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Abstract—This paper considers distributed algorithms to optimize
random access multihop wireless networks in the presence of fading.
Since the associated optimization problem is neither convex nor
amenable to distributed implementation, a problem approximation
is introduced. This approximation is still not convex but it has zero
duality gap and can be solved and decomposed into local subproblems
in the dual domain. The solution method is through a stochastic
subgradient descent algorithm that operates without knowledge of
the fading’s probability distribution and leads to an architecture
composed of layers and layer interfaces. With limited amount of
message passing among terminals and small computational cost, the
proposed algorithm converges almost surely in an ergodic sense.
Numerical results on a randomly generated network corroborate
theoretical results. 1

Index Terms—Wireless networking, cross-layer design, random
access.

I. INTRODUCTION

Optimal design is emerging as the future paradigm for wireless
networking. The fundamental idea is to select operating points as
solutions of optimization problems, which, inasmuch as optimiza-
tion criteria are properly chosen, yield the best possible network.
Results in this field include architectural insights, e.g., [2], and
protocol design, e.g., [3], but a drawback shared by most of these
works is that they rely on global channel state information (CSI);
i.e., the optimal variables of a terminal depend on the channels
between all pairs of terminals in the network. While availability
of global CSI is plausible in certain situations, it is unlikely to
hold if time varying fading channels are taken into account.

We consider optimal design of wireless networks in the more
practical situation where, due to the presence of random fading,
only local CSI is available. This restriction implies that operating
variables of each terminal are selected as functions of the channels
linking the terminal with neighboring nodes and further leads
to the selection of random access as the natural medium access
choice. Indeed, if transmission decisions depend on local channels
only and these channels are random and independent for different
terminals, transmission decisions can be viewed as random. Thus,
we can restate our goal as the development of algorithms to find
optimal operating points of wireless random access networks in the
presence of fading. Operating points are characterized by external
arrival rates, routes, link capacities, average power consumptions,
channel access decisions, and power allocations. Our goal is to
select these variables to be optimal in terms of ergodic averages.

Optimal design of multihop random access networks has been
considered in [4]–[6]. Assuming that capacities of links in the

1Work in this paper is supported by ARO P-57920-NS and NSF CAREER CCF-
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network are fixed and that terminals transmit with certain prob-
abilities without coordination, these works focus on computing
terminal transmission probabilities that are optimal in some sense.
E.g., distributed algorithms are proposed in [4] for achieving
proportionally fair utility, and in [5] for general utility functions.
To reduce algorithm complexity and increase convergence speed,
several enhancements are discussed in [6]. However, optimization
across fading states is not considered in any of these works.

Adapting transmission decisions to random fading states has
been considered in the particular case of random multiple access
protocols [7]–[10]. In this case it is known that a threshold-based
policy in which terminals transmit when their channels exceed a
threshold and stay silent otherwise is optimal. This was originally
proved for simple collision model [7], and later extended to other
scenarios with different packet reception assumptions [8]–[10].
Since these works consider single hop wireless networks they
do not apply directly to the multihop wireless fading networks
considered here. An existing approach to optimal multihop random
access is [11] where threshold-based policies are applied in multi-
hop random access networks. Our work differs from [11] in that:
(i) While routes are fixed in [11] we consider them as variables
to be optimized. (ii) While terminals in [11] are assumed to have
access to the channels’ probability distributions, we develop online
algorithms that operate without this prior knowledge.

This paper builds on recent results showing that non-convex
wireless networking optimization problems have null duality gap
as long as the probability distributions of underlying fading
channels have no points of strictly positive measure [12]. Given
this result it is possible to develop stochastic subgradient descent
algorithms in the dual domain that have been proven optimal in
an ergodic almost sure sense [13]. Our goal is to apply [12]
and [13] to a scenario where only local CSI is available and
random access is used at the physical layer. To do so we begin
by introducing an optimization problem that defines the optimal
random access network (Section II). Since this problem is not
amenable to distributed implementation we proceed to a subopti-
mal approximation through a problem that while still not convex
has zero duality gap [12] (Section II-B). We further observe that
solution is simpler in the dual domain – and equivalent because of
the lack of duality gap – and proceed to develop stochastic dual
descent algorithms that converge to the optimal operating point
(Section III). Results on ergodic stochastic optimization from [13]
are finally leveraged to show that the proposed algorithm yields
operating points that are almost surely close to optimal (Section
IV). Numerical results and concluding remarks are presented in
Sections V and VI.

978-1-4577-1818-2/11/$26.00 ©2011 IEEE 800

Forty-Ninth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 28 - 30, 2011



II. PROBLEM FORMULATION

Consider an ad-hoc wireless network consisting of J terminals
denoted by {Tj}Jj=1. Network connectivity is modeled as a graph
G = (V, E) with vertices v ∈ V := {1, . . . , J} representing
the J terminals and edges e = (i, j) ∈ E connecting pairs
of terminals that can communicate with each other. Denote the
neighborhood of terminal i as N (i) := {j | (i, j) ∈ E} and define
the interference neighborhood of the link (i, j) as the set of nodes
Mi(j) := N (j)∪ {j}\{i} whose transmission can interfere with
a transmission from i to j. The network supports a set K :=
{1, . . . ,K} of end-to-end flows through multihop transmission.
The average rate at which k-flow packets are generated at i is
denoted by aki . Terminal i transmits these packets to neighboring
terminals at average rates rkij and, consequently, receives k-flow
packets from neighbors at average rates rkji. To conserve flow,
exogenous rates aki and endogenous rates rkij at terminal i must
satisfy

aki ≤
∑

j∈N (i)

(
rkij − rkji

)
, for all i ∈ V, and k ∈ K. (1)

Further denote the capacity of the link from i → j as cij . Since
packets of different flows k are transmitted from i to j at rates
rkij it must be ∑

k∈K

rkij ≤ cij , for all (i, j) ∈ E . (2)

Unlike wireline networks where cij are fixed, link capacities in
wireless networks are dynamic. Let time be divided into slots
indexed by t and denote the time-varying block fading channel
between i and j at time t as hij(t). Channel gains at different times
and/or at different links are assumed independent. Channel gains
hij(t) of link (i, j) are further assumed identically distributed
with probability distribution function (pdf) mhij (·). We assume
no channel realization has nonzero probability, something that is
true for models used in practice. For reference, define the vector
of terminal i outgoing channels hi(t) := {hij(t)|j ∈ N (i)} and
the vector of all channels h(t) := {hij(t)|(i, j) ∈ E}. Denote
their pdfs as mhi(·) and mh(·), respectively.

Based on the channel state hi(t) of its outgoing links, ter-
minal i decides whether to transmit or not on link (i, j) in
time slot t by determining the value of a scheduling function
qij(t) := Qij(hi(t)) ∈ {0, 1}. If qij(t) = 1, terminal i transmits
on link (i, j) and remains silent otherwise. Further define qi(t) :=
Qi(hi(t)) :=

∑
j∈N (i)Qij(hi(t)) to indicate a transmission from

i to any of its neighbors. We restrict i to communicate with, at
most, one neighbor per time slot implying that we must have
qi(t) ∈ {0, 1}. We emphasize that qij(t) := Qij(hi(t)) depends
on local outgoing channels only and not on global CSI. Further
note that terminals have access to instantaneous local CSI hi(t)
but underlying pdfs mhi

(·) are unknown.
Besides channel access decisions, terminals also adapt trans-

mission power to local CSI through a power control function
pij(t) := Pij(hi(t)) taking values in [0, pmax

ij ]. Here, pmax
ij

represents the maximum allowable instantaneous power on link
(i, j). The average power consumed by terminal i is then given as
the expected value over channel realizations of the sum of Pij(hi)

over all j ∈ N (i), i.e.,

pi ≥ Ehi

[ ∑
j∈N (i)

Pij(hi)Qij(hi)
]
. (3)

If terminal i transmits to node j in time slot t, pij(t) and hij(t) de-
termine the transmission rate through a function Cij

(
hij(t)pij(t)

)
whose form depends on modulation and coding. To keep analysis
general we do not restrict Cij

(
hij(t)pij(t)

)
to a specific form.

We just assume that it is a nonnegative increasing function of
the signal to noise ratio (SNR) hij(t)pij(t) taking finite values
for finite arguments. This restriction is lax enough to allow for
discontinuous rate functions that arise in, e.g., adaptive modulation
and coding.

Due to contention, a transmission from i to j at time t
succeeds if a collision does not occur. In turn, this happens if:
(i) Terminal i transmits to j, i.e., qij(t) = 1. (ii) Terminal j is
silent, i.e., qj(t) = 0. (iii) No other neighbor of j transmits, i.e.
ql(t) = 0 for all l ∈ N (j) and l 6= i. Recalling the definition
of interference neighborhood Mi(j) and that if a transmission
occurs its rate is Cij

(
hij(t)pij(t)

)
we express the instantaneous

transmission rate from i to j in time slot t as cij(t) :=
cij(hi(t)) = Cij

(
hij(t)pij(t)

)
qij(t)

∏
l∈Mi(j)

[1− ql(t)]. As-
suming an ergodic mode of operation, the capacity of link i→ j
can then be written as

cij = Eh

[
Cij(hijPij(hi))Qij(hi)

∏
l∈Mi(j)

[1−Ql(hl)]
]
. (4)

Because terminals are required to make channel access and
power control decisions independently of each other, Qij(hi) and
Pij(hi) are independent of Qlm(hl) and Plm(hl) for all i 6= l.
Since Ql(hl) :=

∑
m∈N (l)Qlm(hl(t)) by definition, it follows

that Qij(hi) is also independent of Ql(hl) for all i 6= l. This
allows us to write the expectation of the product on the right
hand side of (4) as a product of expectations,

cij≤Ehi

[
Cij
(
hijPij(hi)

)
Qij(hi)

] ∏
l∈Mi(j)

[
1−Ehl

[
Ql(hl)

]]
, (5)

where we also relaxed the equality constraint to an inequality,
which can be done without loss of optimality.

The operating point of a wireless network is characterized
by variables aki , rkij , cij , pi and functions Pij(hi), Qij(hi).
Besides, (1)-(3) and (5) these variables are subject to certain box
constraints. Admission variables, have lower and upper bounds
due to application layer requirements, i.e., amin

i ≤ aki ≤ amax
i .

Similarly, routing variables, link capacities, and terminal power
budgets cannot be negative and are also subject to given upper
bounds, i.e., 0 ≤ rkij ≤ rmax

ij , 0 ≤ cij ≤ cmax
ij , and 0 ≤ pi ≤ pmax

i .
Furthermore, according to definition, Pij(hi) and Qij(hi) can
only take values from [0, pmax

ij ] and {0, 1}, respectively. For
notational simplicity, we define vectors xi := [akij , r

k
ij , cij , pi]

and Pi(hi) := [Pij(hi), Qij(hi)] to group all the variables
related to terminal i and summarize these box constraints as
{xi,Pi(hi)} ∈ Bi with

Bi :=
{

xi,Pi(hi) : amin
i ≤ aki ≤ amax

i , 0 ≤ rkij ≤ rmax
ij ,

0 ≤ cij ≤ cmax
ij , 0 ≤ pi ≤ pmax

i ,

0 ≤ Pij(hi) ≤ pmax
ij , Qij(hi) ∈ {0, 1}, Qi(hi) ∈ {0, 1}

}
.

(6)
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A. Optimal operating point

As network designers, we wish to find the optimal operating
point of the wireless network defined as a set of variables aki ,
rkij , cij , pi and functions Qij(hi), Pij(hi) that satisfy constraints
(1)-(3), (5), and (6) and are optimal according to certain criteria.
In particular, we are interested in large rates aki and low power
consumptions pi. Define then increasing concave functions Uki (·)
representing rewards for accepting aki units of information for flow
k at terminal i and increasing convex functions Vi(·) typifying
penalties for consuming pi units of power at i. The optimal
network based on local CSI is then defined as the solution of

P = max
{xi,Pi(hi)}∈Bi

∑
i∈V,k∈K

Uki
(
aki
)
−
∑
i∈V

Vi(pi) (7)

s.t. constraints (1), (2), (3), (5).

Our goal is to develop a distributed algorithm to solve (7) without
accessing the channel pdf mh(·). This is challenging because:
(i) The optimization space in (7) includes functions Qij(hi) and
Pij(hi) implying that the dimension of the problem is infinite. (ii)
Since the capacity constraint (5) is non-convex and the capacity
function may be even discontinuous, (7) is a non-convex optimiza-
tion problem. (iii) Constraints (3) and (5) involve expectations
over channel states h whose pdf is unknown. (iv) The fact that
the transmission rate cij is determined not only by the transmitter
but also by the receiver and its neighbors [cf. (5)] hinders the
development of distributed optimization algorithms.

Notice that the number of constraints in (7) is finite. This
implies that while there are infinite number of variables in the
primal domain, there are a finite number of variables in the
dual domain. Thus, while working in the dual domain may
entail some loss of optimality due the non-convex constraints in
(7), it does overcome challenge (i) because the dual function is
finite dimensional. It also overcomes challenge (ii) since the dual
function is always convex, while challenge (iii) can be solved
by using stochastic subgradient descent algorithms on the dual
function; see e.g., [14] and [13]. However, working with the dual
problem of (7) does not conduce to a distributed optimization
algorithm due to the coupling introduced by constraint (5). This
prompts the introduction of a decomposable approximation that
we pursue in the next section.

B. Problem approximation

For reasons that will become clear in Section III a distributed
solution of the problem in (7) is not possible because scheduling
functions Qij(hi) and Ql(hl) are coupled as a product in con-
straint (5). If we reformulate this constraint into an expression in
which the terms Cij

(
hijPij(hi)

)
Qij(hi) and 1 − Ql(hl) appear

as summands instead of as factors of a product the problem will
become decomposable in the dual domain. This reformulation
can be accomplished by taking logarithms on both sides of (5),
yielding

c̃ij := log cij ≤ log Ehi

[
Cij
(
hijPij(hi)

)
Qij(hi)

]
+

∑
l∈Mi(j)

log [1− Ehl
[Ql(hl)]] , (8)

where we defined c̃ij := log cij . While scheduling functions of
different terminals now appear as summands on the right hand

side of (8), the link capacity constraint (2) mutates into the non-
convex constraint

∑
k∈K r

k
ij ≤ ec̃ij . To avoid this issue we use the

linear lower bound 1 + c̃ij ≤ ec̃ij and approximate this constraint
as
∑
k∈K r

k
ij ≤ 1 + c̃ij . Upon defining the average attempted

transmission rate of link (i, j) as

xij := Ehi
[Cij (hijPij (hi))Qij (hi)] , (9)

and the transmission probability of terminal i as

yi := Ehi
[Qi (hi)] , (10)

the original optimization problem P is approximated by

P ≥ P̃ = max
{x̃i,Pi(hi)}∈Bi

∑
i∈V,k∈K

Uki
(
aki
)
−
∑
i∈V

Vi (pi) (11)

s.t. aki ≤
∑

j∈N (i)

(
rkij − rkji

)
,
∑
k∈K

rkij ≤ 1 + c̃ij ,

c̃ij ≤ log xij +
∑

l∈Mi(j)

log (1− yl) ,

xij ≤ Ehi

[
Cij
(
hijPij (hi)

)
Qij

(
hi
)]
, yi ≥ Ehi [Qi (hi)] ,

pi ≥ Ehi

[ ∑
j∈N (i)

Pij (hi)Qij (hi)
]
,

where we defined x̃i := [xi, xij , yi] and relaxed the definitions
of attempted transmission rate and transmission probability, which
we can do without loss of optimality. Problems (7) and (11) are not
equivalent because of the linear approximation to the link capacity
constraint. However, since 1 + c̃ij is a lower bound on ec̃ij , any
operating point that satisfies the constraints in (11) also satisfies
the constraints in (7). In particular, the solution of (11) is feasible
in (7), although possibly suboptimal. Further note that variables
associated with different terminals appear as different summands
of the objective and constraints in (11). This is the signature of
optimization problems amenable to distributed implementations as
we explain in the next section.

III. DISTRIBUTED STOCHASTIC LEARNING ALGORITHM

Define vectors x̃ and P(h) grouping x̃i and Pi(hi) for all
i ∈ V , and introduce Lagrange multiplier Λ = [λki , µij , νij ,
αij , βi, ξi]T , where λki is associated with the flow conservation
constraint, µij with the rate constraint, νij with the link capacity,
αij with the attempted transmission rate, βi with the transmission
probability, and ξi with the average power. The Lagrangian for
the optimization problem in (11) is given by the sum of the
objective and the products of the constraints with their respective
multipliers. After reordering terms, we can write the Lagrangian

L (x̃,P(h),Λ)=
∑
i∈V
L(1)
i (x̃i,Λ)+ Ehi

[
L(2)
i (Pi(hi),hi,Λ)

]
.

(12)

The local Lagrangian component L(1)
i

(
x̃i,Λ

)
in (12) is defined

as

L(1)
i (x̃i,Λ) :=

∑
k

Uki
(
aki
)
− λki aki +

∑
j∈Ni

(
λki − λkj − µij

)
rkij

+
∑
j∈Ni

(
µij− νij

)
c̃ij +

(
ξipi− Vi(pi)

)
+
∑
j∈Ni

[νij log xij− αijxij ]

+ βiyi +
[ ∑
k∈N (i)

(
νki +

∑
l∈N (k),l 6=i

νlk

)]
log(1− yi). (13)
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ak
i (t) = argmaxamin

i
≤ak

i
≤amax

i
Uk

i

(
ak

i

)
− λk

i (t)ak
iTransport Layer

λk
i (t+ 1) =

[
λk

i (t)− ε
[∑

j∈N (i)

(
rk
ij(t)− r

k
ji(t)

)
− ak

i (t)

]]+
rk
ij(t) = argmax0≤rk

ij
≤rmax

ij

(
λk

i (t)− λk
j (t)− µij(t)

)
rk
ijNetwork Layer

µij(t+ 1) =
[
µij(t)− ε

[
1 + c̃ij(t)−

∑
k∈K r

k
ij(t)

]]+
c̃ij(t) = argmax0≤c̃ij≤c̃max

ij
µij(t)c̃ij − νij(t)c̃ij , cij(t) = 1 + c̃ij(t)Link Layer

νij(t+ 1) =

[
νij(t)− ε

[
log xij(t) +

∑
l∈Mi(j)

log (1− yl(t))− c̃ij(t)
]]+

pi(t) = argmax0≤pi≤pmax
i

ξi(t)pi − Vi (pi)

xij(t) = argmaxxij≥0 νij(t) log xij − αij(t)xij

yi(t) = argmax0≤yi≤1 βi(t)yi +

[∑
j∈N (i)

[
νji(t) +

∑
l∈Mi(j)

νlj(t)

]]
log (1− yi)

MAC Layer

αij(t+ 1) = [αij(t)− ε [Cij (hij(t)pij(t)) qij(t)− xij(t)]]
+

βi(t+ 1) = [βi(t)− ε [yi(t)− qi(t)]]+

ξi(t+ 1) =

[
ξi(t)− ε

[
pi(t)−

∑
j∈N (i)

qij(t)pij(t)

]]+
{pij(t), qij(t)} = argmax

pij∈
[
0,pmax

ij

]
,qij∈{0,1}

∑
j∈N (i)

qij [αij(t)Cij(hij(t)pij)− βi(t)− ξi(t)pij ]Physical Layer

Fig. 1. Layers and layer interfaces. The stochastic subgradient descent algorithm in terms of layers and layer interfaces. Layers maintain primal variables ak
i (t),

rk
ij(t), c̃ij(t), pij(t), qij(t) as well as auxiliary variables pi(t), xij(t), and yi(t) while multipliers λk

i (t), µij(t), νij(t), αij(t), βi(t) and ξi(t) are associated
with interfaces between adjacent layers. Primal variables can be easily computed based on multipliers from interfaces to adjacent layers and dual variables are updated
using information from adjacent layers.

and the local per channel component L(2)
i

(
Pi(hi),hi,Λ

)
as

L(2)
i (Pi(hi),hi,Λ) := (14)∑

j∈N (i)

Qij (hi) [αijCij (hijPij (hi))− βi − ξiPij (hi)] .

The dual function is then defined as the maximum of the La-
grangian (12) over the set of feasible x̃i and Pi(hi) and the dual
problem is the minimum of g(Λ) over positive dual variables

D̃ = min
Λ≥0

g(Λ) = min
Λ≥0

max
{x̃i,Pi(hi)}∈B̃i

L (x̃,P(h),Λ) . (15)

The separability on per-terminal terms L(1)
i

(
x̃i,Λ

)
and per-

terminal and per-channel elements L(2)
i

(
Pi(hi),hi,Λ

)
is ex-

ploited in the next section to develop a distributed stochastic
subgradient descent algorithm on the dual domain that solves the
dual problem (15) and, indirectly, the primal problem (11).

A. Stochastic subgradient descent

Starting from given dual variables Λ(t), for each terminal i
the algorithm computes instantaneous primal variables x̃i(t) and
Pi(t) based on local channel realization hi(t) in time slot t, and
uses these values to update dual variables Λ(t+ 1). Specifically,
the algorithm starts finding primal variables that optimize the

summands of the Lagrangian in (12) (the operator [·]+ denotes
projection in the positive orthant)

x̃i(t) = argmax
xi

{
L(1)
i (x̃i,Λ(t))

}
, (16)

Pi(t) = argmax
Pi

{
L(2)
i (Pi,hi(t),Λ(t))

}
. (17)

Based on x̃i(t) and Pi(t), define the stochastic subgradient s(t)
whose components are the instantaneous constraints violation in
problem P̃; see Fig. 1. Complete the algorithm by introducing a
step size ε and a descent update in the dual domain along the
stochastic subgradient s(t)

Λ(t+ 1) = [Λ(t)− εs(t)]+ . (18)

Specific expressions for the maximizations in (16) and (17) and
for s(t) in (18) are given in Fig. 1.

B. Network operation, layers, and layer interfaces

]To describe the role of different variables in the network’s
operation it is convenient to think in terms of a layered architecture
with aki (t) associated with the transport layer, rkij(t) with the
network layer, cij(t) with the link layer, xij(t), yi(t), and pi(t)
with the medium access (MAC) layer, and pij(t) and qij(t) with
the physical layer; see Fig. 1.
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Transport Layer Queues Network Layer Queues Link Layer Queues Physical Layer Queues

ak1
i (t)

ak2
i (t)

rk1
ij1

(t)

rk1
ij2

(t)

rk2
ij2

(t)

rk2
ij1

(t)

cij1 (t)

cij2 (t)

Tx/Rx

Cij1 (pij1 (t)hij1 (t))

Cij2 (pij2 (t)hij2 (t))

Fig. 2. Queue dynamics. Terminal i operates by controlling queues in different layers based on operating points ak
i (t), rk

ij(t), cij(t), pij(t) and qij(t). In the
transport layer and the network layer, each flow k has a queue. In the link layer and the physical layer, each outgoing link (i, j) maintains a queue. In this particular
example, there are two flows k1 and k2 and there are two neighboring nodes j1 and j2. Packets for flow k1 are marked red while packets for k2 are in blue.

Variables aki (t), rkij(t), cij(t), pij(t) and qij(t) determine
network operation by controlling the flow of packets through
queues associated with their corresponding layers; see Fig. 2. In
the transport and network layers there are queues associated with
each of the |K| flows. In the link and physical layers, queues for
each of the |N (i)| outgoing links (i, j) are maintained. The value
of aki (t) determines how many packets are moved from the k-flow
queue in the transport layer to the k-flow queue at the network
layer at time t. The number of packets transferred at time t from
the k-flow network layer queue to the (i, j) queue at the link layer
is determined by rkij(t). Notice that packets of a particular queue
in the network layer may be distributed to different queues in the
link layer. Conversely, packets in a particular queue in the link
layer may come from different network layer queues, i.e., they
may belong to different flows. At time t there are cij(t) packets
moved from the (i, j) queue at the link layer to the (i, j) queue
at the physical layer.

At the physical layer queues are emptied through transmission
to neighboring terminals. Resource allocation variables qij(t)
and pij(t) determine the scheduling and transmitted power of
link (i, j). If a transmission is scheduled and successful, i.e., a
collision does not occur, Cij(hij(t)pij(t)) units of information
are transferred to terminal j from the (i, j) physical layer queue
at terminal i. If a collision occurs, they stay at the same queue
awaiting retransmission in a future time slot. When a packet
is successfully decoded by terminal j it determines which flow
they belong to and what destination they are heading for. If the
terminal happens to be the destination, packets are forwarded
to the application layer. If the terminal is not the designated
destination, packets are put into a network layer queue according
to their flow identifications.

Besides administering queues, layers are also responsible for
updating the values of their corresponding primal variables accord-
ing to (16)-(17); see Fig. 1. The transport layer updates aki (t), the
network layer keeps track of rkij(t), while the link layer computes
c̃ij(t) and cij(t). The MAC layer updates pi(t), xij(t) and yi(t),
while the physical layer determines pij(t) and qij(t).

Computation of these primal per layer updates necessitates
access to Lagrange multipliers motivating the introduction of
layer interfaces to maintain and update their values. E.g., since
λkij(t) is associated with the flow conservation constraint that
relates transport variables aki (t) and network variables rkij(t) it
provides a natural interface between the transport and network
layers. Thus, we introduce a transport-network interface tasked
with computing the dual stochastic subgradient component and
executing the update for λki (t). Similarly, a network-link interface

is introduced to keep track of multipliers µij(t) and execute
the corresponding update. A link-MAC interface does the proper
for multipliers νij(t). Likewise, the remaining multipliers αij(t),
βi(t) and ξi(t) provide a MAC-physical interface. Observe that
primal variables are updated with information available at adja-
cent interfaces, while dual variable updates are undertaken with
information available at adjacent layers. Their definition is thereby
justified, because information is exchanged only between adjacent
layers and interfaces.

We remark that MAC layer variables xij(t), yi(t), and pi(t)
do not affect network operation, i.e., queue dynamics, at time
t. The role of these variables is to record average behaviors of
the terminal to affect determination of cij(t), pij(t), and qij(t) in
subsequent time slots. This role is consistent with the definitions of
pi as the the average transmitted power [cf. (3)], xij as the average
attempted transmission rate [cf. (9)], and yi as the (average)
transmission probability [cf. (10)].

C. Message passing

Most primal and dual variable updates in Fig. 1 can be done
locally at terminal i. E.g., the physical layer update at terminal
i requires access to multipliers αij(t), βi(t), and ξi(t) which
are available at the physical-MAC interface of terminal i. The
updates for primal variables rkij(t) and yi(t), as well as duals
λkij(t) and νij(t), however, necessitate access to variables of other
terminals. The update of multiplier λki (t) at the network-transport
interface depends on network variables rkij(t) and aki (t) which are
available at terminal i, but also on the variable rkji(t) available
at (neighboring) terminal j. Similarly, the rkij(t) update at the
network layer depends on locally available multipliers λki (t) and
µij(t), but also on the neighboring multiplier λkj (t). The update
of multiplier νij(t) is somewhat more complex as it depends on
local variables xij(t) and c̃ij(t), 1-hop neighborhood variables
yj(t), and 2-hop neighborhood variables yl(t) for all l ∈ N (j).
Likewise, the update for yi(t) at the MAC layer depends on local
dual variables βi(t), 1-hop neighborhood variables νji(t) for all
j ∈ N (i), and 2-hop neighboring variables νlj(t) for all l ∈ N (j)
in the neighborhood of j for some j ∈ N (i) in the neighborhood
of i. Therefore, implementation of these four updates requires
sharing appropriate variables with 1-hop and 2-hop neighbors.

Given that these four updates depend on quantities available
at 1-hop and 2-hop neighbors it is necessary to devise a message
passing mechanism among terminals to share the necessary values.
At the beginning of primal iteration, terminal i transmits λki (t) and
νij(t) to all its neighbors j ∈ N (i). As a result, terminal i receives
multipliers λkj (t) and νji(t) from all of their neighbors j ∈ N (i).
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Terminal i follows by computing and broadcasting the term∑
l∈N (i) νli(t) to all its neighbors j ∈ N (i). Upon receiving this

information, terminal j subtracts νji(t) from the received value to
evaluate the expression

∑
l∈N (i),l 6=j νli(t). The terms required for

computing primal variables rkij(t) and yi(t) are now available at
i. Since the variables necessary for the remaining primal updates
are locally accessible the primal iterations associated with all the
layers in Fig.1 are performed at each terminal.

After completing the layer updates, primal iterates rkij(t) and
yi(t) need to be exchanged between neighbors to perform the dual
updates associated with the layer interfaces in Fig.1. Terminal
i starts passing variables yi(t) and rkij(t) to all its neighbors.
Having received yj(t) from all j ∈ N (i) terminal i computes and
broadcasts the sum

∑
l∈N (i) yl(t) to all its neighbors. With this

information in hand terminal j adds yi(t) and subtracts yj(t) from
this value to evaluate

∑
l∈Mj(i) yl(t) =

∑
l∈N (i) yl(t) + yi(t) −

yj(t). Quantities necessary to update λki (t) and νij(t) are now
available along with the terms necessary for the remaining dual
updates that were locally available. The dual updates associated
with the layer interfaces in Fig.1 are now performed and we
proceed to the next primal iteration.

We remark that rkij(t) and λki (t) are transmitted to 1-hop
neighbors, whereas yi(t) and νij(t) are sent to 2-hop neighbors.
This latter fact holds because transmissions of a given terminal
can interfere with neighbors two hops away from her.

D. Successive convex approximation

As mentioned in the problem reformulation in Sec. II-B, we a
use linear lower bound to approximate the capacity constraint. In
general, we can use a concave function fij(c̃ij) which is smaller
than ec̃ij to approximate ec̃ij . As a result, instead of directly com-
puting link capacity variable cij(t), an approximated version c̃ij(t)
is calculated in the primal iteration. In the network operation, the
link capacity cij(t) = fij c̃ij(t) is used in the link layer. While this
approximation convexifies the capacity constraint and provides a
feasible solution to the original problem, it reduces the size of
the feasible set of primal variables. This implies that this obtained
link capacity cij(t) may not be optimal to the original problem.
To reduce its impact on optimality, we use different fij(c̃ij) at
different time slots and hope the approximations become better
as time grows. Define then ¯̃cij(t) := 1/t

∑t
u=1 c̃ij(u) and lower

bound ec̃ij(t+1) with the first order approximation

ec̃ij(t+1) ≥ e¯̃cij(t)c̃ij(t+ 1) + e
¯̃cij(t) [1− ¯̃cij(t)] . (19)

Notice that the right hand side of (19) is a linear function of
c̃ij(t + 1) and thus concave. We can then choose f (t+1)

ij (c̃ij) =
e

¯̃cij(t)c̃ij+e¯̃cij(t) [1− ¯̃cij(t)] to approximate ec̃ij at time slot t+1.

IV. FEASIBILITY AND OPTIMALITY

Solving the optimization problem in (7) entails finding optimal
variables x∗i , and power allocations P∗i (hi) that satisfy prob-
lem constraints and offer optimal yield P. This would require
knowledge of the channels’ probability distributions and a joint
optimization among terminals. To overcome these restrictions and
develop an adaptive distributed solution, we reformulated the
problem as in (11) entailing a performance degradation to P̃ ≤ P.
This reformulation permits introduction of the dual stochastic
subgradient descent algorithm, defined by recursive application of

(16)-(18), that produces a sequence of network operating points
xi(N) and Pi(N) – as well as sequences of auxiliary variables
xij(N) and yi(N) – which given results in [13] are expected to
be almost surely feasible and give a utility yield close to P̃ in
an ergodic sense. Notice however, that since (16)-(18) descends
on the dual function of the reformulated problem, feasibility
holds with respect to the constraints in (11). Our main intent
here is to show that sequences of operating points xi(N) and
Pi(N) generated by (16)-(18) are also feasible for the optimization
problem in (7). Specifically, our goal is to prove the following
theorem.

Theorem 1 Consider a wireless network G(V, E) using random
access at the physical layer so that ergodic link capacities are
as given in (5). Let aki (N), rkij(N), cij(N), pi(N), qij(N) and
pij(N) be sequences of network operating points generated by
the stochastic descent algorithm in (16)-(18) and denote as āki ,
r̄kij , c̄ij , and p̄i the corresponding ergodic limits of aki (N), rkij(N),
cij(N), and pi(N). Assume the following hypotheses: (h1) The
second moment of the norm of the stochastic subgradient s(t) is
finite, i.e., Eh

[
‖s(t)‖2

∣∣Λ(t)
]
≤ Ŝ2. (h2) There exists a set of

strictly feasible primal variables that satisfy the constraints of the
reformulated optimization problem in (11) with strict inequality.
(h3) The dual function g(Λ) of the reformulated problem as
defined in (15) has a unique minimizer Λ∗. It then holds:

(i) Near feasibility of physical layer constraints. There exists
a function M(ε) with limε→0M(ε) = 0 such that the average
transmission rate constraint in (5) is almost surely satisfied with
feasibility gap smaller than M(ε) in an ergodic sense, i.e.,

c̄ij ≤ lim
t→∞

1
t

t∑
u=1

Cij(hij(u)pij(u))qij(u)
∏

k∈Mi(j)

[1− qk(u)]


+M(ε), a.s. (20)

(ii) Feasibility of upper layer constraints. The flow conserva-
tion constraint in (1), the link capacity constraint in (2) and the
average power constraint in (3) are almost surely satisfied in an
ergodic sense, i.e.,

āki ≤
∑

j∈N (i)

[
r̄kij − r̄kji

]
,

∑
k∈K

r̄kij ≤ c̄ij , a.s., (21)

p̄i ≥ lim
t→∞

1
t

t∑
u=1

∑
j∈N (i)

pij(u)qij(u), a.s. (22)

(iii) Utility yield. The utility yield of the ergodic averages of
sequences aki (N) and pi(N) converges to a value within εŜ2/2
of P̃, i.e.,

P̃−

 ∑
i∈V,k∈K

Uki
(
āki
)
−
∑
i∈V

Vi (p̄i)

 ≤ εŜ2

2
, a.s. (23)

Proof: See [15].
The feasibility results in (21) for the flow conservation and rate

constraints are identical to (1) and (2). As such they imply that
the ergodic limits āki , r̄kij , c̄ij obtained from recursive application
of (16)-(18) satisfy these constraints with probability 1. Notice
that these limits may be different for different realizations of the
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Fig. 3. Connectivity graph of a network used in simulation. The numbers on each
edge shows the distance (in meters) between two communicating terminals.

algorithm’s run. Nonetheless, constraints (1) and (2) are satisfied
for almost all runs. The feasibility result in (20) for the link
capacity constraint, however, is not identical to (5). The difference
is not only the presence of the M(ε) feasibility gap, but the
fact that (5) involves an expectation over channel realizations
whereas (20) does not. In fact, asides from the M(ε) constant,
(20) is stronger than (5). The feasibility result in (20) states that
even though sequences xi(N) and Pi(N) may not be ergodic, the
possibly different ergodic limits in the right and left hand sides
of (20) satisfy the stated inequality. This implies that operating
the network using variables xi(t) and Pi(t) as generated by (16)-
(18) results in long-term feasibility in that all packets are (almost
surely) delivered to their corresponding destinations. Further no-
tice that the power feasibility result in (22) is not identical to
the corresponding power constraint in (3) because (3) involves an
expected value whereas (22) does not. The same comments stated
for the comparison of (20) and (5) extend naturally.

The utility yield result in (23) states that the long term per-
formance of the network, as determined by average end-to-end
rates āki and powers p̄i, is close to the optimal yield P̃ of the
reformulated problem. The gap between P̃ and the attained yield
can be controlled by reducing ε. Notice that reducing the step
size ε also reduces the feasibility gap M(ε) in (20). We also
remark that the use of constant step sizes ε endows the algorithm
with adaptability to time-varying channel distributions. This is
important in practice because wireless channels are non-stationary
due to user mobility and environmental dynamics.

V. NUMERICAL RESULTS

We illustrate performance of the proposed algorithm by imple-
menting and simulating it over a network with n = 15 terminals
randomly placed in a square with side L = 100 meters. Terminals
can communicate with neighbors whose distances are within 30
meters. Numerical experiments here utilize the realization of this
random placement shown in Fig. 3. Channel gains hij(t) are
Rayleigh distributed with mean h̄ij and are independent across
links and time. The average channel gain h̄ij := E [hij ] follows
an exponential pathloss law, h̄ij = αd−βij with dij denoting the
distance in meters between Ti and Tj and constants α = 10−1m−1

and β = 2.5. Assume the use of capacity achieving codes so that
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Fig. 4. Optimality of the proposed algorithm. As time grows, primal and dual
objectives approach each other.

the instantaneous transmission rate takes the form

Cij(hij(t)pij(t)) = log
(

1 +
hij(t)pij(t)

N0

)
, (24)

where N0 is the channel noise set to N0 = 10−4 for all links.
Fading channels are generated as i.i.d. There are two flows
supported by the network, one from T1 to T2 and the other from
T8 to T11. For each flow the minimum and maximum amount
of information to be delivered are constrained by amin

i = 0.1
bits/s/Hz and amax

i = 1 bits/s/Hz for all nodes i. The routing and
link capacity variables are bounded by rmin

ij = cmin
ij = 0 bits/s/Hz

and rmax
ij = cmax

ij = 1 bits/s/Hz. The maximum average power
consumption per terminal and maximum instantaneous power
consumption per terminal are set to 2, i.e., pmax

i = pmax
ij = 2. Our

objective is to maximize total amount of information delivered by
the network, i.e., Uki (aki ) = aki and Vi(pi) = 0. We set ε = 0.02
and the simulation is conducted for 104 time slots. Successive
convex approximation is used.

To show optimality of the algorithm we compare ergodic primal
and dual objectives, as shown in Fig. 4. As time grows, the
convergence of the proposed algorithm is observed as the primal
and dual values approach each other. By Theorem 1, the algorithm
is almost surely near optimal in the sense that the ergodic average
of the utility almost surely converges to a value with optimality gap
smaller than εŜ2/2 with respect to the optimal objective. Indeed,
this is true as shown in Fig. 4 that the gap between primal and
dual values becomes a small constant (about 0.05) as t increases.

Fig. 5 shows feasibility of the proposed algorithm in terms of
constraint violations. Specifically, we compute average violations
of the flow conservation, link capacity, average rate and average
power constraints, respectively. If these values are nonnegative,
it means the corresponding constraints are satisfied in an average
sense. As we can see, after about 500 steps all constraints are
satisfied within 10−2 tolerance. The average rate constraint takes
the longest time to be satisfied (see Fig. 5 (c)). This is because the
transmission rate on link Ti → Tj depends not only on schedules
and powers of Ti but also on those of Tj and its neighbors. This
requires information to be received from, and propagated to, 2-hop
networks.
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Fig. 5. Feasibility of the proposed algorithm.

VI. CONCLUSIONS

We developed algorithms for optimal design of wireless net-
works using local channel state information. Due to the time-
varying nature of fading states, random access is the natural
medium access choice leading to the formulation of an op-
timization problem for random access networks. To obtain a
distributed solution, we approximated the problem so that it can
be decomposed in the dual domain and developed a stochas-
tic subgradient descent algorithm. Based on instantaneous local
channel conditions, the algorithm finds network operating points
that are almost surely feasible and optimal in an ergodic sense.
The solution exhibits a layered architecture in which variables
in each layer are computed using information from interfaces
to adjacent layers. The algorithm is fully distributed in that all
operations necessary to achieve optimal operation are based on
local information and information exchanges between neighbors.
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