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ABSTRACT

We introduce algorithms to optimize wireless networks in the presence
of fading. Central to the problem considered is the need to learn the
fading’s probability distribution while determining optimal operating
points. A stochastic subgradient descent algorithm in the dual domain
is developed to accomplish this task. Even though the optimization
problems considered are not convex, convergence of the proposed al-
gorithms is claimed. Numerical results using adaptive modulation over
an interference limited physical layer corroborate theoretical results.

1. INTRODUCTION

Optimization of wireless networks incurs a large computational cost be-
cause the associated optimization problems are generally not convex.
Further complications arise from the adjustment of power allocations to
fading channels. Power allocations not only add but dominate the di-
mensionality of the optimization space, in fact leading to a variational
problem with an infinite number of variables. Furthermore, the opti-
mal operating point depends on the probability distribution functions
(pdf) of the fading channels. Models for these pdfs exist but are rough
approximations of pdfs actually observed in practice. It is then neces-
sary to learn the fading’s pdf while determining the optimal operating
point. The stochastic learning algorithms (SLA) developed here over-
come lack of convexity, infinite dimensionality, and learning of the fad-
ing’s pdf by using stochastic subgradient descent on the dual function.

This paper intends to contribute to the work on optimal cross-layer
design of wireless networks; see e.g., [1] and references therein. A
significant part of the effort in this direction relies on the use of deter-
ministic subgradient descent on the dual domain. This is because the
associated Lagrangian function exhibits a separable structure that sim-
plifies optimization and enables distributed implementations, e.g., [2].
However, accounting for fading in subgradient descent algorithms leads
to computationally costly solutions. A comprehensive alternative to
optimal wireless networking in the presence of fading is the work on
stochastic network optimization [3, 4] that extends the back-pressure
algorithm to systems with a finite number of random states. In stochas-
tic network optimization, allocation of resources is determined by the
difference between queue lengths of neighboring terminals. Interest-
ingly, it is possible to identify queue lengths as dual variables of an
optimization problem and interpret stochastic network optimization as
a stochastic subgradient descent algorithm [4]. The work here builds
on this result by proposing an analyzing general stochastic subgradient
descent algorithms to solve wireless networking problems.

Stochastic subgradient descent algorithms descend along random
directions whose expected value is a subgradient of the function being
minimized, e.g., [5]. As such, they are related to (determinstic) sub-
gradient descent [6] from which their convergence properties can be
inferred using stochastic approximation tools. A subtlety when using
deterministic or stochastic subgradient descent on the dual function is
that convergence of dual variables guarantees convergence of primal
variables only when the problem Lagrangian is strictly concave in the
primal variables. This condition is frequently not satisfied in network-
ing problems as many constraints are linear. In these cases the use of
ergodic averages of primal variables permits recovering solutions that
are asymptotically feasible and close to optimal [7]. In stochastic sub-
gradient descent, however, convergence of primal variables is mostly
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Fig. 1. Connectivity graph of an example wireless network.

restricted to problems with strict convexity [8]. In the wireless network-
ing problems studied here, non-convex constraints further complicate
convergence prospects in the primal domain.

These challenges notwithstanding it is shown in this paper that dual
stochastic subgradient descent algorithms solve optimal wireless net-
working problems. The paper starts introducing network variables, power
allocations and optimality criteria (Section 2). Feasible operating points
require satisfaction of constraints that are introduced here. As is cus-
tomary, see e.g. [1] these constraints are defined in an ergodic sense,
i.e., in terms of long term averages, not instantaneous realizations. Hav-
ing defined an optimization problem whose solution defines the desired
operating point, we describe the use of stochastic subgradient descent
algorithms in the dual function (Section 3). This algorithm is interpreted
as a method to generate a sequence of network variables and power al-
locations. Optimality claims introduced in the paper are with respect to
this sequence, not its individual values. The main contribution of the pa-
per is stated next in Theorem 1. We claim that: (i) Sequences generated
by SLA yield an ergodic feasible operating point with probability 1. (ii)
The ergodic average of network variables can be made arbitrarily close
to optimal by proper selection of a descent step size. Properties of SLA
are then discussed (Section 4). We close presenting numerical results
for a wireless network using adaptive modulation and coding over an
interference limited physical layer (Section5). This example illustrates
the computational feasibility of using SLA in medium sized networks.

2. OPTIMAL WIRELESS NETWORKS

Consider a wireless network composed of J terminals Tj for j = 1 . . . J .
The network supports K application level flows with the destination of
the k-th flow denoted as T k = Tdest(k). Terminal and flow indexing
are different to, e.g., allow different priorities for flows to the same des-
tination. Terminal Ti can communicate only with terminals Tj in its
neighborhood that we denote as n(i), see Fig. 1. Actual connections
depend on traffic requirements and other parameters defining the net-
work state. The neighborhood n(i) is to be interpreted as dictating that
communication between Ti and Tj is not possible if j /∈ n(i).

Information flow in the network is determined by three different
types of variables: admission control variables ak

i (t), flow routing vari-
ables rk

ij(t) and link capacities cij(t). The admission control variable
ak

i (t) determines the amount of k-flow information accepted at Ti for
delivery to T k at time t. The value of the routing variable rk

ij(t) corre-
sponds to the units of information sent from Ti to Tj on behalf of the



k-th flow at time t. The amount of information that the physical layer
accepts for delivery from Ti to Tj at time t is the link capacity cij(t).
For future reference, let ak

i (N), rk
ij(N) and cij(N) respectively denote

the stochastic processes with values ak
i (t), rk

ij(t) and cij(t) at time t.
Network variables are dependent of each other to ensure bounded

queue lengths. For given flow k and terminal Ti the total information re-
ceived up to time t is the sum of information

Pt
u=1 a

k
i (u) accepted into

the network at Ti and that received from neighbors
Pt

u=1

P
j∈n(i) r

k
ji(u).

The total information leaving Ti is the sum of information sent to neigh-
bors

Pt
u=1

P
j∈n(i) r

k
ij(u). To avoid accumulation of information at

Ti the information delivered must exceed information received. To sat-
isfy this constraint in the long run it suffices to require

lim
t→∞

1

t

tX
u=1

ak
i (u) ≤ lim

t→∞

1

t

tX
u=1

X
j∈n(i)

h
rk

ij(u)− rk
ji(u)

i
. (1)

The constraint in (1) is required for all k and i 6= dest(k) since packets
are not queued at destination.

Similarly, the amount of information accepted for delivery on the
link from Ti to Tj up to time t is

Pt
u=1 cij(u). This limits the amount

of information that can be delivered from Ti to Tj on behalf of all flows,
i.e.,

Pt
u=1

P
k r

k
ij(u) leading to the constraint

lim
t→∞

1

t

tX
u=1

X
k

rk
ij(u) ≤ lim

t→∞

1

t

tX
u=1

cij(u) for all i, j ∈ n(i). (2)

Upon defining ergodic limits ak
i := limt→∞(1/t)

Pt
u=1 a

k
i (u), for ad-

mission control variables, rk
ij := limt→∞(1/t)

Pt
u=1 r

k
ij(u) for rout-

ing variables and cij := limt→∞(1/t)
Pt

u=1 cij(u) for link capacities,
the inequalities in (1) and (2) can be written as

ak
i ≤

X
j∈n(i)

rk
ij − rk

ji,
X

k

rk
ij ≤ cij , (3)

where the first inequality holds for all k and i 6= dest(k) and the second
one for all i and j ∈ n(i).

Variables cij(t) determine the amount of information accepted by
the physical layer. This quantity is bounded by the amount of informa-
tion the physical layer delivers at time t as determined by instantaneous
values of fading and associated bandwidth and power allocations.

To describe the latter, let communication between terminals occur
over a set of frequency bands f ∈ F . Define hf

ij(t) as the time vary-
ing fading channel gain from Ti to Tj on frequency f ∈ F at time t.
In response to observed fading channels, terminal Ti allocates power
pf

ij(t) for communication to Tj on frequency f . Define vectors hf (t)

and pf (t) grouping channels hf
ij(t) and power allocations pf

ij(t) for
all links and given frequency f as well as vectors h(t) and p(t) with
channels and power allocations for all links and frequencies. Let p(N)
denote the stochastic process with values p(t). Channels h(t1) and
h(t2) at different times t1 6= t2 are independent.

Power allocations p(t) and channels h(t) determine the amount of
information that can be sent from Ti to Tj on frequency f through a
function Cf

ij (h(t),p(t)) – see Section 5. Independently of the partic-
ular form of Cf

ij (h(t),p(t)), total offered capacity from Ti to Tj un-
til time t is

Pt
u=1

P
f∈F C

f
ij [h(u),p(u)]. To avoid accumulation of

packets at the physical layer, the latter has to exceed total used capacityPt
u=1 cij(u) for what it suffices to enforce

lim
t→∞

1

t

tX
u=1

cij(u) ≤ lim
t→∞

1

t

tX
u=1

24X
f∈F

Cf
ij [h(u),p(u)]

35 . (4)

Functions Cf
ij (h(t),p(t)) in (4) are assumed to be finite for finite ar-

gument. This requirement is lax enough to allow, e.g., discontinuous
functions Cf

ij [h(t),p(t)].

Powers pf
ij(t) allocated at time t draw against Ti’s power budget.

The total power consumed by Ti at time t is the sum of the powers
used to communicate with each neighbor on each frequency band, i.e.,
pi(t) =

P
f∈F

P
j∈n(i) p

f
ij(t). The ergodic version of this equality is

lim
t→∞

1

t

tX
u=1

pi(u) = lim
t→∞

1

t

tX
u=1

24X
f∈F

X
j∈n(i)

pf
ij(u)

35 . (5)

The ergodic limits in the right hand sides of (4) and (5) can be re-
placed by expected values. For doing that let mh(h) be the pdf of
h. With each channel realization h associate a power allocation mea-
sure mp(h)[p(h)]. When channel h(t) is observed at time t, power
allocation p(t) is randomly drawn from mp(h(t))[p(h(t))]. Then, link
capacities and power inequalities in (4) and (5) can be written as

cij ≤ E

24X
f∈F

Cf
ij [h,p(h)]

35 , pi = E

24X
f∈F

X
j∈n(i)

pf
ij(h)

35 , (6)

were we defined the ergodic limit for the power consumed at Ti as pi :=
limt→∞(1/t)

Pt
u=1 pi(u). The expected value operators E[·] in (6)

average over the pdf mh(h) of the channel h and the pdf mp(h)[p(h)]
of the power allocation p(h).

Define now a vector x(t) grouping variables ak
i (t), rk

ij(t), cij(t)
and pi(t). Define also a set X such that amin ≤ ak

i ≤ amax, rmin ≤
rk

ij ≤ rmax, cmin ≤ cij ≤ cmax and pmin ≤ pi ≤ pmax and re-
quire x(t) ∈ X . As a consequence of the latter the ergodic limit
x := limt→∞(1/t)

Pt
u=1 x(u) is also constrained to x ∈ X . Sim-

ilarly, define spectral masks P(h) ⊆ {pf
ij(h) : 0 ≤ pf

ij(h) ≤ pmask}
and require p(t) ∈ P(h(t)). The power spectral mask constraints the
power allocations pdfs mp(h)[p(h)] to those taking values on P(h),
i.e., mp(h)[p(h)] : p(h) ∈ P(h). Sets P(h) are compact but not
necessarily convex.

Any set of ergodic limits ak
i , rk

ij , cij and pi and probability mea-
sures mp(h)[p(h)] that satisfy the constraints in (3) and (6) is feasible.
Among all these feasible operating points our goal is to select one that
is optimal is some sense as described next.

2.1. Optimal operating point

Introduce convex utility Uk
i (ak

i ) to measure the value of average trans-
mission rate ak

i and concave cost Vi(pi) measuring the cost of average
power consumption pi. The optimal wireless network is defined as the
solution of the optimization problem [cf. (3) and (6)]

max
X
i,k

Uk
i (ak

i )−
X

i

Vi(pi) (7)

s.t. ak
i ≤

X
j∈n(i)

rk
ij − rk

ji,
X

k

rk
ij ≤ cij ,

pi ≥ E

"X
f∈F

X
j∈n(i)

pf
ij(h)

#
, cij ≤ E

"X
f∈F

Cf
ij [h,p(h)]

#
,

x ∈ X ,
n
mp(h)[p(h)] : p(h) ∈ P(h)

o
h

where we relaxed the power constraint in (6), which can be done without
loss of optimality. The optimization variables in (7) are the probability
measures mp(h)[p(h)] and the ergodic limits x, which groups ak

i , rk
ij ,

cij and pi. The fading’s pdf mh(h), however, is fixed.
The goal of this paper is to develop methods to solve the optimiza-

tion problem in (7) to determine optimal operating points of wireless
networks. The three challenges that need to be overcome are: (i) The
optimization problem is not convex because Cf

ij [h,p(h)] is not con-
cave with respect to p(h). (ii) For each channel realization h, a pdf
mp(h)[p(h)] needs to be determined. Therefore, the number of prob-
lem variables is infinite. (iii) Optimal operating points depend on the
channel’s pdf mh(h). This pdf is not known, rather, the fading’s prob-
ability distribution is learnt online from channel observations h(t). An
algorithm addressing issues (i)-(iii) is introduced in the next section.



3. STOCHASTIC DUAL SUBGRADIENT DESCENT

To simplify upcoming discussions rewrite (7) in generic form as

P = max f0(x)

s.t. x ≤ E [f1(p(h);h)] , f2(x) ≥ 0,

x ∈ X ,
˘
mp(h)[p(h)] : p(h) ∈ P(h)

¯
h
. (8)

Comparing (7) with (8) it follows that functions f0(x) and f2(x) in (8)
are concave with respect to their argument x. The family of functions
f1[p(h);h] is parameterized by the random state h and, different from
f0(x) and f2(x), is not necessarily concave with respect to the resource
allocation p(h). The setX to which the ergodic limits x are constrained
is compact and convex, while the setP(h) constraining resource alloca-
tion values p(h) is compact but not necessarily convex. Recall that the
set P(h) constrains the resource allocation p(h) on a per-state basis,
i.e., there exists a set P(h) for each random state realization h.

Observe that there are an infinite number of variables in the primal
domain but a finite number of inequality constraints. Thus, the dual
problem contains a finite number of variables hinting that the problem
is likely more tractable in the dual space. Define then dual variables
λ1 ≥ 0 associated with the constraint x ≤ E [f1[p(h);h]] and λ2 ≥ 0
associated with f2(x) ≥ 0. Using these definitions the Lagrangian for
the optimization problem in (8) is written as

L[λ,x,p(h)] (9)

= f0(x) + λT
1

h
E [f1[p(h);h]]− x

i
+ λT

2 f2(x)

= f0(x)− λT
1 x + λT

2 f2(x) + Eh

h
Ep(h)

“
λT

1 f1[p(h);h]
”i

where we defined the aggregate dual variable λ := [λT
1 ,λ

T
2 ]T . To ob-

tain the second equality we wrote E(·) = Eh

ˆ
Ep(h)(·)

˜
and reordered

terms. The dual function is then defined as the maximum of the La-
grangian over the set of feasible ergodic limits x ∈ X and probability
distributions mp(h)[p(h)] in the set of feasible powers p(h) ∈ P(h),

g(λ) := max L[λ,x,p(h)]

s.t. x ∈ X ,
˘
mp(h)[p(h)] : p(h) ∈ P(h)

¯
h

(10)

Introduce now a discrete time index t and consider the channel stochas-
tic process h(N) with realizations h(t) identically and independently
distributed (i.i.d.) according to mh(h). The stochastic subgradient de-
scent algorithm on the dual function starts with given multipliers λ(t)
to find feasible variables x(t) ∈ X and p(t) ∈ P(h(t)) such that

x(t) = x(λ(t)) = argmax
x∈X

f0(x)− λT
1 (t)x + λT

2 (t)f2(x), (11)

p(t) = p(h(t),λ(t)) = argmax
p(h(t))∈P(h(t))

λT
1 (t)f1[p(h(t));h(t)]. (12)

In (11), x(t) maximizes the part of L[λ(t),x,p(h)] that depends on
x. But in (12) the maximization is with respect to power allocations
p(h(t)) ∈ P(h(t)), not pdfs mp(h)[p(h)] as in (10). Also, no maxi-
mization is attempted with respect to p(h) for any h 6= h(t).

Based on x(t) and p(t) we define the dual function stochastic sub-
gradient ŝ(t) = ŝ(h(t),λ(t)) = [ŝT

1 (t), ŝT
2 (t)]T with components

ŝ1(t) := f1[p(t);h(t)]− x(t), ŝ2(t) := f2(x(t)). (13)

The algorithm’s iteration is completed by an update in the dual domain
moderated by a predetermined step size ε along the direction −ŝ(t)

λ(t+ 1) =

"
λ1(t)− ε

“
f1[p(t);h(t)]− x(t)

”
λ2(t)− εf2(x)

#+

(14)

where the operator [·]+ denotes projection in the positive orthant. The
stochastic subgradient descent algorithm on the dual function consists
of iterative application of (11)-(14).

The definition in (13) is similar to the expression for dual functions’
subgradients. In fact, it is not difficult to prove that the expected value of
ŝ(t) is a subgradient of the dual function. Since ergodic averages of pri-
mal variables obtained from deterministic dual subgradient algorithms
converge to a near optimal operating point [7], it is not unreasonable to
expect that this property will be retained by its stochastic counterpart.
As it turns out this is not easy to prove because the algorithm descends
in the dual domain while convergence is sought in the primal domain.
It is nonetheless true as stated in the following theorem [9].

Theorem 1 Consider the optimization in (8) and sequences x(N) and
p(N) generated by (11)-(14). Let Ŝ2 ≥ E

ˆ
‖ŝ(t)‖2

˛̨
λ(t)

˜
be a bound

on the second moment of the norm of the stochastic subgradients and
assume that there exists strictly feasible x0 ∈ X and p0(h) such that
E[f1(p0(h);h)]− x0 > 0 and f2(x0) > 0. Then:

(i) Almost sure feasibility. Sequences x(N) and p(N) are feasible
with probability 1, i.e.,

lim
t→∞

1

t

tX
u=1

x(u) ≤ lim
t→∞

1

t

tX
u=1

f1[p(u);h(u)] a.s., (15)

f2

"
lim

t→∞

1

t

tX
u=1

x(u)

#
≥ 0 a.s. (16)

(ii) Almost sure near optimality. The ergodic average of x(N) almost
surely converges to a value with optimality gap smaller than εŜ2/2, i.e,

P − f0

"
lim

t→∞

1

t

tX
u=1

x(u)

#
≤ εŜ2

2
a.s.. (17)

The ergodic limit x := (1/t)
Pt

u=1 x(u) satisfies the constraints in
(8) and the objective function evaluated at x is within εŜ2/2 of opti-
mal. Since X and P(h) are compact sets it follows that the bound Ŝ2

is finite. Therefore, reducing ε it is possible to make f0(x) arbitrarily
close to P and as a consequence x is an arbitrarily good approximation
of an optimal x∗. The optimal resource allocation p∗(h), however, is
not computed by the algorithm. Rather, (15) implies that asymptoti-
cally the algorithm is drawing power allocation realizations p(t) from
power allocation distributions mp(h)[p(h)] that are close to optimal
m∗p(h)[p(h)]. This is not a drawback in practice because realizations
p(t) are sufficient for implementation. In that sense, (11)-(14) yields an
optimal power allocation policy, i.e., allocate p(t) units at time t, that
supports optimal network variables x in an ergodic sense.

4. STOCHASTIC LEARNING ALGORITHM

The SLA is obtained by writing (11), (12) and (14) in explicit form.
Introduce dual variables νk

i , ξij , µi and λij respectively associated with
the flow conservation, rate, power and link capacity constraints in (7).
After reordering terms, the Lagrangian in (9) can then be written as

L(x,p(h),λ) =
X
i,k

Uk
i (ak

i )−νk
i a

k
i +

X
i,j,k

rk
ij

“
νk

i −νk
j −ξij

”
+
X
ij

cij(ξij − λij) +
X

i

µipi − Vi(pi)

+
X
f∈F

E

"X
i,j

λijC
f
ij [h,p(h)]− µip

f
ij(h)

#
(18)

The maximization of the Lagrangian in (18) can be decomposed into
separate maximizations with respect to the power allocation p(h) and
the primal variables ak

i , rk
ij , cij and pi as indicated in (11)-(12). The ex-

pression in (18) further uncovers that primal variables ak
i , rk

ij , cij and pi

appear in only one summand and that vectors pf (h) appear in different
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Fig. 2. Feasibility of Stochastic learning algorithm (SLA) iterates. It takes about 100 iterations for all constraints to be satisfied with a gap smaller
than 10−1. The constraint with slowest convergence is flow conservation. This is expected because determination of routing variables rk

ij and
admissible rates ak

i implicitly necessitates propagation of information from the destination to the sources.

summands of L(x,p(h),λ). It is then possible to further decompose
the maximization of L(x,p(h),λ) into separate maximizations with
respect to ak

i , rk
ij , cij , pi and pf (h). These separate maximizations

constitute the primal iteration of SLA

ak
i (t) = argmax

ak
i ∈[amin,amax]

Uk
i (ak

i )− νk
i (t)ak

i

rk
ij(t) = argmax

rk
ij∈[rmin,rmax]

“
νk

i (t)− νk
j (t)− ξij(t)

”
rk

ij

cij(t) = argmax
cij∈[cmin,cmax]

(ξij(t)− λij(t)) cij

pi(t) = argmax
pi∈[pmin,pmax]

µi(t)pi − Vi(pi)

pf (t) = argmax
pf∈Pf

X
i,j

λij(t)C
f
ij

h
hf (t),pf

i
− µi(t)p

f
ij . (19)

The dual iteration requires computation of the stochastic subgradient as
per (13) and a descent in the dual domain as per (14). These two steps
are combined to yield the expressions

νk
i (t+ 1) =

»
νk

i (t)− ε
» X

j∈n(i)

“
rk

ij(t)− rk
ji(t)

”
− ak

i (t)

––+

ξij(t+ 1) =

»
ξij(t)− ε

»
cij(t)−

X
k

rk
ij(t)

––+
µi(t+ 1) =

»
µi(t)− ε

»
pi(t)−

X
f∈F

X
j∈n(i)

pf
ij(t)

––+

λij(t+ 1) =

»
λij(t)− ε

»X
f∈F

Cf
ij

»
h(t),p(t)

–
− cij(t)

––+
(20)

As per Result (i) of Theorem 1 variables ak
i (t), rk

ij(t), cij(t) and pi(t)
combined with power allocation p(t) almost surely satisfy the limit in-
equalities in (1), (2), (4), and (5). According to Result (ii) we further

have that, with probability 1,

lim
t→∞

X
i,k

Uk
i

"
1

t

tX
u=1

ak
i (u)

#
−
X

i

Vi

"
1

t

tX
u=1

pi(u)

#
≥ P − εŜ2

2
.

(21)
The utility can be made arbitrarily close to the optimal P by reducing
the step size ε.

Remark 1 The SLA algorithm with iterations (19) and (20) is simi-
lar but different from the stochastic network optimization algorithms
of [3,4]. SLA and stochastic network optimization deal differently with
non-convex constraints. In stochastic network optimization, the non-
convex constraints are eliminated through the introduction of a capacity
region and are left implicit in the definition of the dual function. In
SLA, the non-convex constraints are incorporated in the definition of
the dual function. Convergence properties of SLA and stochastic net-
work optimization differ too. Results in stochastic network optimization
establish that the expected value of ergodic limits satisfy problem con-
straints with a small gap. The feasibility result for SLA iterates is that
constraints are almost surely and exactly satisfied by ergodic limits [cf.
(15) and (16)]. Both guarantees, i.e., almost sure convergence and exact
satisfaction of constraints, are important in practice. Near optimality
in [3,4] pertains also to the ergodic mean, i.e., the expected value of the
time average of iterates yields a utility that is close to optimal. In SLA,
ergodic averages almost surely convergence to a near optimal point [cf.
(17)]. This is also an important guarantee in applications. A more tech-
nical difference is the restriction to fading models with a finite number
of states in [3, 4] that is not required here.

5. NUMERICAL RESULTS

SLA of (19)-(20) is implemented to find optimal operating variables
for the network in Fig. 1 using adaptive modulation and coding (AMC)
over an interference limited physical layer. The metric determining link
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Fig. 3. Convergence of primal and dual objective to optimal value. No-
tice that primal and dual values approach each other and that to achieve
an optimality gap smaller than 10% takes about 70 iterations.

qualities is the signal to interference plus noise ratio (SINR) given by

SINRf
ij(t) =

hf
ij(t)p

f
ij(t)

Nf
j + (1/S)

P
(m,n)6=(i,j) h

f
mj(t)p

f
mn(t)

(22)

where Nf
j denotes the noise power, S the spreading gain and the sum-

mation index (m,n) 6= (i, j) signifies sum aver all m and n except
when both m = i and n = j. With AMC, the map from SINRf

ij(t) in
(22) to link capacities is of the form

Cf
ij (h(t),p(t)) =

LX
l=1

αlI
“
βl ≤ SINRf

ij(t) ≤ βl+1

”
(23)

where I(·) denotes the indicator function, βl transition powers and αl

the rate associated with mode l. According to (23), αl units of infor-
mation are transmitted when SINRf

ij(t) is between βl and βl+1. As it
also happens for most wireless physical layers, Cf

ij (h(t),p(t)) is not a
convex function of the power allocation p(t) – indeed Cf

ij (h(t),p(t))
is even discontinuous due to transitions between AMC modes.

Henceforth, nodes operate on 5 frequency bands with spreading
gain S = 16. Three AMC modes yielding rates 1, 2 and 3 bits/s/Hz
are used with transitions at SINR 1, 3 and 7. Fading channels are gen-
erated as i.i.d. Rayleigh with average powers 1/2 for the links 4 ↔ 7,
5 ↔ 9, 7 ↔ 11, 9 ↔ 10, 11 ↔ 8, 10 ↔ 6, 8 ↔ 4 and 6 ↔ 5
and 1 for the remaining links. Noise power is Nf

i = 0.1 for all termi-
nals and frequency bands. The maximum average power consumption
per terminal is pmax = 2 – chosen so that if a terminal with 4 neighbors
spreads power uniformly across all neighbors and frequencies the signal
to noise ratio is 0dB. Powers pi are also constrained to be positive, i.e.,
pmin = 0. A spectral mask P(h) := {pf

ij(h) : 0 ≤ pf
ij(h) ≤ pmask}

is further defined with pmax = 2 the same value used to limit aver-
age power consumption. Link capacities and routing variables are con-
strained by cmin = rmin = 0 bits/s/Hz and cmax = rmax = 6 bits/s/Hz.
Four flows with destination at terminals 1, 7, 8 and 14 are considered
with all other terminals required to deliver at least amin = 0.5 bits/s/Hz
and at most amax = 2 bits/s/Hz to each of these flows. The optimality
criteria is sum rate, i.e., Uk

i (ak
i ) = ak

i for all i, k. Powers pi are absent
from the objective, i.e., Vi(pi) = 0 for all i. Steps size is ε = 10−2.

Convergence of the algorithm is corroborated by Figs. 2 and 3. As
guaranteed by Theorem 1 optimality and feasibility are indeed achieved.
Feasibility of time averages is tested for the constraints in (1), (2), (4),
and (5). The average and worst case violation for each type of constraint
are shown in Fig. 2. It takes about 100 iterations for all constraints to
be satisfied with a gap smaller than 10−1. Blanks in the plot of power
constraint violations Pi(t) correspond to times at which all constraints
were satisfied, i.e., Pi(t) ≥ 0, for all i. The constraint with slowest

convergence is the flow conservation inequality in (1). This is because
determination of routing variables rk

ij and admissible rates ak
i implicitly

necessitates propagation of information from destinations to sources.
To test optimality we compute ergodic primal and dual objectives

as a function of time. Since the objective is sum rate maximization
of admission control variables, the ergodic primal objective is P (t) :=
(1/t)

Pt
u=1

P
i,k a

k
i (u). Ergodic primal and dual objectives are shown

in Fig. 3. It is seen that they approach each other and that to achieve an
optimality gap smaller than 10% takes about 70 iterations. The optimal
value in Fig. 3 is found by running SLA until the gap between primal
and dual values is less than 1%.

6. CONLCUSIONS

Operation of wireless networks necessitates determination of admission
control rates, routes, link capacities, average powers and power alloca-
tions across fading states. We proposed a stochastic learning algorithm
(SLA) to determine optimal operating points. Defining optimal net-
work operation in an ergodic sense we showed that SLA almost surely
leads to feasible operating points while guaranteeing arbitrarily close
to optimal performance. This holds true even though: (i) the optimiza-
tion problem associated with optimal network design is not convex; (ii)
power allocation functions across fading states leads to a variational
problem with an infinite number of variables; and (iii) the probability
distribution of fading is learnt from online observations.

Lack of convexity and large dimensionality imply a prohibitive com-
putational cost. Although the proposed SLA does not completely elim-
inate high computational cost it does afford a significant reduction. In
practice, SLA reduces complexity to the solution of an instantaneous
power allocation problem at the physical layer. These problems are not
convex but have manageable computational cost in small and medium-
sized networks. The use of locally optimal and heuristic power alloca-
tions in large networks is a future research direction. In its current state
SLA requires centralized computation and availability of global channel
state information. Further research is necessary to lift these restrictions.
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