assume a backlogged system,
i.e., all terminals always have packets to transmit in each time
slot. The time-varying nonnegative channel hi(t) ∈ R+ between
terminal i and the AP at time t is modeled as block fading.
Channel gains hi(t) and hj(t) of different terminals i 6= j
are assumed independent, while channels hi(t1) and hi(t2) of
terminal i at different time slots t1 6= t2 are assumed independent
and identically distributed. Channels hi(t) take continuous values
with no channel realization having strictly positive measure. This
latter assumption holds true for models used in practice, e.g.,
Rayleigh, Rician and Nakagami. We assume each terminal i
has access to its channel gain hi(t) at each time slot t. There
are various ways for terminals to obtain channel conditions. For
example, by having the AP send a beacon signal at the beginning
of each time slot, terminals can estimate their channel gains.

Based on its channel state hi(t), terminal i decides whether
to transmit or not in time slot t by determining the value of a
scheduling function qi(t) := Qi(hi(t)) : R+ → {0, 1}. Node
i transmits in time slot t if qi(t) = 1 and remains silent if
qi(t) = 0. Besides channel access decisions, terminals also adapt
transmission power to their channel gains through a power control
function pi(t) := Pi(hi(t)) : R+ → [0, pinst

i ], where pinst
i ∈ R+

represents instantaneous power constraints. If node i transmits
in time slot t, pi(t) and hi(t) jointly determine the transmission
rate through a function Ci(hi(t)pi(t)) : R+ → R+. The exact
form of Ci(hi(t)pi(t)) depends on how the signal is modulated
and coded at the physical layer. To keep the analysis general
we do not restrict Ci(hi(t)pi(t)) to take any specific form. It
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is only assumed that Ci(hi(t)pi(t)) is a nonnegative increasing
function of the product of hi(t) and pi(t) that takes finite values
for finite arguments. This assumption is lax enough to allow for
discontinuous rate functions that arise in, e.g., systems that use
adaptive modulation and coding (AMC); see Section IV

Since terminals contend for channel access, transmission of
terminal i in a time slot t is successful if and only if qi(t) = 1
and qj(t) = 0 for all j 6= i. As as consequence, the instantaneous
transmission rate for terminal i in time slot t is

ri(t) = Ci (hi(t)pi(t)) qi(t)
n∏

j=1,j 6=i

[1− qj(t)] . (1)

Assuming ergodic operation, quality of service is determined by
the long term behavior of ri(t), implying that system performance
is determined by the ergodic limits ri := limt→∞

1
t

∑t
u=1 ri(u)

that we can write as [cf. (1)]

ri = lim
t→∞

1
t

t∑
u=1

Ci (hi(u)pi(u)) qi(u)
n∏

j=1,j 6=i

[1− qj(u)]

. (2)

Assuming ergodicity of schedules qi(t) = Qi(hi(t)) and power
allocations pi(t) = Pi(hi(t)), the limit ri can be written as a
expected value over channel realizations,

ri = Eh

Ci(hiPi(hi))Qi(hi) n∏
j=1,j 6=i

[1−Qj(hj)]

 , (3)

where we have defined the vector h = [h1, · · · , hn]T grouping
all channels hi. Since terminals are required to make channel
access and power control decisions independently of each other,
Qi(hi) and Pi(hi) are independent of Qj(hj) and Pj(hj) for all
i 6= j. This allows us to rewrite ri as

ri = Ehi [Ci(hiPi(hi))Qi(hi)]
n∏

j=1,j 6=i

[
1− Ehj [Qj(hj)]

]
. (4)

In order to allow terminals to know if their transmissions are
successful or not, we assume a (1, 0) feedback is available in each
time slot, where 1 and 0 represent successful transmission and
collision, respectively. If a terminal transmits a packet but detects
a collision, then it can schedule a retransmission in the next time
slot. Since we assume a backlogged system, feedback only tells
terminals if they should retransmit previous packets or not, it
does not enforce terminals to make channel access and power
allocation decisions based on feedback information. Therefore,
the assumption that different users operate independently of each
other still holds.

In addition to instantaneous power constraints pi(t) ≤ pinst
i ,

terminals adhere to average power constraints pavg
i ∈ R+. This

average power constraint restricts the long term average of
transmitted power pi defined by

pi := lim
t→∞

1
t

t∑
u=1

qi(u)pi(u) = Ehi
[Qi(hi)Pi(hi)]. (5)

With rates ri given as in (4), the objective is to maximize a
weighted proportional fair (WPF) utility defined as

U(r) =
n∑
i=1

wi log(ri), (6)

where r = [r1, · · · , rn]T is the vector of rates and wi ∈ R+

is a weight coefficient for terminal i. Setting wi = wj for all
i 6= j in a homogenous system with all channels having the
same pdf, the WPF utility is equivalent to maximizing the sum
of throughputs. In a heterogeneous network where channel pdfs
vary among users, maximizing U(r) yields solutions that are fair
since it prevents users from having very low transmission rates.
Grouping the objective in (6) with the constraints in (4) and (5),
optimal adaptive random access is formulated as the following
optimization problem

P = max U(r)

s.t. ri = Ehi
[Ci(hiPi(hi))Qi(hi)]

n∏
j=1,j 6=i

[
1−Ehj

[Qj(hj)]
]
,

Ehi [Qi(hi)Pi(hi)] ≤ pavg
i ,

Qi(hi) ∈ Q, Pi(hi) ∈ Pi, (7)

where the constraints are required for all terminals i, Q denotes
the set of functions R+ → {0, 1} and Pi represents the set of
functions R+ → [0, pinst

i ].

III. ADAPTIVE ALGORITHMS FOR DECENTRALIZED
CHANNEL-AWARE RANDOM ACCESS

To develop adaptive decentralized algorithms, begin by sepa-
rating (7) in per terminal subproblems. To do so, substitute (4)
into (6) and express the logarithm of a product as a sum of
logarithms and rewrite the global utility as

U(r) =
n∑
i=1

wi

[
log Ehi

[Ci(hiPi(hi))Qi(hi)]

+
n∑

j=1,j 6=i

log
[
1− Ehj [Qj(hj)]

]]
. (8)

Since each summand in (8) involves variables related to a
particular node only, we can reorder summands in (8) by node
index. Further defining w̃i :=

∑n
j=1,j 6=i wi, we rewrite (8) as

U(r) =
n∑
i=1

[
wi log

[
Ehi

[Ci(hiPi(hi))Qi(hi)]
]

(9)

+ w̃i log
[
1− Ehi

[Qi(hi)]
]]

:=
n∑
i=1

Ui,

where we have defined the local utilities Ui. Since Ui only in-
volves variables that are related to terminal i, it can be regarded as
a utility function for terminal i. To maximize U(r) for the whole
system it suffices to separately maximize Ui for each terminal
i. Introducing auxiliary variables xi = Ehi

[Ci(hiPi(hi))Qi(hi)]
and yi = Ehi

[Qi(hi)], it follows that (7) is equivalent to the
following per terminal subproblems

Pi = max wi log xi + w̃i log(1− yi) (10)
s.t. xi ≤ Ehi [Ci(hiPi(hi))Qi(hi)] ,

yi ≥ Ehi [Qi(hi)] ,
Ehi [Qi(hi)Pi(hi)] ≤ pavg

i ,

xi ≥ 0, 0 ≤ yi ≤ 1, Qi(hi) ∈ Q, Pi(hi) ∈ Pi,
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where we wrote the equality constraints as inequalities which can
be done without loss of optimality. Finding optimal solutions of
(10) for all terminals i is equivalent to solving (7). Note, however,
that as is the case with (7), solving (10) is difficult because: (i)
The optimization space in (10) includes functions Qi(hi) and
Pi(hi) that are defined on R+, implying that the dimension of
the problem is infinite. (ii) The rate function Ci(hiPi(hi)) is in
general non-concave with respect to hiPi(hi), and may be even
discontinuous as in systems that use AMC. (iii) The constraints
involve expected values over random variables hi whose pdfs are
unknown.

An important observation is that the number of constraints
in (10) is finite. This implies that while there are infinite
variables in the primal domain, there are a finite number of
variables in the dual domain. This observation suggests that
(10) is more tractable in the dual space. Introduce Lagrange
multipliers λi = [λi1, λi2, λi3]T associated with the first three
inequality constraints in (10); define vectors xi := [xi, yi]T and
Pi(hi) := [Qi(hi), Pi(hi)]T ; and write the Lagragian of the
optimization problem in (10) as

Li(xi,Pi(hi),λi) (11)
= wi log xi + w̃i log(1− yi)

+ λi1 [Ehi [Qi(hi)Ci(hiPi(hi))]− xi]
+ λi2 [yi − Ehi

[Qi(hi)]] + λi3
[
pavg
i − Ehi

[Qi(hi)Pi(hi)]
]

Reordering terms in (11) we can rewrite the Lagrangian as

Li(xi,Pi(hi),λi) (12)
= λi3p

avg
i + [wi log xi − λi1xi] + [w̃i log(1− yi) + λi2yi]

+ Ehi
[Qi(hi) [λi1Ci(hiPi(hi))− λi2 − λi3Pi(hi)]] .

whose separable structure is leveraged later on. The dual function
is then defined as the maximum of the Lagrangian over the set
of feasible xi and Pi(hi), i.e.,

gi(λi) := max Li(xi,Pi(hi),λi) (13)
s.t. xi ≥ 0, 0 ≤ yi ≤ 1, Qi(hi) ∈ Q, Pi(hi) ∈ Pi,

and the dual problem as the minimization of gi(λi), i.e.,

Di = minimize
λi≥0

gi(λi). (14)

In general, the optimal dual value Di provides an upper bound for
the optimal primal value Pi, i.e., Di ≥ Pi. While the inequality is
typically strict for non-convex problems, for the problem in (10)
Pi = Di as long as the fading distribution has no realization
with positive measure [12]. This lack of duality gap implies
that the finite dimensional convex dual problem is equivalent
to the infinite dimensional nonconvex primal problem. However,
this does not necessarily mean that solving the dual problem
is easy because evaluation of the dual function’s value requires
maximization of the Lagrangian. In particular, this maximization
includes an expected value over the unknown channel distribu-
tion. Still, convexity of the dual function allows the use of descent
algorithms in the dual domain because any local optimal solution
is a global optimal solution λ∗i = [λ∗i1, λ

∗
i2, λ

∗
i3]T . This property

is exploited next to develop a stochastic subgradient descent
algorithm that solves (14) using observations of instantaneous
channel realizations hi(t).

A. Adaptive Algorithms Using Stochastic Subgradient Descent

Instead of directly finding optimal xi, yi, Qi(hi) and Pi(hi) for
the primal problem (10), the proposed algorithm exploits the lack
of duality gap to use a stochastic subgradient descent in the dual
domain. Starting from given dual variables λi(t), the algorithm
computes instantaneous primal variables xi(t), yi(t), qi(t) and
pi(t) based on channel realization hi(t) in time slot t, and uses
these values to update dual variables λi(t + 1). Specifically,
the algorithm starts finding primal variables that optimize the
summands of the Lagrangian in (12) (the operator [·]+ denotes
projection in the positive orthant)

xi(t) = argmax
xi≥0

{wi log xi − λi1(t)xi} =
wi

λi1(t)
, (15)

yi(t) = argmax
0≤yi≤1

{w̃i log(1− yi) + λi2(t)yi} =
[
1− w̃i

λi2(t)

]+
,

(16)
{qi(t), pi(t)} =

argmax
qi∈{0,1},pi∈[0,pinst

i
]

{qi [λi1(t)Ci(hi(t)pi)− λi2(t)− λi3(t)pi]} ,

(17)

The maximization in (17) determines schedules and transmitted
powers associated with current channel realization hi(t). Since
qi in (17) takes values on {0,1}, we can alternatively compute
the maximizing arguments in (17) as

pi(t) = argmax
pi∈[0,pinst

i
]

{λi1(t)Ci(hi(t)pi)− λi2(t)− λi3(t)pi} ,

qi(t) = H
(
λi1(t)Ci(hi(t)pi(t))− λi2(t)− λi3(t)pi(t)

)
, (18)

where H(a) denotes Heaviside’s step function with H(a) = 1
for a > 0 and H(a) = 0 otherwise.

Since w̃i, i.e., the sum of wj for j 6= i, is needed for
terminal i to compute instantaneous primal variable yi(t) [cf.
(16)], terminals need to exchange their weight coefficients wi
with each other before the algorithm begins. This can be done
by letting terminals send wi to AP and AP then broadcast to all
terminals.

Based on xi(t), yi(t), qi(t) and pi(t), define the stochastic
subgradient si(t) = [si1(t), si2(t), si3(t)]T with components

si1(t) = qi(t)Ci(hi(t)pi(t))− xi(t), (19)
si2(t) = yi(t)− qi(t), (20)
si3(t) = pavg

i − qi(t)pi(t). (21)

The algorithm is completed with the introduction of a constant
step size ε and a descent update in the dual domain along the
stochastic subgradient si(t)

λil(t+ 1) = [λil(t)− εsil(t)]+ , for l = 1, 2, 3. (22)

Notice that computation of variables in (15)-(22) does not re-
quire information exchanges between terminals. This guarantees
Qi(hi) and Pi(hi) to be independent of Qj(hj) and Pj(hj) for
all i 6= j as required by problem definition.

The proposed adaptive scheduling and power control algorithm
is summarized below:
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Algorithm 1: Adaptive scheduling and power control at
terminal i

Initialize Lagrangian multipliers λi(0);1

for t = 0, 1, 2, · · · do2

Compute primal variables as per (15), (16), and (18):3

xi(t) =
wi

λi1(t)
;

4

yi(t) =
[
1− w̃i

λi2(t)

]+
;

5

pi(t) = argmax
pi∈[0,pinst

i
]

{λi1(t)Ci(hi(t)pi)− λi2(t)− λi3(t)pi};
6

qi(t) = H
(
λi1(t)Ci(hi(t)pi(t))− λi2(t)− λi3(t)pi(t)

)
;7

if qi(t) = 1 then8

Transmit with power pi(t);9

end10

Compute stochastic subgradients as per (19)-(21):11

si1(t) = qi(t)Ci(hi(t)pi(t))− xi(t);12

si2(t) = yi(t)− qi(t);13

si3(t) = pavg
i − qi(t)pi(t);14

Update dual variables as per (22):15

λil(t+ 1) = [λil(t)− εsil(t)]+ , for l = 1, 2, 3;16

end17

To analyze convergence of (15)-(22) let us start by showing
that s(t) is indeed a stochastic subgradient of the dual function
as stated in the following proposition.

Proposition 1: Given λi(t), the expected value of the stochas-
tic subgradient si(t) is a subgradient of the dual function in (13),
i.e., ∀λi ≥ 0,

Ehi

[
sTi (t)|λi(t)

]
(λi(t)− λi) ≥ gi(λi(t))− gi(λi). (23)

In particular,

Ehi

[
sTi (t)|λi(t)

]
(λi(t)− λ∗i ) ≥ gi(λi(t))− Di ≥ 0. (24)

Proof: See [13].
Proposition 1 states that the average of the stochastic subgradient
si(t) is a subgradient of the dual function. We can then think of an
alternative algorithm by replacing Ehi

[
si(t)

∣∣λi(t)] for si(t) in
the dual iteration step (22), which would amount to a subgradient
descent algorithm for the dual function. Since, Ehi

[
si(t)

∣∣λi(t)]
points towards λ∗ – the angle between Ehi

[
si(t)

∣∣λi(t)] and
λi(t) − λ∗i is positive as indicated by (24) –, it is not dif-
ficult to prove that λi(t) eventually approaches λ∗i . However,
since we assume the pdf of hi is unknown, the subgradient
Ehi

[
si(t)

∣∣λi(t)] can only be approximated using past channel
realizations hi(1), . . . , hi(t). While this approach is possible, it
is computationally costly.

The computation of the stochastic subgradient si(t), on the
contrary, is simple because it only depends on the current channel
state hi(t). Furthermore, since si(t) points towards the set of
optimal dual variables λ∗i on average [cf. (24)] it is reasonable to
expect the stochastic subgradient descent iterations in (22) to also
approach λ∗i in some sense. This can be proved true and leveraged
to prove almost sure convergence of primal iterates xi(t), yi(t),
pi(t) and qi(t) to an optimal operating point in an ergodic sense
[14]. Specifically, Theorem 1 of [14] assumes as hypotheses that
the second moment of the norm of the stochastic subgradient si(t)
is finite, i.e., Ehi

[
‖si(t)‖2

∣∣λi(t)] ≤ Ŝ2
i , and that there exists a

set of strictly feasible primal variables that satisfy the constraints
in (10) with strict inequality. If these hypotheses are true, primal
iterates of dual stochastic subgradient descent are almost surely
feasible in an ergodic sense. For the particular case of the problem
in (10), [14, Theorem 1] implies that

lim
t→∞

1
t

t∑
u=1

qi(u)pi(u) ≤ pavg
i a.s., (25)

lim
t→∞

1
t

t∑
u=1

xi(u) ≤ lim
t→∞

1
t

t∑
u=1

qi(u)Ci(hi(u)pi(u)) a.s.,

(26)

lim
t→∞

1
t

t∑
u=1

yi(u) ≥ lim
t→∞

1
t

t∑
u=1

qi(u) a.s. (27)

It also follows from [14, Theorem 1] that xi(t) and yi(t) yield
ergodic utilities that are almost surely within εŜ2

i /2 of optimal,

Pi − lim
t→∞

1
t

t∑
u=1

[wi log xi(u) + w̃i log(1− yi(u))] ≤ εŜ2
i

2
a.s.

(28)
From (25) we can conclude that the ergodic limit of the power
allocated by the proposed algorithm satisfies the average power
constraint. However, (28) does not imply that the scheduling
and power allocation variables pi(t) and qi(t) are optimal. The
optimality claim in (28) is for the auxiliary variables xi(t) and
yi(t) but the goal here is to claim optimality of the schedul-
ing and power allocation variables pi(t) and qi(t). To prove
optimality of the algorithm, we need to show that the ergodic
transmission rate ri of (2), achieved by allocations qi(t) and
pi(t) is optimal in the sense of maximizing the throughput utility
U(r) =

∑n
i=1 wi log(ri). This mismatch can be addressed to

prove the following theorem.
Theorem 1: Consider a random multiple access channel with

n terminals using schedules qi(t) and power allocations pi(t)
generated by the algorithm defined by (15)-(22) resulting in
instantaneous transmission rates ri(t) as given by (1) and ergodic
rates ri as defined by (2). Define vector r := [r1, . . . , rn]T ,
and let U(r) be the weighted proportional fair utility in (6).
Assume that the second moment of the norm of the stochastic
subgradient si(t) with components as in (19)-(21) is finite, i.e.,
Ehi

[
‖si(t)‖2

∣∣λi(t)] ≤ Ŝ2
i , and that there exists a set of strictly

feasible primal variables that satisfy the constraints in (10) with
strict inequality. Then, the average power constraint is almost
surely satisfied

lim
t→∞

1
t

t∑
u=1

qi(u)pi(u) ≤ pavg
i a.s., (29)

and the utility of the ergodic limit of the transmission rates almost
surely converges to a value within ε/2

∑n
i=1 Ŝ

2
i of optimal,

P− U(r) := P −
n∑
i=1

wi log

(
lim
t→∞

1
t

t∑
u=1

ri(u)

)
≤ ε

2

n∑
i=1

Ŝ2
i .

(30)
Proof: The hypotheses of Theorem 1 are chosen to satisfy

the hypotheses guaranteeing convergence of ergodic stochastic
optimization algorithms [14, Theorem 1]. Thus, almost sure feasi-
bility and almost sure near optimality of iterates xi(t), yi(t), pi(t)
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and qi(t) follows in the sense of (25)-(28). To establish almost
sure satisfaction of average power constraints as per (29) just
notice that this inequality coincides with the one in (25). To estab-
lish (30) start by rearranging terms in (28) to conclude that Pi−
εŜ2
i /2 ≤ limt→∞

1
t

∑t
u=1 [wi log xi(u) + w̃i log(1− yi(u))].

Due to continuity and concavity of the logarithm function we
can further bound Pi − εŜ2

i /2 as

Pi −
εŜ2
i

2
≤wi log

[
lim
t→∞

1
t

t∑
u=1

xi(u)

]

+ w̃i log

[
1− lim

t→∞

1
t

t∑
u=1

yi(u)

]
. (31)

The limits in (31) are equal to the limits in the left hand sides
of the inequalities in (26) and (27). Thus, using this almost sure
ergodic feasibility results Pi − εŜ2

i /2 is bounded as

Pi −
εŜ2
i

2
≤wi log

[
lim
t→∞

1
t

t∑
u=1

qi(u)Ci(hi(u)pi(u))

]

+ w̃i log

[
1− lim

t→∞

1
t

t∑
u=1

qi(u)

]
. (32)

Ergodicity, possibly restricted to an ergodic component, allows
replacement of the ergodic limits in (33) by the corresponding
expected values, leading to the bound

Pi −
εŜ2
i

2
≤wi log Ehi [Qi(hi)Ci(hiPi(hi))]

+ w̃i log Ehi
[1−Qi(hi)]. (33)

Recall that P =
∑n
i=1 Pi per definition, and consider the sum of

the inequalities in (33) for all terminals i so as to write

P−
n∑
i=1

εŜ2
i

2
≤

n∑
i=1

wi log Ehi
[Qi(hi)Ci(hiPi(hi))]

+ w̃i log Ehi
[1−Qi(hi)]

≤
n∑
i=1

wi log

[
Ehi [Qi(hi)Ci(hi(t)Pi(hi))]

n∏
j=1,j 6=i

Ehj
[1−Qj(hj)]

]
, (34)

where the second inequality follows by using the definition w̃i :=∑n
j=1,j 6=i wi, reordering terms in the sum, and rewriting a sum

of logarithms as the logarithm of a product.
The fundamental observation in this proof is that the schedul-

ing function Qi(hi) and the power allocation function Pi(hi) are
independent of the corresponding Qj(hj) and Pj(hj) of other
terminals. This is not a coincidence, but the intended goal of
reformulating (7) as (10). Using this independence, the product
of expectations in (34) can be written as single expectation over
the vector channel h to yield

P−
n∑
i=1

εŜ2
i

2
≤

n∑
i=1

wi log

[
Eh

(
Qi(hi)Ci(hiPi(hi))

n∏
j=1,j 6=i

(1−Qj(hj))

)]
. (35)

To finalize the proof use ergodicity, possibly restricted to an
ergodic component, to substitute the expectation in (35) by an
ergodic limit to yield

P−
n∑
i=1

εŜ2
i

2
≤

n∑
i=1

wi log

[
lim
t→∞

1
t

t∑
u=1

qi(u)Ci(hi(u)pi(u))

n∏
j=1,j 6=i

(1− qj(u))

]
:= U(r),

(36)

where we have used the definitions of the ergodic rate in (2) and
of the utility in (6). The result in (30) follows after reordering
terms in (35).
Theorem 1 states that the stochastic dual descent algorithm in
(15)-(22) computes schedules qi(t) and power allocations pi(t)
yielding rates ri(t) that are almost surely near optimal in an
ergodic sense. It also states that pi(t) satisfies the average power
constraint with probability 1. Notice that the stochastic dual
descent algorithm in (15)-(22) does not compute the optimal
scheduling and power control functions for each terminal. Rather,
it draws schedules qi(t) and power allocations pi(t) that are
close to the optimal functions. This is not a drawback because
the latter property is sufficient for a practical implementation.
Further note that the use of constant step sizes ε endows the
algorithm with adaptability to time-varying channel distributions.
This is important in practice because wireless channels are non-
stationary due to user mobility and environmental dynamics.
The gap between U(r) and P can be made arbitrarily small by
reducing ε.

IV. NUMERICAL RESULTS

To illustrate performance of the proposed algorithms, we
conduct numerical experiments on a network with n = 20
terminals randomly placed in a square with side L = 100 m
and a common AP located at the center of the square. Numerical
experiments here utilize the realization of this random placement
shown in Fig. 1. Communication between terminals and the AP is
over a bandlimited Gaussian channel with bandwidth B and noise
power spectral density N0. We set B = 1 so that capacities are
measured in bits per second per Hertz (b/s/Hz) and N0 = 10−10

W. Channel gains hi(t) are Rayleigh distributed with mean h̄i and
are independent across terminals and time. The average channel
gain h̄i := E [hi] follows an exponential pathloss law, h̄i = αd−βi
with α = 10−6m−1 and β = 2 constants and di denoting the
distance in meters between terminal i and the AP. All weights in
the proportional fair utility in (6) are set to wi = 1. Throughout,
the performance metric of interest is the average transmission
rate r̄i(t) of terminal i at time t defined as

r̄i(t) =
1
t

t∑
u=1

ri(u), (37)

where ri(u) is normalized so that it represents bits/s/Hz. The
system’s throughput utility by time t is then defined in terms of
r̄i(t) as Ū(t) :=

∑n
i=1 wi log(r̄i(t)).

The algorithm in (15)-(22) is first tested in a network where
nodes use capacity achieving codes and have instantaneous power
constraints but do not have average power constraints; see Section
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Fig. 1. An example multiple access channel with n = 20 nodes communicating
with a common access point (AP). Nodes are randomly placed in a 100 m ×
100 m square and the AP is located at the center of the square. Nodes’ labels
represent indexes and distances to the AP. Subsequent numerical experiments use
this realization of the random placement.

IV-A. We then consider nodes that have average as well as
instantaneous power constraints using AMC; see Section IV-B.

A. System with Instantaneous Power Constraint

Assume the use of capacity achieving codes so that the rate
function for terminal i takes the form

Ci(hi(t)pi(t)) = B log
(

1 +
hi(t)pi(t)
BN0

)
. (38)

Further assume that there is an instantaneous power constraint
pinst
i = 100 mW for each terminal, but that there is no aver-

age power constraint. Since the rate function is a nonnegative
increasing function of power it is optimal for each terminal
to transmit with its maximum allowed instantaneous power
every time it decides to transmit. Therefore, the power control
function is a constant pi(t) = pinst

i and the system’s performance
depends solely on the terminals’ scheduling functions qi(t). In
this simplified setting, a closed form solution for qi(t) is known
if the channel pdf is available [2]. Our interest in this simplified
problem is that it allows a performance comparison between the
schedules yielded by (15)-(22) and those of the optimal offline
scheduler.

Convergence of (15)-(22) to a near optimal operating point is
illustrated in Fig. 2 for step size ε = 0.1. The ergodic utility
Ū(t) is shown through 500 iterations and is compared with the
utility of the optimal offline scheduler. When using (15)-(22)
the total throughput utility converges to a value with negligible
optimality gap with respect to the offline scheduler. Observe
that convergence is fast as it takes less than 180 iterations to
reach a utility with optimality gap smaller than 20 and 360
iterations to get an optimality gap smaller than 10. Figs. 3 and
4 respectively show average rates and transmission probabilities
after 500 iterations for each terminal. Observe in Fig. 3 that all
terminals achieve average rates that are very close to the optimal
ones. Further observe that even though terminals experience
different channel conditions, fair schedules are obtained as a
consequence of the use of a logarithmic utility. Indeed, as seen
in Fig. 4, average transmission probabilities are close for all
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Fig. 2. Convergence of the proposed algorithm to near optimal utility with
instantaneous power constrains but no average power constraints. Throughput
utility of the proposed adaptive algorithm and of the optimal offline scheduler
are shown as functions of time for one realization and for the ensemble average
of realizations. In steady state the adaptive algorithm operates with minimal
performance loss with respect to the optimal offline scheduler. A utility gap
smaller than 10 is achieved in about 350 iterations. Power constraint pinst

i = 100
mW, step size ε = 0.1, capacity achieving codes.
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Fig. 3. Average transmission rates (bits/s/Hz) in 500 time slots, i.e., r̄i(500) as
defined in (37), for all terminals. The optimal offline scheduler and the proposed
adaptive algorithm yield similar close to optimal average rates. The variation in
achieved rates is commensurate with the variation in average signal to noise ratios
(SNRs) due to different distances to the access point. For the network in Fig.1
and the pathloss and power parameters used here, average signal to noise ratios
vary between 0.4 and 10. Instantaneous power constraint pinst

i = 100 mW, step
size ε = 0.1, capacity achieving codes.

terminals. Note, however, that the achieved rates shown in Fig. 3
are different because terminals have different average channels.

To test how the optimality gap changes as the step size ε varies,
we ran the algorithm (15)-(22) with different step sizes. Fig. 5
shows the optimality gap when the step size ε varies between
10−2 to 10−1. The optimality gap indeed decreases as the step
size ε is reduced. This corroborates the result of Theorem 1 that
ensures a vanishing optimality gap as ε→ 0. Using smaller step
size, however, leads to slower convergence. This tradeoff between
convergence speed and optimality gap determines the choice of
ε for practical implementations.
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Fig. 4. Average transmission probabilities in 500 time slots for all terminals.
Offline and adaptive optimal schedulers shown. Despite different channel con-
ditions all terminals transmit with a similar probability close to 1/n = 0.05.
This is consistent with the use of a logarithmic, i.e., proportional fair, utility.
Instantaneous power constraint pinst

i = 100 mW, step size ε = 0.1, capacity
achieving codes.
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Fig. 5. Steady state optimality gap between proposed adaptive algorithm and
optimal offline scheduler as a function of step size ε. Values of ε between 10−2

and 10−3 shown. As the step size decreases, the optimality gap decreases. The
optimality gap can be made arbitrarily small by reducing ε. Instantaneous power
constraint pinst

i = 100 mW, capacity achieving codes.

B. System with Average Power Constraint

For the same network, consider now the case in which each
terminal adheres to both, instantaneous and average power con-
straints. Assume AMC with M transmission modes is used in the
physical layer. The mth mode affords communication rate τm and
is used when the signal to noise ratio (SNR) hi(t)pi(t)/BN0 is
between ηm and ηm+1. The rate function is therefore

Ci(hi(t)pi(t)) =
M∑
m=1

τmI
(
ηm ≤

hi(t)pi(t)
BN0

≤ ηm+1

)
, (39)

where I(·) denotes the indicator function. Each terminal has M =
4 AMC modes with respective rates τ1 = 1 bits/s/Hz, τ2 = 2
bits/s/Hz, τ3 = 3 bits/s/Hz, and τ4 = 4 bits/s/Hz. The transitions
between AMC modes are at SNRs η1 = 1, η2 = 4, η3 = 8, and
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Fig. 6. One realization and ensemble average of primal and dual objectives.
As time grows the duality gap decreases, eventually approaching a small positive
constant and implying near optimality of the achieved rates.
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Fig. 7. Average power consumption for the closest and furthest terminals.
Average power constraints pavg

i = 5 mW are satisfied as time grows. Power
p̄f (t) consumed by the furthest terminal is smaller than the allowed budget pavg

f
due to unfavorable channel conditions. The closest terminal adheres to its power
budget after approximately 600 iterations.

η4 = 16. We set the instantaneous power constraint to pinst
i = 100

mW and the average power constraint to pavg
i = 5 mW for all

terminals i.
To demonstrate optimality of the proposed algorithm, we

compute the primal objective Ū(t), the dual value D(t) =∑n
i=1 gi(λi(t)), and examine the duality gap between them. Fig.

6 shows Ū(t) and D(t) for 103 time slots. As time grows, the
duality gap decreases and eventually approaches a small positive
constant, implying near optimality of the proposed algorithm.
To test the satisfaction of the average power constraint, define
the average power consumption of terminal i by time t as
p̄i(t) = 1

t

∑t
u=1 pi(u). Average power consumptions p̄f (t) and

p̄c(t) for the terminals that are furthest and closest to the AP, are
shown in Fig. 7. Observe that in both cases the average power
constraints are satisfied as time increases. For the furthest termi-
nal, p̄f (t) is always smaller than pavg

f since channel conditions are
unfavorable, resulting in this terminal utilizing only mode 1 for
communication to the AP. For the closest terminal, p̄c(t) falls be-
low pavg

c after 600 iterations. This is as expected due to the almost
sure feasibility result of Theorem 1. Fig. 8 (a) and (b) illustrate
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(b) Closest terminal

Fig. 8. Instantaneous power allocations pi(t) for the closest and furthest
terminals plotted against the channel realization hi(t). Notice that the channel
axes scales are different in (a) and (b). In both cases, no power is allocated when
channel realizations are bad. The furthest terminal uses only the AMC mode with
the lowest rate τ1 = 1 bits/s/Hz, while the closest terminal uses two modes with
rates τ2 = 2 bits/s/Hz and τ3 = 3 bits/s/Hz. This happens because the terminal
closer to the AP, has a better average channel.

the relationship between instantaneous power allocations pi(t)
and instantaneous channel gains hi(t) for the furthest and closest
terminal, respectively. Channel access is opportunistic since no
power is allocated when channel realizations are below average.
Further note that the furthest terminal only uses the AMC mode
with the lowest rate τ1 = 1 bits/s/Hz while the closest terminal
uses two modes with rates τ2 = 2 bits/s/Hz and τ3 = 3 bits/s/Hz.
This happens because the terminal closer to the AP, has a better
average channel.

V. CONCLUSIONS

We developed optimal adaptive scheduling and power control
algorithms for random multiple access channels. Terminals are
assumed to know their local channel state information but have no

access to the probability distribution of the channel or the channel
state of other terminals. In this setting, the proposed online algo-
rithm determines schedules and transmitted powers that maximize
a global proportional fair utility. The global utility maximization
problem was decomposed in per-terminal utility maximization
subproblems. Adaptive algorithms using stochastic subgradient
descent in the dual domain were then used to solve these local
optimizations. Almost sure convergence and almost sure near
optimality of the proposed algorithm was established. Important
properties of the algorithm are low computational complexity and
the ability to handle non-convex rate functions. Numerical results
for a randomly generated network using adaptive modulation and
coding corroborated theoretical results.
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