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ABSTRACT
We consider distributed algorithms to optimize random access multihop
wireless networks in the presence of fading. Since the associated opti-
mization problem is neither convex nor amenable to distributed imple-
mentation, we introduce a problem approximation. This approximation
is still not convex, but it has zero duality gap and can be solved and
decomposed into local subproblems in the dual domain. The solution
method is through a stochastic subgradient descent algorithm that oper-
ates without knowledge of the fading’s distribution and leads to an ar-
chitecture composed of layers and layer interfaces. With limited amount
of message passing among terminals and small computational cost, the
proposed algorithm converges almost surely in an ergodic sense.

Index Terms— Wireless networking, cross-layer design, random access.

1. INTRODUCTION

Optimal design is emerging as the future paradigm for wireless network-
ing. The fundamental idea is to select operating points as solutions of op-
timization problems, which, inasmuch as optimization criteria are prop-
erly chosen, yield the best possible network. Results in this field include
architectural insights, e.g. [1], and protocol design, e.g., [2], but a draw-
back shared by most of these works is that they rely on global channel
state information (CSI); i.e., the optimal variables of a terminal depend
on the channels between all pairs of terminals in the network. While
availability of global CSI is plausible in certain situations, it is unlikely
to hold if time varying fading channels are taken into account.

We consider optimal design of wireless networks when, due to pres-
ence of random fading, only local CSI is available. As a consequence,
operating variables of each terminal are selected as functions of the chan-
nels linking the terminal with neighboring nodes. A further consequence
is that random access appears as the natural medium access choice. If
transmission decisions depend on local channels only and these chan-
nels are random and independent for different terminals, transmission
decisions can be viewed as random and resultant link capacities as lim-
ited by collisions. Thus, we can restate our goal as the development
of algorithms to find optimal operating points of wireless random access
networks in the presence of fading. We remark that even though channel-
adaptive random access has a long history in wireless communications,
e.g., [3, 4], the idea has not been migrated to wireless networks. In-
deed, while works on optimal wireless random access networks do exist,
e.g., [5, 6], fading is not considered as part of the optimization problem.

The paper begins by introducing an optimization problem that de-
fines the optimal random access network (Section 2). Since this problem
is not convex we proceed to a suboptimal approximation through a prob-
lem that while still not convex has zero duality gap (Section 2.1). We
further observe that solution is simpler in the dual domain – and equiva-
lent because of the lack of duality gap – and proceed to develop stochas-
tic dual descent algorithms that converge to the optimal operating point
(Section 3). The resultant algorithm decomposes in a layered architec-
ture and can be implemented in a distributed manner (Section 3.2). Re-
cent results on ergodic stochastic optimization algorithms [7] are finally
leveraged to show that the proposed algorithm yields operating points
that are almost surely close to optimal (Section 3.1). Remarkable prop-
erties of the proposed algorithm are that it does not necessitate access to
the channel’s probability distribution and that it can handle non-covex
functions mapping transmitted power to channel capacity.
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2. PROBLEM FORMULATION

Consider an ad-hoc wireless network consisting of J terminals {Ti}J
i=1.

Network connectivity is modeled as a graph G = (V, E) with vertices
v ∈ V := {1, . . . , J} representing J terminals and edges e = (i, j) ∈ E
connecting pairs of terminals that can communicate with each other.
Denote the neighborhood of Ti as N (i) := {j | (i, j) ∈ E} and de-
fine the interference neighborhood of the link (i, j) as the set of nodes
Mi(j) := N (j) ∪ {j}\{i} whose transmission can interfere with a
transmission from i to j. The network supports a set K := {1, . . . , K}
of end-to-end flows through multihop transmissions. The average rate
at which k-flow packets are generated at Ti is denoted by ak

i . Terminal
Ti transmits these packets to neighboring terminals at average rates rk

ij

and, consequently, receives k-flow packets from neighbors at average
rates rk

ji. Accounting of k-flow packets implies that exogenous rates ak
i

and endogenous rates rk
ij at Ti satisfy

ak
i =

∑
j∈N (i)

(
rk

ij − rk
ji

)
, for all i ∈ V, and k ∈ K. (1)

Further denote the capacity of the link from Ti to Tj as cij . Since packets
of different flows k are transmitted from Ti to Tj at rates rk

ij it must be∑
k∈K

rk
ij ≤ cij , for all (i, j) ∈ E . (2)

Unlike wireline networks where cij are fixed, link capacities in wireless
networks are dynamic since channel conditions and transmission poli-
cies change over time. Let time be divided into slots indexed by t and
denote the time-varying block fading channel between Ti and Tj at time
t as hij(t). Channel gains at different times and/or at different links are
assumed independent. Channel gains hij(t) of link (i, j) are further as-
sumed identically distributed with probability distribution function (pdf)
mhij (·). We assume no channel realization has nonzero probability,
something that is true for models used in practice. For reference, define
the vector of terminal Ti outgoing channels hi(t) := {hij(t)|j ∈ N (i)}
and the vector of all channels h(t) := {hij(t)|(i, j) ∈ E}. Denote their
pdfs as mhi(·) and mh(·), respectively.

Based on the channel state hi(t) of its outgoing links, Ti decides
whether to transmit or not on link (i, j) in time slot t by determining
the value of a scheduling function qij(t) := Qij(hi(t)) ∈ {0, 1}. If
qij(t) = 1, Ti transmits on link (i, j) and remains silent otherwise. We
further restrict Ti to communicate with, at most, one neighbor per time
slot. Upon defining qi(t) := Qi(hi(t)) :=

∑
j∈N (i)

Qij(hi(t)) to in-

dicate a transmission from Ti to some neighbor we must have qi(t) ∈
{0, 1}. We emphasize that qij(t) := Qij(hi(t)) depends on local out-
going channels only and not on global CSI. Further note that terminals
have access to local CSI hi(t), but underlying pdfs mhi(·) are unknown.

Besides channel access decisions, terminals also adapt transmis-
sion power to local CSI through a power control function pij(t) :=
Pij(hi(t)) taking values in [0, pmax

ij ]. Here, pmax
ij represents the maxi-

mum allowable instantaneous power on link (i, j). The average power
consumed by Ti is then given as the expected value over channel real-
izations of the sum of Pij(hi) over all j ∈ N (i), i.e.,

pi = Ehi

[ ∑
j∈N (i)

Pij(hi)Qij(hi)

]
. (3)

If Ti transmits to Tj in time slot t, pij(t) and hij(t) determine the trans-

mission rate through a function Cij

(
hij(t)pij(t)

)
, whose form depends
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on modulation and coding. To keep analysis general we do not restrict
Cij

(
hij(t)pij(t)

)
to a specific form. We just assume that it is a nonneg-

ative increasing function of the product hij(t)pij(t) taking finite values
for finite arguments. This restriction is lax enough to allow for discon-
tinuous rate functions that arise in, e.g., adaptive modulation and coding.

Since terminals contend for channel access, a transmission from Ti

to Tj in time slot t is successful if a collision does not occur. In turn,
this requires that: (i) Terminal i transmits to j, i.e., qij(t) = 1. (ii) Ter-
minal j is silent, i.e., qj(t) = 0. (iii) No other neighbor of j transmits,
i.e. qk(t) = 0 for all k ∈ N (j) and k �= i. Recalling the definition
of the interference neighborhood Mi(j) and that if the transmission is

successful its rate is Cij

(
hij(t)pij(t)

)
we can express the instantaneous

transmission rate from Ti to Tj in time slot t as cij(t) := cij(hi(t)) =

Cij

(
hij(t)pij(t)

)
qij(t)

∏
k∈Mi(j)

[1 − qk(t)]. Assuming an ergodic

mode of operation, the link capacity can then be written as

cij = Eh

[
Cij(hijPij(hi))Qij(hi)

∏
k∈Mi(j)

[1 − Qk(hk)]

]
. (4)

Because terminals are required to make channel access and power con-
trol decisions independently of each other, Qij(hi) and Pij(hi) are in-
dependent of Qkl(hk) and Pkl(hk) for all i �= k. Since Qk(hk) :=∑

j∈N (i)
Qkl(hk(t)) by definition, it follows that Qij(hi) is also inde-

pendent of Qk(hk) for all i �= k. This allows us to write the expectation
of the product on the right hand side of (4) as a product of expectations,

cij ≤ Ehi

[
Cij

(
hijPij(hi)

)
Qij(hi)

] ∏
k∈Mi(j)

[
1− Ehk

[
Qk(hk)

]]
. (5)

Operating points are characterized by variables xi :=
[
ak

ij , r
k
ij , cij , pi

]
and functions Pi(hi) := [Pij(hi), Qij(hi)], which are subject to box
constraints Bi [8]. We wish to find the optimal operating point for a
given wireless network G = (V, E) defined as values of variables xi and
functions Pi(hi) that satisfy constraints (1) - (4) and are optimal accord-
ing to certain criteria. In particular, we are interested in large rates ak

i

and low power consumptions pi. Define then increasing concave func-
tions Uk

i (·) representing rewards for accepting ak
i units of information

for flow k at Ti and increasing convex functions Vi(·) typifying penal-
ties for consuming pi units of power at Ti. The optimal network based
on local CSI is then defined as the solution of the optimization problem

P = max
{xi,Pi(hi)}∈Bi

∑
i∈V,k∈K

Uk
i

(
ak

i

)
−

∑
i∈V

Vi (pi) (6)

s.t. constraints (1), (2), (3), (5),

Our goal is to develop a distributed algorithm to solve (6) without
accessing the channel pdf mh(·). This is challenging because: (i) The
optimization space in (6) includes functions Qij(hi) and Pij(hi) imply-
ing that the dimension of the problem is infinite. (ii) Since the capacity
constraint (5) is non-convex and the capacity function may be even dis-
continuous, (6) is a non-convex optimization problem. (iii) Constraints
(3) and (5) involve expectations over channel states h whose pdf is un-
known. (iv) Since the transmission rate cij is determined not only by the
transmitter but also by the receiver and its neighbors [cf. (5)], solving
(6) requires a joint optimization over terminals in the network.

2.1. Problem reformulation and approximation

For reasons that will become clear in Section 3 a distributed solution
of the problem in (6) is not possible because scheduling functions
Qij(hi) and Qk(hk) are coupled as a product in constraint (5). If
we reformulate this constraint into an expression in which the terms
Cij

(
hijPij(hi)

)
Qij(hi) and 1−Qk(hk) appear as summands instead

of as factors of a product, the problem will become decomposable in

the dual domain. This reformulation can be accomplished by taking
logarithms on both sides of (5), yielding

c̃ij := log cij ≤ log Ehi

[
Cij

(
hijPij(hi)

)
Qij(hi)

]
(7)

+
∑

k∈Mi(j)

log [1 − Ehk [Qk(hk)]] ,

where we have defined c̃ij := log cij . While scheduling functions of
different terminals now appear as summands on the right hand side of
(7), the link capacity constraint (2) mutates into the non-convex con-
straint

∑
k∈K rk

ij ≤ ec̃ij . To overcome this issue, we use the lin-

ear lower bound ec̃ij ≥ 1 + c̃ij and approximate this constraint as∑
k∈K rk

ij ≤ 1 + c̃ij . Upon defining the attempted transmission rate of

link (i, j) as xij := Ehi [Cij (hijPij (hi)) Qij (hi)] and the transmis-
sion probability of Ti as yi := Ehi [Qi (hi)], the original optimization
problem P is approximated by the problem

P ≥ P̃ = max
{x̃i,Pi(hi)}∈B̃i

∑
i∈V,k∈K

Uk
i

(
ak

i

)
−

∑
i∈V

Vi (pi) (8)

s.t. ak
i ≤

∑
j∈N (i)

(
rk

ij − rk
ji

)
,

∑
k∈K

rk
ij ≤ 1 + c̃ij ,

c̃ij ≤ log xij +
∑

k∈Mi(j)

log (1 − yk) ,

xij ≤ Ehi

[
Cij

(
hijPij (hi)

)
Qij

(
hi

)]
, yi ≥ Ehi [Qi (hi)] ,

pi ≥ Ehi

[ ∑
j∈N (i)

Pij (hi) Qij (hi)

]
,

where we defined x̃i := [xi, xij , yi] and relaxed the definitions of at-
tempted transmission rate and transmission probability, which we can do
without loss of optimality. Problems (6) and (8) are not equivalent be-
cause of the linear approximation to the link capacity constraint. How-
ever, since 1 + c̃ij is a lower bound on ec̃ij , any operating point that
satisfies the constraints in (8) also satisfies the constraints in (6). In
particular, the solution of (8) is feasible in (6), although possibly sub-
optimal. Further note that variables associated with different terminals
appear as different summands of the objective and constraints of (8).
This is the signature of optimization problems amenable to distributed
implementations as we explain in the following section.

3. DISTRIBUTED STOCHASTIC OPTIMIZATION

Define vectors x̃ and P(h) grouping x̃i and Pi(hi) for all i ∈ V , and in-
troduce Lagrange multiplier Λ = [λk

i , μij , νij , αij , βi, ξi]
T , where λk

i

is associated with the flow conservation constraint, μij with the rate con-
straint, νij with the link capacity, αij with the attempted transmission
rate, βi with the transmission probability, and ξi with the average power.
The Lagrangian for the optimization problem in (8) is given by the sum
of the objective and the products of the constraints with their respective
multipliers. After reordering terms, we can write the Lagrangian as

L (x̃,P(h),Λ)=
∑
i∈V

L(1)
i (x̃i,Λ)+ Ehi

[
L(2)

i (Pi(hi),hi,Λ)
]

. (9)

The local Lagrangian component L(1)
i

(
x̃i,Λ

)
in (9) is defined as

L(1)
i (x̃i,Λ) :=

∑
k

Uk
i

(
ak

i

)
− λk

i ak
i +

∑
j∈Ni

(
λk

i − λk
j − μij

)
rk

ij

+
∑
j∈Ni

(
μij− νij

)
c̃ij +

(
ξipi− Vi(pi)

)
+

∑
j∈Ni

[νij log xij− αijxij ]

+ βiyi +

[ ∑
k∈N (i)

(
νki +

∑
l∈N (k),l�=i

νlk

)]
log(1 − yi). (10)
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ak
i (t) = argmaxamin

i
≤ak

i
≤amax

i

{
Uk

i

(
ak

i

)
− λk

i (t)ak
i

}
Transport Layer

λk
i (t + 1) =

[
λk

i (t) − ε

[∑
j∈N (i)

(
rk
ij(t) − rk

ji(t)
)
− ak

i (t)

]]+

rk
ij(t) = argmax0≤rk

ij
≤rmax

ij

{(
λk

i (t) − λk
j (t) − μij(t)

)
rk
ij

}
Network Layer

μij(t + 1) =
[
μij(t) − ε

[
1 + c̃ij(t) −

∑
k∈K rk

ij(t)
]]+

c̃ij(t) = argmax0≤c̃ij≤c̃max
ij

{μij(t)c̃ij − νij(t)c̃ij}Link Layer

νij(t + 1) =

[
νij(t) − ε

[
log xij(t) +

∑
k∈Mi(j)

log (1 − yk(t)) − c̃ij(t)

]]+

pi(t) = argmax0≤pi≤pmax
i

{ξi(t)pi − Vi (pi)}
xij(t) = argmaxxij≥0 {νij(t) log xij − αij(t)xij}

yi(t) = argmax0≤yi≤1

{
βi(t)yi +

[∑
k∈N (i)

[
νki(t) +

∑
l∈N (k),l�=i

νlk(t)

]]
log (1 − yi)

}MAC Layer

αij(t + 1) = [αij(t) − ε [Cij (hij(t)pij(t)) qij(t) − xij(t)]]
+

βi(t + 1) = [βi(t) − ε [yi(t) − qi(t)]]
+

ξi(t + 1) =

[
ξi(t) − ε

[
pi(t) −

∑
j∈N (i)

qij(t)pij(t)

]]+

{pij(t), qij(t)} = argmax
pij∈

[
0,pmax

ij

]
,qij∈{0,1}

{∑
j∈N (i)

qij [αij(t)Cij(hij(t)pij) − βi(t) − ξi(t)pij ]

}
Physical Layer

Fig. 1. Layers and layer interfaces. Layers maintain primal variables ak
i (t), rk

ij(t), c̃ij(t), pi(t), pij(t) and qij(t) while multipliers λk
i (t), μij(t),

νij(t), αij(t), βi(t) and ξi(t) and auxiliary variables xij(t) and yi(t) are associated with interfaces between adjacent layers. The proposed stochastic
subgradient algorithm can be regarded as an information exchange mechanism among different layers.

and the local per channel component L(2)
i

(
Pi(hi),hi,Λ

)
as

L(2)
i (Pi(hi),hi,Λ) := (11)∑

j∈N (i)

Qij (hi) [αijCij (hijPij (hi)) − βi − ξiPij (hi)] .

The dual function is then defined as the maximum of the Lagrangian
(9) over the set of feasible x̃i and Pi(hi) and the dual problem is the
minimum of g(Λ) over positive dual variables

D̃ = min
Λ≥0

g(Λ) = min
Λ≥0

max
{x̃i,Pi(hi)}∈B̃i

L (x̃,P(h),Λ) . (12)

Despite being non-convex, the structure of the problem in (8) is such that
P̃ = D̃ as long as the fading distribution has no realization with positive
probability [8]. This lack of duality gap implies that the finite dimen-
sional convex dual problem is equivalent to the infinite dimensional non-
convex primal problem. While this affords a substantial improvement in
computational tractability, it does not necessarily mean that solving the
dual problem is easy because evaluation of the dual function’s value re-
quires maximization of a expected value over the unknown channel dis-
tribution mhi(hi). Still, convexity of the dual function allows the use of
descent algorithms in the dual domain. This property is exploited next to
develop a stochastic subgradient descent algorithm that solves (12) using
observations of instantaneous channel realizations hi(t).

3.1. Stochastic Subgradient Descent

Starting from given dual variables Λ(t), for each terminal i the algo-
rithm computes instantaneous primal variables x̃i(t) and Pi(t) based
on local channel realization hi(t) in time slot t, and uses these values to
update dual variables Λ(t+1). Specifically, the algorithm starts finding
primal variables that optimize the summands of the Lagrangian in (9)
(the operator [·]+ denotes projection in the positive orthant)

x̃i(t) = argmax
xi

{
L(1)

i (x̃i,Λ(t))
}

, (13)

Pi(t) = argmax
Pi

{
L(2)

i (Pi,hi(t),Λ(t))
}

. (14)

Based on x̃i(t) and Pi(t), define the stochastic subgradient s(t) whose

components are the instantaneous constraints violation in problem P̃; see
Fig. 1. Complete the algorithm by introducing a step size ε and a descent
update in the dual domain along the stochastic subgradient s(t)

Λ(t + 1) = [Λ(t) − εs(t)]+ . (15)

Specific expressions for the maximizations in (13) and (14) and for s(t)
in (15) are given in Fig. 1 and explained in Section 3.2.

The proposed algorithm consists of iterative application (13)-(15).
Its outcome is a time sequence of network operating points ak

i (N),
rk

ij(N), cij(N), pi(N), qij(N) and pij(N). It can be shown that the
expected value of the stochastic subgradient s(t) is a subgradient of the
dual function [7] which implies that, on average, s(t) points towards the
set of optimal dual variables Λ∗. Thus, it is reasonable to expect iterates
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of (13)-(15) to approach Λ∗ in some sense. While this can be proved
true and leveraged to prove almost sure convergence of primal iterates
x̃(t) to an optimal operating point of problem (8) in an ergodic sense [7],
it is not clear whether the ergodic averages of x̃(t) are also feasible for
the original problem (6). The reason for this mismatch is that constraints
in (8) are satisfied in an ergodic, i.e., time average, sense. When these
ergodic limits are substituted into the capacity expression in (4) we end
up with a product of ergodic limits that cannot be equated to the ergodic
limit of the product. This issue is resolved in the proof of the following
theorem to claim almost sure feasibility and utility yield close to P in an
ergodic sense – See [8] for the proof.

Theorem 1 Consider a wireless network G = (V, E) with random ac-
cess in the physical layer and sequences of network operating points
ak

i (N), rk
ij(N), cij(N), pi(N), qij(N) and pij(N) generated by algo-

rithm (13) - (15). Assume that the second moment of the norm of the
stochastic subgradient s(t) is finite, i.e., Eh

[
‖s(t)‖2

∣∣Λ(t)
]
≤ Ŝ2, and

that there exists a set of strictly feasible primal variables that satisfy the
constraints in problem P̃ with strict inequality. Then,
(i) Almost sure feasibility. The constraints (1) - (4) in problem P are
almost surely satisfied in an ergodic sense.
(ii) Almost sure near optimality. The ergodic average of of the util-
ity almost surely converges to a value with optimality gap smaller than

εŜ2/2 with respect to P̃.

As per Theorem 1, the algorithm in Fig. 1 does not find the optimal
scheduling and power allocation functions Qij(hi) and Pij(hi). Rather,
it generates instantaneous schedules and power allocations based on lo-
cal channel states hi(t) that are optimal in an ergodic sense. This is not
a drawback because the latter property is sufficient for a practical imple-
mentation. Further note that the use of constant step sizes ε endows the
algorithm with adaptability to time-varying channel distributions.

3.2. Layers, Layer Interfaces, and message passing

The maximization of the local Lagrangian component L(1)
i

(
x̃i,Λ

)
re-

quired in (13) can be separated into separate maximizations with respect
to ak

i , rk
ij , cij , pi, xij , and yi [cf. (10)]. The corresponding maximiza-

tions are shown as the transport, network, link and MAC layers in Fig. 1.
Notice that each of these maximizations involves a single variable. The

maximization of the local per channel component L(2)
i

(
Pi(hi),hi,Λ

)
required in (14) determines the optimal schedules qij(t) and instanta-
neous power allocations pij(t). This is shown as the physical layer in
Fig. 1 and cannot be decomposed further. Notice however that at most
one of the scheduling variables can be 1. Therefore, the maximization
can be easily accomplished by determining which of the variables qij(t)

has to be set to 1 in order to maximize L(2)
i

(
Pi(hi),hi,Λ

)
. If the

maximum turns out negative, it is optimal to set all qij(t) to 0.
The dual updates in (15) require computation of the stochastic

subgradient defined as the value of the instantaneous constraint viola-
tions corresponding to the Lagrangian maximizers computed in (13)
and (14). The multiplier λk

i is associated with the flow conserva-
tion constraint. Therefore, the corresponding subgradient is given as∑

j∈N (i)

(
rk

ij(t) − rk
ji(t)

)
− ak

i (t). This is shown as an interface

between the transport and network layer. The rationale for this archi-
tectural arrangement is that the λk

i update uses variables associated
with the transport and network layer. We can similarly determine the
updates for μij and νij as we respectively do in the interfaces between
the link and network layer and between the MAC and link layers. The
updates on αij , βi, and ξij are slightly different because their associated
constraints involve expected values with respect to the channel pdf. In
this case the stochastic subgradient is not the constraint violation, but
its instantaneous value associated with the current channel realization.
E.g., the stochastic subgradient along the βi direction is yi(t) − qi(t)
instead of the expected value of yi(t) − qi(t). Likewise the stochastic

subgradient associated with αij is Cij (hij(t)pij(t)) qij(t) − xij(t),
and the one associated with ξij is pi(t) −

∑
j∈N (i)

pij(t)qij(t). All

of these dual updates are shown as part of the interface between the
physical and MAC layers.

In Fig. 1 computation of primal and dual variables can be done
locally at Ti except for rk

ij(t), λk
i (t), νij(t) and yi(t) that require infor-

mation from neighboring terminals. This implies that a message pass-
ing mechanism among terminals is needed. At the beginning of pri-
mal iterations, Ti transmits λk

i (t) and νij(t) to its neighbors and cor-
respondingly receives these two multipliers from each of its neighbors.
It then broadcasts

∑
k∈N (i)

νki(t) to neighboring nodes. Subsequently,

Tj subtracts νji(t) from this sum to obtain
∑

k∈N (i),k �=j
νki(t). Mul-

tipliers required for computing primal variables are now available and
the layers proceed to update their primal variables. Primal variables are
now exchanged between neighboring terminals to proceed with dual up-
dates. Specifically, Ti passes variables yi(t) and rk

ij(t) to all its neigh-
bors and proceeds to broadcast the sum of all the yk(t) received in this
exchange, i.e.

∑
k∈N (i)

yk(t). Upon receiving this information, Tj adds

yi(t) and subtracts yj(t) from this sum to obtain
∑

k∈Mj(i)
yk(t) =∑

k∈N (i)
yk(t) + yi(t)− yj(t). Dual updates are now performed at the

interfaces and we proceed to the next iteration.

4. CONCLUSION

We developed algorithms for optimal design of wireless networks using
local channel state information. Due to the time-varying nature of fading
states, random access is the natural medium access choice leading to the
formulation of an optimization problem for random access networks. To
obtain a distributed solution, we approximated the problem so that it can
be decomposed in the dual domain and developed a stochastic subgradi-
ent descent algorithm. Based on instantaneous local channel conditions,
the algorithm finds network operating points that are almost surely fea-
sible and optimal in an ergodic sense. In addition, the solution exhibits a
layered architecture in which variables in each layer are computed using
information from interfaces to adjacent layers.
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