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ABSTRACT
This paper introduces ergodic stochastic optimization (ESO) algorithms
to solve resource allocation problems that involve a random state and
where optimality criteria are expressed in terms of long term averages.
A policy that observes the state and decides on a resource allocation is
proposed and shown to almost surely satisfy problem constraints and op-
timality criteria. Salient features of the ESO algorithm are that it does
not require access to the state’s probability distribution, that it can han-
dle non-convex constraints in the resource allocation variables, and that
convergence to optimal operating points holds almost surely. ESO is ap-
plied to determine operating points of an orthogonal frequency division
multiplexing broadcast channel that maximize a given rate utility.

Index Terms— Wireless communications, wireless networks, opti-
mization, adaptive algorithms, resource allocation

1. INTRODUCTION

This paper develops ergodic stochastic optimization (ESO) algorithms to
solve problems that involve a time varying random state h(t) with prob-
ability distribution function (pdf) m(h), a resource allocation function
p(t) and an ergodic limit variable x := limt→∞(1/t)

Pt
u=1 x(u). The

goal is to design an adaptive algorithm that observes h(t) to determine
p(t) and x(t) without knowledge of the state’s distribution m(h) in or-
der to satisfy given problem constraints and optimality criteria. Problem
constraints restrict instantaneous values p(t) and x(t) as well as ergodic
limits x. Optimality criteria depend only on the ergodic average x.

Problems with these characteristics are common in signal process-
ing, notably in optimal wireless communications and networking. In
this case h(t) denotes time varying fading channels, p(t) instantaneous
power allocations and x(t) includes communication rates and other
problem-specific variables. If the operation time scale is much larger
than the communication time scale, perceived quality of service is rea-
sonably captured as a function of ergodic limits x. Particular examples
where this type of optimization problem might arise are orthogonal fre-
quency division multiplexing (OFDM), e.g. [1], beamforming, e.g., [2]
cognitive radio, e.g., [3] and wireless networking, e.g., [4].

The proposed ESO algorithm uses stochastic subgradient descent
on the dual function. Subgradient descent was developed for minimiz-
ing non-differential convex functions and is commonly used to minimize
dual functions which are always convex and often non-differentiable.
When the function to be minimized involves a random component it
is possible to devise a stochastic counterpart, e.g., [5]. Stochastic and
deterministic subgradient exhibit similar convergence properties. Of im-
portance here, is the fact that while iterates do not necessarily converge
to the solution of the optimization problem, optimal variables can be
recovered from the time average of iterates.

Implementation of dual subgradient descent yields, as a byproduct,
a sequence of primal iterates. Do these primal iterates approximate opti-
mal primal variables? Not always. When using deterministic or stochas-
tic subgradient descent on the dual function this is true only when the
problem Lagrangian is strictly concave with respect to primals. This
condition is not satisfied if some variables appear only in linear con-
straints and linear terms of the optimization objective. Although this re-
striction might seem minor, non strictly concave Lagrangians do appear
frequently – e.g., wireless networking problems are typically not strictly
concave with respect to routing variables. To overcome this limitation
in deterministic subgradient descent, the use of ergodic averages of pri-
mal iterates has been proposed and shown to approximate optimal primal

variables [6]. While this much is know in a deterministic setting, con-
vergence results for primal variables in stochastic subgradient descent
are mostly restricted to convergence in mean for problems with strict
convexity [5]. This paper shows that ergodic limits of primal iterates
obtained from the implementation of a stochastic subgradient descent
algorithm converge almost surely to the solution of the given optimiza-
tion problem. With respect to existing work on stochastic subgradient
descent the contributions of this work are: (i) we allow for non strictly
concave Lagrangians; (ii) we allow for non-convex constraints in the re-
source allocation variables; and (iii) we prove almost sure convergence
of the ergodic averages of primal iterates – as opposed to convergence in
mean. These properties are important in signal processing applications

Section 2 introduces the optimization problem whose solution de-
termines optimal resource allocations and ergodic limits. Problem con-
straints are assumed convex in the ergodic limits but not necessarily so
with respect to the resource allocation. The problem’s objective is a con-
cave function of ergodic limits only. The ESO algorithm and the main
result of the paper, regarding convergence of resource allocation and er-
godic limit sequences, is also introduced here in Theorem 1. It is claimed
that: (i) resource allocation and ergodic limit sequences almost surely
satisfy problem constraints in an ergodic sense; and (ii) the ergodic limit
sequence is almost surely close to optimal. The ESO algorithm does not
require access to the state’s pdf, can handle non-convex constraints in the
resource allocation variables, and guarantees almost sure convergence to
optimal operating points. To exemplify these characteristics the ESO al-
gorithm is applied in Section 3 to determine the optimal operating point
of an OFDM broadcast channel. The example serves as illustration of
how ESO can be used to solve a non-convex optimization problem with
thousands of variables with reasonable computational cost. See also [7]
for the application of ESO to general wireless networking problems.

2. ERGODIC STOCHASTIC OPTIMIZATION ALGORITHM

Consider a random state h ∈ H with probability distribution m(h), a
resource allocation p(h) corresponding to state realization h and having
pdf m

`
p(h)

´
and an ergodic limit variable x. The goal is to determine

resource allocations and ergodic limits that are optimal in the sense of
solving the optimization problem

P = max f0(x) (1)

s.t. x ≤ Eh

h
Em(p(h))

“
f1
`
p(h);h

´”i
,

f2(x) ≥ 0, x ∈ X ,
˘
m
`
p(h)

´
: p(h) ∈ P(h)

¯
h∈H .

The optimization in (1) is with respect to ergodic limits x and pdfs
m
`
p(h)

´
for all h ∈ H. The expected value is taken with respect to

the pdfs m(h) of the state h and m
`
p(h)

´
of the resource allocation

p(h). Since m(h) is fixed we denote expected value with respect to
m(h) as Eh(·). The pdfs m

`
p(h)

´
, however, are part of the optimiza-

tion space. To make this clear we denote expected value with respect to
m
`
p(h)

´
as Em(p(h))(·). Functions f0(x) and f2(x) in (1) are concave

with respect to their argument x. The family of functions f1
`
p(h);h

´
is parameterized by h and is not necessarily concave with respect to
p(h). The sole requirement for the functions f1

`
p(h);h

´
is that they

be finite for finite argument, i.e., for every bounded vector of resources
p(h) < ∞, function f1

`
p(h);h

´ ≤ ∞ is also bounded. The set X to
which the ergodic limits x are constrained is compact and convex. The
set P(h) constraining resource allocation values p(h) is compact but
not necessarily convex.
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The problem in (1) originates in optimal resource allocation prob-
lems with infinite time horizons allowing performance characterization
through ergodic limits. System operation is affected by a random state
with realizations h(t). In response to the observed state h(t), a resource
allocation variable p(t) ∈ P(h(t)) measuring how many units of a cer-
tain resource are allocated at time t is determined. Allocation of p(t)
units of resource when the random state is h(t), results in production
of f1

`
p(t);h(t)

´
units of goods. In the same time slot t consumption is

determined by x(t) ∈ X variables. Consumption cannot exceed produc-
tion, but if long time horizons are of interest, instead of imposing such
restriction for every t it suffices to constraint the ergodic limits, i.e.,

lim
t→∞

1

t

tX
u=1

x(u) ≤ lim
t→∞

1

t

tX
u=1

f1
`
p(u);h(u)

´
. (2)

The first constraint in (1) follows upon defining the time ergodic limit
x := limt→∞(1/t)

Pt
u=1 x(u) and using the law of large numbers in

the limit on the right hand side of (2). Notice that equal state realiza-
tions h(t1) = h(t2) can be associated with different resource alloca-
tions p(t1) �= p(t2). That is why the expected value in (1) is taken
with respect to the pdfs m(h) and m

`
p(h)

´
and the optimization is

with respect to probability distributions m
`
p(h)

´ ∈ P(h) not values
p(h) ∈ P(h). The constraint f2(x) ≥ 0 imposes further restrictions on
the ergodic average x.

Observe that while there is an infinite number of variables in
the primal domain, there is a finite number of inequality constraints.
Thus, the dual problem contains a finite number of variables hint-
ing that the problem is likely more tractable in the dual space. De-
fine then dual variables λ1 ≥ 0 associated with the constraint x ≤
Eh

ˆ
Em(p(h))

`
f1
`
p(h);h

´´˜
and λ2 ≥ 0 associated with f2(x) ≥

0.The Lagrangian for the optimization problem in (1) is then written as

L[λ,x, m
`
p(h)

´
] (3)

= f0(x) + λT
1

h
Eh

h
Em(p(h))

“
λT

1 f1
`
p(h);h

´”i− x
i

+ λT
2 f2(x)

= f0(x) − λT
1 x + λT

2 f2(x) + Eh

h
Em(p(h))

“
λT

1 f1
`
p(h);h

´”i
,

where we defined the aggregate dual variable λ := [λT
1 , λT

2 ]T and re-
ordered terms to obtain the second equality. The dual function is defined
as the maximum of the Lagrangian over the set of feasible ergodic lim-
its x ∈ X and probability distributions m

`
p(h)

´
in the set of feasible

powers p(h) ∈ P(h), i.e.,

g(λ) := max L[λ,x, m
`
p(h)

´
]

s.t. x ∈ X ,
˘
m
`
p(h)

´
: p(h) ∈ P(h)

¯
h∈H. (4)

The dual problem is defined as the minimization of the dual function
over all positive dual variables, i.e., D = minλ≥0 g(λ).

Introduce now a discrete time index t and consider a state stochas-
tic process H(N) with realizations h(N) having values h(t) identically
and independently distributed (i.i.d.) according to m(h). The ESO al-
gorithm consists of iterative application of the following steps.

(S1) Primal iteration. Given multipliers λ(t) find primal variables
x(t) ∈ X and p(t) ∈ P(h(t)) such that

x(t) = x(λ(t)) = argmax
x∈X

f0(x) − λT
1 (t)x + λT

2 (t)f2(x), (5)

p(t) = p(h(t), λ(t)) = argmax
p(h(t))∈P(h(t))

λT
1 (t)f1

`
p(h(t));h(t)

´
. (6)

(S2) Dual stochastic subgradients. Define the dual function stochastic
subgradient ŝ(t) = ŝ(h(t), λ(t)) = [ŝT

1 (t), ŝT
2 (t)]T with components

ŝ1(t) := f1
`
p(t);h(t)

´− x(t), ŝ2(t) := f2(x(t)). (7)

(S3) Dual iteration. Update dual variables along direction −ŝ(t) with
step size ε (the operator [·]+ denotes projection to the positive orthant)

λ(t + 1) =

"
λ1(t) − ε

“
f1
`
p(t);h(t)

´− x(t)
”

λ2(t) − εf2(x)

#+

. (8)

Solving (1) entails finding optimal value P and optimal arguments x∗

and m∗`p(h)
´

such that constraints in (1) are satisfied and P = f0(x
∗).

Heeding the connection with ergodic constraints we adopt a different
definition of solution. Our goal is not to find x∗ and m∗`p(h)

´
but to

show that sequences x(N) and p(N) generated by the ESO algorithm
(S1)-(S3) satisfy (2) with the ergodic limit x of the x(N) sequence fur-
ther satisfying f2(x) ≥ 0 and P ≈ f0(x). Because the algorithm is
stochastic, these results will be established in probability. A formal state-
ment is presented next1.

Theorem 1 Consider the optimization problem in (1) and sequences
x(N) and p(N) generated by the ESO algorithm defined by (5)-(8).
Let Ŝ2 ≥ E

ˆ‖ŝ(t)‖2
˛̨
λ(t)

˜
be a bound on the second moment of the

norm of ŝ(t) and assume that there exist strictly feasible x0 ∈ X and
m0

`
p(h)

´
such that Eh

ˆ
Em0(p(h))

`
f1
`
p(h);h

´´˜ − x0 > C and
f2(x0) > C for some strictly positive constant C > 0. Then

Almost sure feasibility. Sequences x(N) and p(N) are almost surely
feasible, i.e.,

lim
t→∞

1

t

tX
u=1

x(u) ≤ lim
t→∞

1

t

tX
u=1

f1
`
p(u);h(u)

´
a.s., (9)

f2

"
lim

t→∞
1

t

tX
u=1

x(u)

#
≥ 0 a.s. (10)

Almost sure near optimality. The ergodic average of f0(x(u)) almost
surely converges to a value with optimality gap smaller than εŜ2/2, i.e,

P − lim
t→∞

1

t

tX
u=1

f0(x(u)) ≤ εŜ2

2
. (11)

The limits in (9)-(11) might be different for different state sequences
h(N). The claims in Theorem 1 are on the probability distributions of
these limits. The ergodic limit x := (1/t)

Pt
u=1 x(u) satisfies the con-

straints in (1) and the objective function evaluated at x is within εŜ2/2
of optimal. Since X and P(h) are compact sets it follows that the bound

Ŝ2 is finite. Therefore, reducing ε it is possible to make f0(x) arbitrar-
ily close to P and as a consequence x arbitrarily close to some optimal
argument x∗. The optimal resource allocation distribution m∗`p(h)

´
,

however, is not computed by the ESO algorithm. Rather, (9) implies
that, asymptotically, the ESO algorithm is drawing resource allocation
realizations p(t) from a resource allocation distribution that is close to
the optimal m∗`p(h)

´
. This is not a drawback in practice because re-

alizations p(t) are sufficient for implementation. In that sense, (5)-(8)
yield an optimal resource allocation policy, i.e., allocate p(t) units at
time t, that supports optimal consumption x in an ergodic sense.

The feasibility claim of Theorem 1 assures that sequences p(N) and
x(N) satisfy problem constraints with probability 1 [cf. (9) and (10)].
This is a stronger claim when compared with the optimality result that
establishes a typically small but not null performance gap [cf. (11)]. It
is also worth remarking that this is true independently of the step size ε.
While we think of ε as a small number, and it is indeed desirable to select
small ε, this is not necessary to ensure feasibility of p(N) and x(N).
The strength of Result (i) of Theorem 1 is important from a practical
standpoint. A small optimality gap is acceptable in general, but a small
violation of problem constraints results in a set of variables incompatible
with the physical constraints of the system.

Remark 1 The problem formulation in (1) makes what seems an arbi-
trary distinction between constraints f2(x) ≥ 0 and x ∈ X . While
one is expressed as a function inequality and the other as a set inclusion
both are convex contraints in the ergodic limit x. Despite this simi-
larity they are intended to model different constraint modalities. The
constraint f2(x) ≥ 0 is incorporated into the Lagrangian in (3) and
becomes a maximization objective in the primal ESO iteration in (5).
As a consequence, it is satisfied in an ergodic sense. Ergodic limits of

1Proofs or results in this paper are available in [8]
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Fig. 1. Evolution of capacities ci(t) for representative nodes 1 with average
channels E

ˆ
h1f (t)

˜
= 1 and 9 with E

ˆ
h9f (t)

˜
= 3. Ergodic averages c̄i(t) =

(1/t)
Pt

u=1 ci(u) also shown.

x(N) sequences satisfy f2(x) ≥ 0 but individual variables x(t) might
or might not satisfy f2(x(t)) ≥ 0. Constraint x ∈ X is not incorpo-
rated into L[λ,x, m

`
p(h)

´
] and is an implicit constraint in the primal

ESO iteration in (5). It is thus satisfied for all times, i.e., x(t) ∈ X ,
for all t. This is an important distinction in applications, e.g., transmit-
ted power in wireless communications must comply with ergodic and
instantaneous power constraints.

Remark 2 The ESO algorithm (S1)-(S3) is related to subgradient de-
scent on the dual function. The primal iteration of subgradient de-
scent consists of finding arguments that maximize the Lagrangian
L ˆ

λ(t),x, m
`
p(h)

´˜
[cf. step (S1)]. The constraints are then evaluated

at these maximizing arguments to compute a dual function subgradient
[cf. step (S2)] and the dual variables descend opposite the subgradient
direction [cf. step (S3)]. To appreciate similarities and differences let us
develop dual subgradient descent equations for the problem in (1). To
compute a subgradient for the dual function we find primal arguments
x(t) and

˘
m
`
p(h), t

´¯
h∈H that maximize the Lagrangian, i.e,

x(t),
˘
m
`
p(h), t

´¯
h∈H (12)

:= argmax L ˆ
λ(t),x, m

`
p(h)

´˜
s.t. x ∈ X ,

˘
m
`
p(h)

´
: p(h) ∈ P(h)

¯
h∈H .

The Lagrangian L ˆ
λ(t),x, m

`
p(h)

´˜
exhibits a separable structure.

Variables x and p(h) appear in different summands and the maximiza-
tion of Em(p(h))

`
λT

1 f1
`
p(h);h

´´
can be reduced to separate maxi-

mizations with respect to each individual distribution m
`
p(h)

´
. There-

fore, the maximizers in (12) can be computed separately as

x(t) = argmax
x∈X

f0(x) − λT
1 (t)x + λT

2 (t)f2(x), (13)

m
`
p(h), t

´
= argmax
m(p(h)):p(h)∈P(h)

Em(p(h))

“
λT

1 (t)f1
`
p(h);h

´”
(14)

A subgradient s(t) = s(λ(t)) = [sT
1 (t), sT

2 (t)]T of the dual function
can now obtained by evaluating the constraints at the maximizing argu-
ments x(t) and

˘
m
`
p(h), t

´¯
h∈H. Components s1(t) and s2(t) are

therefore given by

s1(t) := Eh

h
Em(p(h))

“
λT

1 f1
`
p(h);h

´”i− x(t), s2(t) := f2(x(t)).

(15)

The dual update has the same functional form of (8) with s(t) replac-
ing ŝ(t). The subgradient descent algorithm for (1) consists of iterative
application of (13), (15) and (8) with s(t) replacing ŝ(t).

Stochastic subgradients ŝ(t) are easier to compute. To determine
s1(t) it is necessary to solve the maximization in (14) for a large number
of states h in order to obtain a good approximation of the expected value
in (15). To compute ŝ(t) only one such maximization, for h = h(t) is
required. Further note that the maximization in (14) is with respect to
probability distributions m

`
p(h)

´
while the maximization in (6) is with

respect to values p(h(t)). Also, to implement subgradient descent the
state pdf m(h) is needed to compute the expected value in (15). The
stochastic version only needs access to current state realizations h(t).
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Fig. 2. Objective value
PJ

i=1 Ui(c̄i(u)) and dual function’s value g(λ(t)).
Lines for optimal objective and 90% of optimal objective also shown.

3. WIRELESS BROADCAST CHANNEL

Consider a wireless broadcast channel using OFDM. An access point
(AP) administers frequency tones F and average power budget P0 to
serve J terminals. The goal is to design an algorithm that allocates
power and frequency to maximize a given ergodic rate utility metric.
At time t the AP observes fading channels hif (t) for all frequencies
f ∈ F and nodes i. Depending on the fading channels’ values it de-
cides on frequency allocation aif (t) ∈ {0, 1} and power allocation
pif (t) ∈ [0, pmax]. Variable aif (t) = 1 if and only if frequency f
is allocated to node i at time t. If aif (t) = 1, the power allocated for
such communication is pif (t). Since no more than one communica-
tion can utilize a given frequency, for given f and t at most one aif (t)
can be different from zero. To capture this constraint define the vector
af (t) = [a1f (t), . . . , aJf (t)]T and require af (t) ∈ A with the set A
defined as A :=

˘
a = [a1, . . . aJ ]T : aj ∈ {0, 1}, aT 1 ≤ 1

¯
.

With channel hif (t) and power allocation pif (t), information de-
livered to i is Cif

`
hif (t), pif (t)

´
. The map Cif

`
hif (t), pif (t)

´
from

channels and powers to transmission rates depends on the type of mod-
ulation and codes used. E.g., adaptive modulation and coding (AMC)
relies on a set of L communication modes. The l-th mode supports a
rate αl and is used when the signal to noise ratio (SNR) is between βl−1

and βl. Normalizing channels hif (t) so that noise power is σif (t) = 1
the map Cif

`
hif (t), pif (t)

´
for AMC can be written as

Cif

`
hif (t), pif (t)

´
=

LX
l=1

αlI
`
βl ≤ hif (t)pif (t) < βl+1

´
. (16)

While Cif

`
hif (t), pif (t)

´
units of information are delivered by the AP,

cij(t) units of information are accepted for delivery and queued to await
transmission. To guarantee delivery of packets it suffices to ensure sta-
bility of information queues by requiring

lim
t→∞

1

t

tX
u=1

ci(t) ≤ lim
t→∞

1

t

tX
u=1

»X
f∈F

aif (t)Cif

`
hif (t), pif (t)

´–
, (17)

Similarly, the amount of power consumed at time t is the sum of pow-
ers used on all frequencies for communication with all terminals, i.e.,PJ

i=1

P
f∈F aif (t)pif (t) =

P
i,f aif (t)pif (t). This cannot exceed

allocated power P0 thus yielding the constraint

P0 ≥ lim
t→∞

1

t

tX
u=1

»X
i,f

aif (u)pif (u)

–
. (18)

If the time scale of communication is much smaller than the time scale
of operation, perceived quality of service is determined by the ergodic
limit ci := limt→∞(1/t)

Pt
u=1 ci(u). Assigning value Ui(ci) to er-

godic rate ci the goal is to determine sequences of frequency allocations
aif (N), powers pif (N) and rates ci(N) such that: (i) the ergodic limits

of ci(N) sequences maximize a sum utility
Pj

i=1 Ui(ci); (ii) constraints
in (17) and (18) are satisfied; and (iii) instantaneous frequency alloca-
tions are feasible, i.e., af (t) ∈ A.

This is the type of problem solved by the ESO algorithm. Let h
aggregate channel variables hif for all i and f and define frequency
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and power allocations aif (h) and pif (h). Also, let a(h) aggregate all
aif (h) and p(h) represent all pif (h). Define then the problem

max
JX

i=1

Ui(ci) (19)

s.t. ci ≤ E

» X
f∈F

aif (h)Cif

`
hif , pif (h)

´–
,

P0 ≥ E

»X
i,f

aif (h)pif (h)

–
, af (h) ∈ A, 0 ≤ pif (h) ≤ pmax.

where expected values E(·) are over the pdfs m(h) and m(a(h),p(h)).
The optimization in (19) is with respect to ergodic limits ci and prob-
ability distributions m

`
a(h),p(h)

´
restricted to af (h) ∈ A and 0 ≤

pif (h) ≤ pmax. This optimization problem is of the form in (1). In-
troducing multipliers λi associated with the capacity constraints and μ
with the power constraint, ESO’s primal iteration is [cf. (5) and (6)]

ci(t) = argmax Ui(ci) − λici (20)

aif (t), pif (t) = argmax
0≤pif ,af (t)∈A

aif (t)
“
λiCif

`
hif (t), pif

´−μpif

”
. (21)

Since for fixed f at most one variable aif (t) can be 1 in (21), determi-
nation of aif (t) and pif (t) can be separated further. Indeed, compute

pif (t) = argmax
0≤pif

λiCif

`
hif (t), pif

´− μpif (22)

if (t) = argmax
i

λiCif

`
hif (t), pif (t)

´− μpif (t), (23)

and set aif (t)f (t) = 1 and aif (t) = 0 for all other i �= if (t).
While the maximization in (22) involves the non concave function
Cif

`
hif (t), pif

´
, it is nonetheless simple to solve. The ESO algorithm

is completed with the dual iteration [cf. (7) and (8)]

λi(t + 1) =

»
λi(t) + ε

» X
f∈F

aif (t)Cif

`
hif (t), pif (t)

´− ci(t)

––+

μ(t + 1) =

»
μ(t) + ε

»
P0 −

jX
i=1

X
f∈F

aif (t)pif (t)

––+

. (24)

As per Theorem 1 iterative application of (20) and (22)-(24) yields se-
quences ci(N), aif (N) and pif (N) such that: (i) the sum utility for the
ergodic limits of ci(N) is almost surely within a small constant of opti-
mal; (ii) the constraints in (17) and (18) are almost surely satisfied; and
(iii) instantaneous frequency values of aif (t) are feasible. The stated
goal is then satisfied with probability 1.

3.1. Numerical results

The ESO algorithm (20) and (22)-(24) for optimal resource allocation
in an OFDM broadcast channel is simulated for a system with J = 16
nodes using 3 frequency tones for communication. Three AMC modes
corresponding to capacities 1, 2 and 3 bits/s/Hz are used with transitions
at SINR 1, 3 and 7. Fading channels are generated as i.i.d. Rayleigh with
average powers 1 for the first four nodes, i.e., j = 1–4, and 2, 3 and 4
for subsequent groups of 4 nodes. Noise power is 1 for all frequencies
and average power is P0 = 3. Rate of packet acceptance is constrained
to be 0 ≤ ci(t) ≤ 2 bits/s/Hz. The optimality criteria is proportional
fair scheduling, i.e., Ui(ci) = log(ci) for all i. Steps size is ε = 0.1.

Fig. 1 shows evolution of capacities ci(t) for representative nodes 1
with average channels E [h1f (t)] = 1 and 9 with E [h9f (t)] = 3. The
ergodic average c̄i(t) = (1/t)

Pt
u=1 ci(u) is also shown. Capacities

ci(u) do not converge, but ergodic rates c̄i(t) do converge. Convergence
of the algorithm is ratified by Figs. 2 and 3. Fig. 2 shows evolution of the
objective

PJ
i=1 Ui(c̄i(u)) and the dual function value g(t). Notice that

the objective value is decreasing towards the maximum objective. This
is not a contradiction, because variables c̄i(t) are infeasible but approach
feasibility as t grows. The dual function’s value is an upper bound on
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Fig. 3. Feasibility as time grows is corroborated for the capacity constraints in
(17). Minimum and maximum constraint violation shown.

the maximum utility and it can be observed to approach the objective as
t grows. Eventually, the objective value becomes smaller than the dual
value as expected. Fig. 3 corroborates satisfaction of the constraints
in (17) by showing the time evolution of the minimum and maximum
amount by which the capacity constraint (17) is violated.

4. CONCLUSIONS

We have developed ESO algorithms for optimal resource allocation in
problems with long time horizons allowing optimality criteria defined in
terms of ergodic limits. A resource p(t) is allocated at time t, in re-
sponse to a random state realization h(t). State and resource allocation
constrain the production of a certain good x(t) that we seek to optimize.
We proposed an algorithm using stochastic subgradient descent in the
dual function and showed that with probability 1 problem constraints
are satisfied and close to optimal production achieved. ESO algorithms
do not require access to the state probability distribution and while they
assume convexity of objective functions and constraints with respect to
x(t), they do not require convexity with respect to p(t). Application
to find the optimal operating point of an OFDM broadcast channel was
considered as an example of a large scale non-convex optimization prob-
lem that can be solved with reasonable computational cost. We have also
considered applications to general wireless networking problems in [7].
Applications to different problems, e.g., cognitive radio, beamforming
and multiple input multiple access channels are left for further research.
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