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Abstract—We study a distributed model for optimizing a sum of
convex objective functions corresponding to agents in the network.
At random times, agents execute actions based on heuristic
rational rules considering only local information. Heuristic rational
rules are probabilistic and their expectation yields the actual
optimal action. Under heuristic rational rule iterations, it is shown
that global network cost comes within a close vicinity of the
optimal value infinitely often with probability 1. Furthermore, an
exponential bound on probability of deviating from vicinity of the
optimal value is derived. We exemplify heuristic rational behavior
on estimation of a random field using a wireless sensor network.

I. INTRODUCTION

Distributed network optimization to model the emergence

of global behavior through local actions is receiving attention

beyond its use in sensor and communication networks. In, e.g.,

biological systems, network optimization models that mimic

natural phenomena like bird flocking have been introduced

[1]–[3]. In social networks, belief propagation and consensus

formation [4], [5] can be understood in terms of distributed

network optimization. In a fundamental sense, all of these works

start from a global objective that the network agents want to

optimize – e.g., total drag in a flock of birds – through the

selection of local variables – e.g., birds’ positions and velocities

– while restricting interactions to neighboring agents – e.g.,

positions and velocities are updated relative to the three closest

neighboring birds on the field of vision.

Agents are also assumed to act rationally in that they update

their local variables in a manner that is optimal with respect

to the available information – e.g., birds choose a position and

speed to minimize their own drag. Assuming optimal behavior

in the context of natural, as opposed to engineered, networks

limits the applicability of these models because making optimal

decisions requires exceedingly high levels of awareness and

cunningness. The goal of this paper is to study more realistic

models whereby agents execute heuristic rational actions that

are optimal in an average sense only. Efforts to lift unrealistic

assumptions in network optimization include the study of asyn-

chronous updates, time-varying or unreliable communication

links [6], [7], or communication contaminated with random

noise [1], [8]. Our work differs from these contributions in that

we are considering the variable update rules themselves as being

imperfect.

We formulate global behavior with a cost given by a sum

of local terms involving nonlinear functions of self and neigh-

boring variables. At random times, agents observe the current

values of their neighbors’ variables and apply a heuristic rule
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with the intent of minimizing the global cost with respect

to the selection of their local variables. These heuristic rules

need not be optimal but we assume that they are so in ex-

pectation (Section II). Because of the randomness associated

with heuristic rational rules we do not expect convergence to

optimal global behavior. Consequently, our goal is to describe

the difference in the yield of optimal variables and the values

achieved by heuristic rational rules (Section III). To characterize

this difference, we identify the variable updates with a stochastic

coordinate descent algorithm. Exploiting this fact, it is possible

to show that for points sufficiently far away from optimal the

distance to optimality between subsequent uses of heuristic

rational rules satisfies a supermartingale inequality (Lemma 1).

This observation leads to the conclusion that a neighborhood of

optimality is visited infinitely often with probability 1 (Theorem

1). The size of the near optimality region depends on parameters

of the function being minimized and is proportional to the

variance of the heuristic rational rule. We further show that

between visits to optimality the gap in the yield of agents’

variables is bounded exponentially (Section IV). This bound

shows that even though it is possible for local variables to

become arbitrarily bad, significant deviations are exponentially

rare.

We exemplify network optimization using heuristic rational

agents with two case studies (Section V). The first example

models estimation of temperature on a random field using

a network of wireless sensors. Second example considers a

network of animals foraging on a field. We conclude the paper

in Section VI.

II. HEURISTIC RATIONAL DECISIONS

We represent the network of agents by a symmetric graph

G = (V,E). Vertices i ∈ V denote agents and edges (i, j) ∈
E connections between them. The set of agents that form an

edge with agent i is denoted by the neighborhood of agent i,
n(i) = {j : (j, i) ∈ E}. Ni := #(n(i)) denotes the cardinality

of the number of neighbors of agent i. Each of the agents i ∈
V is associated with corresponding variable xi ∈ R

n and a

convex function f0i(xi). For each edge (i, j) ∈ E, there exists

a convex function fij(xi, xj) that depends on the agent variables

at the vertices of edge. We require that functions fij(xi, xj) and

fji(xj , xi) be equal for all i, j ∈ n(i) to maintain symmetry.

There exists a convex set Xi that each variable xi is constrained

to; i.e., xi ∈ Xi ⊆ R
n. Further, define xn(i) = {xj}j∈n(i) to

denote the variables of all neighbors of i, x = {xi}i∈V to

represent all variables, and X as the Cartesian product of sets

Xi.
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We define the incurred cost function for agent i as follows

fi(xi, xn(i)) := f0i(xi) +
∑

j∈n(i)

fij(xi, xj). (1)

Agent i would like to minimize (1) by selecting its variable

xi ∈ Xi appropriately.

The sum of the local costs fi(xi, xn(i)) among all agents

yields a measure for network aggregate cost f(x) :=∑
i∈V fi(xi, xn(i)). Aggregate cost measures optimality of con-

figuration x := {xi}i∈V from a global perspective. We define

an optimal configuration x∗ as

x∗ := argmin
x∈X

f(x) = argmin
x∈X

∑
i∈V

fi(xi, xn(i)), (2)

and the minimum aggregate cost as p∗ = f(x∗)
Dependence of individual cost function (1) on variables of the

neighbors xn(i) requires that xi and xj for j ∈ n(i) is chosen at

the same time in order to achieve the minimum. For a connected

network, cost minimization requires that all the variables are

chosen simultaneously since an agent’s variable is included on

the functions of its neighbors and its neighbors’ variables are

also included on the functions of their neighbors and so on.

However, simultaneous selection requires an unrealistic level of

coordination among agents.

Instead, consider a model where each agent acts individually

based on the information provided by its neighbors. Define

a rational action for agent i as to select the value for its

own variable that minimizes its local cost using available local

information at time t,

x̃i(t) = argmin
xi∈Xi

fi
(
xi, xn(i)(t)

)
. (3)

The update in (3) is based on local information and is executed

solely by agent i, therefore it stands for a more realistic

representation for network optimization. While possible, it is not

always accurate to assume that agents follow rational policies

perfectly. It is often the case that agents apply heuristic rules

in their decision making which are prone to randomness and

suboptimality. We introduce the concept of heuristic rational

decision-making as a way to capture this type of sub-optimal

behavior.

Definition 1 We say that a probabilistic rule xi(t) is heuristic
rational for agent i if and only if its expectation is a rational
action defined as in (3),

E [xi(t)] = x̃i(t) = argmin
xi∈Xi

fi
(
xi, xn(i)(t)

)
(4)

We include a random activation rule that determines when each

agent i modifies its variable according to a heuristic rational

rule. For the activation rule, we use k ∈ N to index activations.

The kth activation occurs at time tk and involves a unique

agent i = ik modifying variable xi = xik . Activations occur

at random times and all agents have positive probability to

become active in any given time interval. Variables xi(tk)
stay unchanged for all the other agents i �= ik. The variable

xik(tk) for terminal ik is updated based on local observation

of neighboring variables and follows heuristic rationality (4).

The following example demonstrates a possible application

of heuristic rational network optimization on a field estimation

problem with a wireless sensor network (WSN).

Example 1 (Field estimation using WSN) Consider a net-
work of sensors deployed on a spatially varying field. Each
sensor i is responsible for estimating the value xi that is
associated with its location. This estimation is done via mea-
surements yi that are collected from sensor i’s location. Mea-
surements collected from the same location at different times
are assumed to be independent given xi and are corrupted with
zero-mean Gaussian noise with variance σ2, i.e. P

(
yi
∣∣xi

)
=

e−(yi−xi)
2/2σ2

/
√
2πσ2. The network goal is specified to com-

pute estimates that maximize log likelihood function lnP (x
∣∣ y)

where y := {yi}i∈V . Applying Bayes’ rule, the estimates can
be computed using the following formula

x̂ = argmax ln P
(
x
∣∣ y) := argmax

(
ln P

(
y
∣∣x)+ ln P (x)

)
.

(5)

Notice that the estimates in (5) are coupled. In order to obtain
a global objective function with decoupled structure similar to
(1), we consider Markov random fields (MRF) where spatial
dependency is simplified to dependency on neighboring loca-
tions. Markovianity property affords that P

(
xi

∣∣xj , j �= i
)
=

P
(
xi

∣∣xn(i)

)
. According to Hammersley-Clifford theorem [9,

Ch. 4.3], a MRF has an equivalent representation in terms
of a Gibbs random field with the probability distribution that
takes the form P (x) = e−U(x)/α where α is some normalizing
constant. U(x) is called the field energy function and has the
following structure U(x) =

∑
i,j∈n(i) uij(xi − xj). When a

Gaussian MRF is considered, field energy function becomes
a quadratic function, U(x) =

∑
i,j∈n(i)(xi − xj)

2/2λ with
smoothing coefficient λ. Using this representation in (5) and
further noting that since observations are conditionally inde-
pendent P

(
y
∣∣x) = ∏

i P
(
yi
∣∣xi

)
it follows that

x̂ = argmin
(∑
i∈V

(yi − xi)
2/2σ2 +

∑
i∈V,j∈n(i)

(xi − xj)
2/2λ

)
.

(6)

When we rearrange terms and define the functions f0i(xi) =
(yi − xi)

2/2σ2 and fij(xi, xj) = (xi − xj)
2/2λ, minimand in

(6) has the same decoupled form as the global network cost in
(2) and the local cost function becomes

fi(xi, xn(i)) = (yi − xi)
2/2σ2 +

∑
j∈n(i)

(xi − xj)
2/2λ. (7)

A rational estimate for sensor i minimizing (7) is to compute

x̃i =
λyi + σ2

∑
j∈n(i) xj

λ+Niσ2
(8)

given estimates of neighbors xn(i) and measurement yi. Heuris-
tic rationality can be used to account for communication errors,
quantization effects during the local signal processing or the
communication stages, and model mismatch; see Section V.

The goal in this paper is to characterize the performance of

the sequence of iterates x(tk) generated by recursive application
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of heuristic rational rules with respect to the optimal configura-

tion x∗. For this goal, we define the stochastic process {Fk}k∈N

of optimality gaps with elements

Fk := f(x(tk))− p∗. (9)

In Section III, we establish that the optimality gap Fk achieves

a small value with probability 1 infinitely often (Theorem 1).

Furthermore, it is shown that Fk stays close to this value with

large probability (Section IV).

III. NEAR OPTIMALITY AND CONVERGENCE

We analogize heuristic rational update rules with random

activation scheme to a stochastic version of block coordinate

descent on the function f(x). Coordinate descent algorithms

alternate between descents on different subsets of variables

chosen according to a given rule [10]. We can identify agent’s

variables as coordinate blocks and random activation as the se-

lection rule. The structure of the local cost function fi(xi, xn(i))
in (1) is such that block coordinate descent can be applied

in a distributed manner. Given the analogous decision model

proposed, we show that indeed our expectations that heuristic

rational iterates will achieve a cost close to aggregate optimal

cost p∗ is true. We need the following assumptions for our

analysis.

(A1) The global cost f(x) is strongly convex in that there exists

a constant m > 0 such that for any pair of points x ∈ X and

y ∈ X it holds

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
||y − x||2. (10)

(A2) Gradients of the global cost f(x) are Lipschitz in that

there exists a constant M > 0 such that for any pair of points

x ∈ X and y ∈ X it holds

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
||y − x||2. (11)

(A3) At any given time t, all agents are equally likely to

become active.

(A4) The mean square error of the heuristic rational action

xik(tk) with respect to the corresponding rational action x̃ik(tk)
is bounded [cf. (4)].

E
[‖xik(tk)− x̃ik(tk)‖2

] ≤ σ2. (12)

The first two assumptions are typical in convergence analysis

of descent algorithms. They are satisfied by Example 1 in

Section II. An asynchronous update rule in which all agents

having an activation clock based on independent exponential

waiting times with equal means satisfies the third assumption.

This assumption can easily be substituted by laxer conditions

such as each agent having only a positive probability at any

given time t and our results will continue to hold with minor

modifications. Assumption (A4) caps the average irrationality of

each agent by bounding the deviation from the rational decision

(3). Note that this is a bound on mean square which means

arbitrarily bad isolated actions are allowed. Furthermore, our

results are parametric on the irrationality bound σ2 that is the

iterates of Fk are guaranteed to approach a close neighborhood

of zero and closeness is proportional to σ2.

Our first result shows a contraction for the optimality gap

Fk+1 at time tk+1 in reference to the optimality gap Fk at time

tk – see [11] for proof.

Lemma 1 Consider iterates of heuristic rational rule x(tk) =
{xi(tk)}i∈V such that at time tk agent ik updates her local
variables xi(tk). The optimality gaps Fk+1 and Fk as defined
in (9) satisfy

E
[
Fk+1

∣∣x(k)]− Fk ≤ −βFk +
Mσ2

2
(13)

where we defined the condition number β := m/(MN) and
used the shorthand notation x(k) := x(tk).

The inequality (13) indicates that Fk is behaves like a su-

permartingale when the right hand side is less than zero.

This happens when Fk is far away or more precisely when

Fk ≥ Mσ2/2β. In this case, the rationality dominates the

aggregate behavior and we have the expectation to descent

toward optimality. This expected rationality prevails over a

larger range of values of Fk when σ2 is small. When the process

is within the boundary i.e. Fk < Mσ2/2β, the inequality cannot

not claim an expected decrease. This case can be interpreted as

operating at the region where irrationality prevails.

Considering that the process is attracted towards zero, when

optimality gap is larger than Mσ2/2β, we expect to see the

process Fk becoming smaller than Mσ2/2β at least once. This

intuition is correct as we state in the following theorem – see

[11] for proof.

Theorem 1 Let F best
k := minl∈[0,k] Fl be the best optimality

gap by time tk. If assumptions (A1)-(A4) hold, it follows that

lim
k→∞

F best
k ≤ Mσ2

2β
. a.s. (14)

Theorem 1 confirms that the optimality gap becomes smaller

than Mσ2/2β at least once for almost all realizations. It also

implies that this happens infinitely often which means that the

process moves outside the neighborhood of optimality defined

by Mσ2/2β infinitely often. Hence, it is worthwhile to try

to characterize process’ behavior when it is outside the near

optimality region.

IV. EXCURSIONS OUTSIDE NEAR OPTIMALITY

Theorem 1 provides the motivation to look at excursions

of the optimality gap when it is outside the near optimality

region because it has no control over the process inside the near

optimality region. Inside the near optimality region, irrationality

dominates which guarantees to throw optimality gap outside

near optimality. When the process is outside near optimality,

the only characterization that is useful is that it behaves like

a supermartingale shown in Lemma 1. The inequality (13)

in Lemma 1 indicates that the expected descent increases

as the optimality gap grows. This gives us the leverage for

showing that the excursions from near optimality are bounded

exponentially.

Next, we formally define excursions away from the optimality

neighborhood. Suppose that at given iteration k, the optimality

55



gap is Fk = (1+ρ)Mσ2/2β, i.e., larger than the neighborhood

border by a factor ρ > 0. Further consider a given value γ > Fk.

We define excursion as the trajectory Fk, Fk+1, . . . , Fk+L of the

optimality gap until the process returns to a value Fk+L < Fk

smaller than the given gap Fk from which the excursion started.

Notice that L is a random stopping time given by the first time

the process achieves a smaller gap than the starting point L =
minl>0

(
Fk+l < Fk

)
. In particular, we are interested in the

worst value F †
k = max(Fk, Fk+1, . . . , Fk+L) reached during

the excursion.

Our goal here is to determine the probability that the worst

value attained during the excursion exceeds the given γ, P
(
F †
k ≥

γ
)
. We need the following additional assumption to obtain

bound on the probability P
(
F †
k ≥ γ

)
.

(A5) The difference on optimality gaps between successive

iterations is almost surely bounded by a finite constant κ > 0,

i.e., for all times k we have that

P
(|Fk+1 − Fk| ≤ κ

∣∣Fk

)
= 1. (15)

Assumption (A5) is satisfied when the functions fij(xi, xj) are

bounded for all feasible values xi ∈ Xi and xj ∈ Xj . Assump-

tion (A5) can be satisfied if the differences ‖xik(tk)− x̃ik(tk)‖
between rational and heuristic rational actions are almost surely

bounded. Note that in this case, Assumption (A4) is automat-

ically satisfied. For the Example 1 in Section II, Assumption

(A5) is satisfied if the range of values that can be measured

by sensors is bounded. In the following theorem, we state the

exponential bound on P
(
F †
k ≥ γ

)
– see [11] for proof.

Theorem 2 Assume that at time k0 the excursion starts at a
value that is away from the near optimality boundary estab-
lished in Theorem 1 by a factor of ρ > 0, i.e., Fk0

= (1 +
ρ)Mσ2/2β. If assumptions (A1)-(A5) hold, then, for arbitrary
given constant γ, we have

P
(
F †
k0

≥ γ
∣∣Fk0

)
≤ e−c(γ−Fk0

), (16)

with c = 2ρMσ2/[(ρMσ2)2 + κ2].

Theorem 2 indicates that the probability of worst optimality

gap during an excursion decreases exponentially as γ increases.

This shows that being arbitrarily far away from near optimality

is highly unlikely as it is a bound on worst optimality gap

reached during the excursion process. The exponential bound

in (16) is also dependent on a coefficient c that scales the

exponential term. As the coefficient c increases, the bound

on the right hand side of (16) decreases making it stronger.

Coefficient c depends on constants such as mean square error

bound σ2 and optimality gap increment bound κ. We observe

that increase in any one of these constants has an inverse effect

on the scaling coefficient which means a laxer bound on the

right hand side.

Next, we give numerical examples for an estimation problem

of a MRF using WSN in which sensors follow a heuristic

rational rule.

V. SIMULATION

Consider a temperature field that has the spatial dependency

structure of Gaussian MRF as explained in Example 1 of
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Fig. 1. Estimation of a temperature field with a sensor network. Two
heat sources located at (17m, 4m) and (18m, 17m) set temperatures at their
locations to 255◦F . Temperature around these sources falls at a rate of 50◦F/m
and is set to 0◦F at other locations. The resulting temperature field is encoded
according to the scale on the right. A sensor network with N = 370 is
deployed to estimate this field with lines representing network connectivity.
Sensors estimate the temperature at their location.
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Fig. 2. Sensor temperature field estimates at time t = 0 based only on initial
measurements. Gaussian MRF has smoothing coefficient λ = 103. Observation
noise power is equal to σ2 = 0.9 × 103. Sensors update their temperature
estimates using the heuristic rational update in (17) with quantization level
Δ = 1. Estimates are encoded using the same scale of Fig. 1.

Section II. Further, there exists a network of temperature sensors

placed on this field obtaining noisy temperature measurements

from various locations.

Due to bandwidth limitations sensors quantize their estima-

tions before transmitting them to their neighbors. Thus, the

signal received by sensor i from sensor j is a quantized version

xqj(t) that can be written as xqj(t) = xj(t) + qj(t) for some

quantization noise qj(t). The update in (8) is therefore not the

one carried out by sensor i. Rather, the estimate of sensor i is
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Fig. 3. Sensor temperature field estimates at time t = 4. As time progresses
sensor estimates become closer to field values as information from neighboring
nodes is incorporated into local estimates.

updated to

xi(t) =
λyi + σ2

∑
j∈n(i) xqj(t)

λ+Niσ2
. (17)

Assuming the quantization noise has zero mean, i.e., E [qi(t)] =
0, it follows that E [xi(t)] = x̃i(t). We can then think of the

update in (17) as a heuristic rational version of the update in

(8).

Numerical simulations for a WSN with N = 370 temperature

sensors performing the update in (17) to estimate a temperature

field are shown in figs. 1 - 4. The temperature field is gener-

ated as a 20m×20m grid with temperature values ranging in

[0◦F, 255◦F ]. Two heat sources at locations h1 = (17, 4) and

h2 = (18, 17) set the temperature in these points to 255◦F .

Heat dissipates from these sources for a range of 5m at a

rate of 50◦F/m as one moves away from the heat source. The

sources do not influence the temperature outside 5m range and

the temperature is set to 0◦F for those locations; see Fig. 1.

The sensors are located at random positions in a 1m grid with

communication between sensors occurring only between sensors

located less than 1m apart; see Fig. 1. The temperature field is a

uniform Gaussian MRF with smoothing parameter λ = 103 and

observation noise as Gaussian with variance σ2 = 0.9 × 103.

The quantization levels for temperature estimates are integers

in [0, 255]. Each sensor activates according to an exponential

distribution with mean one. Hence, the expected number of

updates by time t = 1 is equal to the number of sensors N .

Figs. 2-3 use squares to label locations on which there is a

sensor. The estimates follow color encoding in Fig. 1. Figs. 2-3

display sensor estimates at times t = 0, and t = 4, respectively.

At time t = 0 estimates are based on local observations only

and thereby can show significant difference with respect to field

values. By time t = 4, we observe that the sensor estimates are

refined and are closer to original value as shown in Fig. 1.

We also observe that sensor estimates close to heat sources are

affected by their neighboring sensors that are located on lower

temperature points. Furthermore, sensors that lie in between

two heat regions (between points (14,9) and (20,12)) tend to
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5.5

6

6.5

7

lo
g(
f(
x)
)

time
0 1 2 3 4

−2.5

−2

−1.5

−1

−0.5

lo
g(
f i(
x)
)

time
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Fig. 4. Global (a) and individual (b) log-likelihoods for temperature field
estimation.

have larger estimates than the correct value of zero. These are

all caused by the mismatch between the underlying modeling

assumption of correlated field and what the field actually entails.

Figs. 4(a) and 4(b) show the evolution of the global log-

likelihood function f(x) =
∑

i fi(xi(t),xn(i)(t)) and the local

cost function fi(xi(t),xn(i)(t)) in (7) for a selected i. The log-

likelihoods tend to decrease thereby resulting on more refined

estimates.

VI. CONCLUSION

We considered a distributed approach to a network opti-

mization problem where agents act according to a heuristic

rational rule that is on the average optimal. For this setup, we

show that the minimum global network cost value converges to

near optimality almost surely. Furthermore, we show that the

excursions from near optimality is exponentially bounded.
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