
Accelerated Dual Descent for Network Optimization

Michael Zargham†, Alejandro Ribeiro†, Asuman Ozdaglar‡, Ali Jadbabaie†

Abstract—Dual descent methods are commonly used to solve
network optimization problems because their implementation
can be distributed through the network. However, their con-
vergence rates are typically very slow. This paper introduces a
family of dual descent algorithms that use approximate Newton
directions to accelerate the convergence rate of conventional
dual descent. These approximate directions can be computed
using local information exchanges thereby retaining the bene-
fits of distributed implementations. The approximate Newton
directions are obtained through matrix splitting techniques and
sparse Taylor approximations of the inverse Hessian. We show
that, similarly to conventional Newton methods, the proposed
algorithm exhibits superlinear convergence within a neighbor-
hood of the optimal value. Numerical analysis corroborates that
convergence times are between one to two orders of magnitude
faster than existing distributed optimization methods.

I. INTRODUCTION

Conventional approaches to network optimization are
based on subgradient descent in either the primal or dual
domain; see, e.g., [6], [9], [12], [18]. For many classes of
problems, subgradient descent algorithms yield iterations that
can be implemented through distributed updates based on
local information exchanges. However, practical applicability
of the resulting algorithms is limited by slow convergence
rates. To overcome this limitation Newton methods can
be used, but this would require computation which cannot
be accomplished through local information exchanges. This
issue is solved in this paper through the introduction of a
family of approximations to the Newton step.

The particular problem we consider is the network flow
problem. Network connectivity is modeled as a directed
graph and the goal of the network is to support a single
information flow specified by incoming rates at an arbitrary
number of sources and outgoing rates at an arbitrary number
of sinks. Each edge of the network is associated with a
concave function that determines the cost of traversing that
edge as a function of flow units transmitted across the link.
Our objective is to find the optimal flows over all links.
Optimal flows can be found by solving a concave optimiza-
tion problem with linear equality constraints (Section II). In
particular, the use of subgradient descent in the dual domain
allows the development of a distributed iterative algorithm. In
this distributed implementation nodes keep track of variables
associated with their outgoing edges and undertake updates

This research is supported by Army Research Lab MAST Collaborative
Technology Alliance, AFOSR complex networks program, ARO P-57920-
NS, NSF CAREER CCF-0952867, and NSF CCF-1017454, ONR MURI
N000140810747 and NSF-ECS-0347285.
†Michael Zargham, Alejandro Ribeiro and Ali Jadbabaie are with the De-

partment of Electrical and Systems Engineering, University of Pennsylvania.
‡ Asuman Ozdaglar is with the Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology.

based on their local variables and variables available at
adjacent nodes (Section II-A). Distributed implementation is
appealing because it avoids the cost and fragility of collecting
all information at a centralized location. However, due to
low convergence rates of subgradient descent algorithms,
the number of iterations necessary to find optimal flows is
typically very large [13], [15]. The natural alternative is the
use of second order Newton’s methods, but they cannot be
implemented in a distributed manner (Section II-B).

Indeed, implementation of Newton’s method necessitates
computation of the inverse of the dual Hessian and a dis-
tributed implementation would require each node to have
access to a corresponding row. It is not difficult to see
that the dual Hessian is in fact a weighted version of the
network’s Laplacian and that as a consequence its rows could
be locally computed through information exchanges with
neighboring nodes. Its inversion, however, requires global
information. Our insight is to consider a Taylor’s expansion
of the inverse Hessian, which, being a polynomial with the
Hessian matrix as variable, can be implemented through
local information exchanges. More precisely, considering
only the zeroth order term in the Taylor’s expansion yields
an approximation to the Hessian inverse based on local
information only – which, incidentally, coincides with the
method of Hessian diagonal inverses proposed in [1]. The
first order approximation necessitates information available
at neighboring nodes and in general, the N th order ap-
proximation necessitates information from nodes located N
hops away (Section III). The resultant family of algorithms,
denoted ADD-N permits a tradeoff between accurate Hessian
approximation and communication cost. Despite the fact
that the proposed distributed algorithms rely on approximate
Newton directions, we show that they exhibit local quadratic
convergence as their centralized counterparts (Section IV).
An approximate backtracking line search is added to the basic
algorithm to ensure global convergence (Section IV-B).

Newton-type methods for distributed network optimiza-
tion have been recently proposed in [1], [8], [19]. While
specifics differ, these papers rely on consensus iterations to
compute approximate Newton directions. Quite surprisingly,
it is possible to show that the methods in [1], [8], [19] and an
ADD-N algorithm proposed here are equivalent under some
conditions. Numerical experiments study the communication
cost of ADD relative to [1], [8], [19] and to conventional
subgradient descent. ADD reduces this cost by one order of
magnitude with respect to [1], [8], [19] and by two orders of
magnitude with respect to subgradient descent (Section VI).
Our work is related to [2], [10] which apply approximate con-
jugate gradient methods to achieve superlinear convergence
rates. [2] is a centralized algorithm and [10] uses a Taylor

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0081-1/11/$26.00 ©2011 AACC 2663

expansion motivated algorithm but lacks formal proofs.

II. NETWORK OPTIMIZATION

Consider a network represented by a directed graph G =
(N , E) with node set N = {1, . . . , n}, and edge set E =
{1, . . . , E}. The ith component of vector x is denoted as
xi. The notation x ≥ 0 means that all components xi ≥
0. The network is deployed to support a single information
flow specified by incoming rates bi > 0 at source nodes and
outgoing rates bi < 0 at sink nodes. Rate requirements are
collected in a vector b, which to ensure problem feasibility
has to satisfy

∑n
i=1 b

i = 1. Our goal is to determine a flow
vector x = [xe]e∈E , with xe denoting the amount of flow on
edge e = (i, j).

Flow conservation implies that it must be Ax = b, with A
the n× E node-edge incidence matrix defined as

[A]ij =

 1 if edge j leaves node i,
−1 if edge j enters node i,
0 otherwise.

The element in the ith row and jth column of a matrix A
is written as [A]ij . The transpose of A is denoted as A′.
We define the reward as the negative of scalar cost function
φe(xe) denoting the cost of xe units of flow traversing edge e.
We assume that the cost functions φe are strictly convex and
twice continuously differentiable. The max reward network
optimization problem is then defined as

maximize − f(x) =
E∑
e=1

−φe(xe), subject to: Ax = b.

(1)
Our goal is to investigate Newton-type iterative distributed
methods for solving the optimization problem in (1). Before
doing that, let us discuss the workhorse distributed solution
based on dual subgradient descent (Section II-A) and the
conventional centralized Newton’s method (Section II-B).

A. Dual Subgradient Method

Dual subgradient descent solves (1) by descending in the
dual domain. Start then by defining the Lagrangian function
of problem (1) as L(x, λ) = −

∑E
e=1 φe(x

e) + λ′(Ax − b)
and the dual function q(λ) as

q(λ) = sup
x∈RE

L(x, λ) = sup
x∈RE

(
−

E∑
e=1

φe(xe) + λ′Ax

)
− λ′b

=
E∑
e=1

sup
xe∈R

(
− φe(xe) + (λ′A)exe

)
− λ′b, (2)

where in the last equality we wrote λ′Ax =
∑E
e=1(λ′A)exe

and exchanged the order of the sum and supremum operators.
It can be seen from (2) that the evaluation of the dual

function q(λ) decomposes into E one-dimensional optimiza-
tion problems that appear in the sum. We assume that each
of these problems has an optimal solution, which is unique
because of the strict convexity of the functions φe. Denote

this unique solution as xe(λ) and use the first order optimality
conditions for these problems in order to write

xe(λ) = (φ′e)
−1(λi − λj), (3)

where i ∈ N and j ∈ N respectively denote the source and
destination nodes of edge e = (i, j). As per (3) the evaluation
of xe(λ) for each node e is based on local information
about the edge cost function φe and the dual variables of
the incident nodes i and j.

The dual problem of (1) is defined as minλ∈Rn q(λ).
The dual function is convex because all dual functions of
minimization problems are, and differentiable because the φe
functions are strictly convex. Being convex and differentiable,
the dual problem can be solved using gradient descent.
Consider an iteration index k, an arbitrary initial vector λ0

and define iterates λk generated by the following:

λk+1 = λk − αkgk for all k ≥ 0, (4)

where gk = g(λk) = ∇q(λk) denotes the gradient of the dual
function q(λ) at λ = λk. A first important observation here
is that we can compute the gradient as gk = Ax(λk)−b with
the vector x(λk) having components xe(λk) as determined
by (3) with λ = λk, [3, Section 6.4]. Differentiability of
g(λ) follows from strict convexity of (1). A second important
observation is that because of the sparsity pattern of the node-
edge incidence matrix A the ith element gik of the gradient
gk can be computed as

gik =
∑

e=(i,j)

xe(λk)−
∑
e=(j,i)

xe(λk)− bi (5)

The algorithm in (4) lends itself to distributed implementa-
tion. Each node i maintains information about its dual iterates
λik and primal iterates xe(λk) of outgoing edges e = (i, j).
Gradient components gik are evaluated as per (5) using local
primal iterates xe(λk) for e = (i, j) and primal iterates of
neighboring nodes xe(λk) for e = (j, i). Dual variables are
then updated as per (4). Having updated the dual iterates, we
proceed to update primal variables as per (3). This update
necessitates local multipliers λik and neighboring multipliers
λjk.

Distributed implementation is appealing because it avoids
the cost and fragility of collecting all information at a cen-
tralized location. However, practical applicability of gradient
descent algorithms is hindered by slow convergence rates;
see e.g., [13], [15]. This motivates consideration of Newton’s
method which we describe next.

B. Newton’s Method for Dual Descent

Newton’s Method is a descent algorithm along a scaled
version of the gradient. In lieu of (4) iterates are given by

λk+1 = λk + αkdk for all k ≥ 0, (6)

where dk is the Newton direction at iteration k and αk is a
properly selected step size. The Newton direction, dk satisfies

Hkdk = −gk, (7)

2664

where Hk = H(λk) = ∇2q(λk) is the Hessian of the dual
function at the current iterate and gk = gk(λk) is, we recall,
the corresponding gradient.

To obtain an expression for the dual Hessian, consider
given dual λk and primal xk = x(λk) variables, and consider
the second order approximation of the primal objective
centered at the current primal iterates xk,

f̂(y) = f(xk)+∇f(xk)′(y−xk)+
1
2

(y−xk)′∇2f(xk)(y−xk)
(8)

The primal optimization problem in (1) is now replaced by
the maximization of the approximating function −f̂(y) in (8)
subject to the constraint Ay = b. This approximated problem
is a quadratic program whose dual is the (also quadratic)
program with properly defined vector p and scalar r,

min
λ∈Rn

g(λk) = min
λ∈Rn

1
2
λ′kA∇2f(xk)−1A′λk + p′λk + r. (9)

The vector p and the constant r can be expressed in closed
form as functions of ∇f(xk) and ∇2f(xk), but they are
irrelevant for the discussion here. The important consequence
of (9) is that the dual Hessian is given by

Hk = Q = A
(
−∇2f(xk)−1

)
A′. (10)

From the definition of f(x) in (1) it follows that the primal
Hessian -∇2f(xk) is a diagonal matrix, which is negative
definite by strict convexity of f(x). Therefore, its inverse
exists and can be computed locally. Further observe that
the dual Hessian, being the product of the incidence matrix
times a positive definite diagonal matrix times the incidence
matrix transpose, is a weighted version of the network graph’s
Laplacian. As a particular consequence it follows that 1
is an eigenvector of Hk associated with eigenvalue 0 and
that Hk is invertible on the the subspace 1⊥. Since the
gradient gk lies in 1⊥ we can find the Newton step as
dk = −H†kgk. However, computation of the pseudoinverse
H†k requires global information. We are therefore interested
in approximations of the Newton direction requiring local
information only.

III. APPROXIMATE NEWTON’S METHOD

To define an approximate Newton direction, i.e., one
for which (7) is approximately true, we will consider a
finite number of terms of a suitable Taylor’s expansion
representation of the Newton direction. At iteration k, split
the Hessian into diagonal elements Dk and off diagonal
elements Bk and write Hk = Dk − Bk. Further rewrite
the Hessian as Hk = D

− 1
2

k

(
I −D−

1
2

k BkD
− 1

2
k

)
D
− 1

2
k , which

implies that the Hessian pseudo-inverse is given by H−†k =

D
− 1

2
k

(
I −D−

1
2

k BkD
− 1

2
k

)−†
D
− 1

2
k . Notice now that for the

central term of this product we can use the Taylor’s expansion
identity (I − X)†v =

(∑∞
i=0X

i
)
v, which is valid for any

vector v orthogonal to the eigenvectors of X associated with
eigenvalue 1. Since gk is orthogonal to 1, it follows that

dk = −H†kgk = −
∞∑
i=0

D
− 1

2
k

(
D
− 1

2
k BkD

− 1
2

k

)i
D
− 1

2
k gk.

Since the Newton direction is now represented as an infinite
sum, we can define a family of approximations characterized
by truncations of this sum,

d
(N)
k = −

N∑
i=0

D
− 1

2
k

(
D
− 1

2
k BkD

− 1
2

k

)i
D
− 1

2
k gk := −H̄(N)

k gk,

(11)
where we have defined the approximate Hessian pseudo

inverse H̄
(N)
k :=

∑N
i=0D

− 1
2

k

(
D
− 1

2
k BkD

− 1
2

k

)i
D
− 1

2
k . The

approximate Newton algorithm is obtained by replacing
the Newton step dk in (6) by its approximations d(N)

k =
−H̄(N)

k gk. The resultant algorithm is characterized by the
iteration

λk+1 = λk − αkH̄(N)
k gk. (12)

While not obvious, the choice of N in (11) dictates how
much information node i needs from the network in order to
compute the ith element of the approximate Newton direction
d
(N)
k – recall that node i is associated with dual variable λik.
For the zeroth order approximation d(0)

k only the first term
of the sum in (11) is considered and it therefore suffices
to have access to the information in Dk to compute the
approximate Newton step. Notice that the approximation
in this case reduces to d

(0)
k = D−1

k gk implying that we
approximate H−1

k by the inverse diagonals which coincides
with the method in [1].

The first order approximation d(1)
k uses the first two terms

of the sum in (11) yielding d(1)
k =

(
D−1
k +D−1

k BkD
−1
k

)
gk.

The key observation here is that the sparsity pattern
of Bk, and as a consequence the sparsity pattern of
D−1
k BkD

−1
k , is that of the graph Laplacian, which means

that [D−1
k BkD

−1
k]ij 6= 0 if and only if i and j correspond

to an edge in the graph, i.e, (i, j) ∈ E. As a consequence,
to compute the ith element of d(1)

k node i needs to collect
information that is either locally available or available at
nodes that share an edge with i.

For the second order approximation d(2)
k we add the term(

D−1
k Bk

)2
D−1
k to the approximation d(1)

k . The sparsity pat-
tern of

(
D−1
k Bk

)2
D−1
k is that of B2

k, which is easy to realize
has nonzero entries matching the 2-hop neighborhoods of
each node. Therefore, to compute the ith element of d(2)

k node
i requires access to information from neighboring nodes and
from neighbors of these neighbors. In general, the N th order
approximation adds a term of the form

(
D−1
k Bk

)N
D−1
k to

the N − 1st order approximation. The sparsity pattern of
this term is that of BNk , which coincides with the N -hop
neighborhood, and computation of the local elements of the
Newton step necessitates information from N hops away.

We thus interpret (11) as a family of approximations
indexed by N that yields Hessian approximations requiring
information from N -hop neighbors in the network. This
family of methods offers a trade off between communication
cost and precision of the Newton direction. We analyze con-
vergence properties of these methods in the coming sections.

2665

A. Convergence

A basic guarantee for any iterative optimization algorithm
is to show that it eventually approaches a neighborhood of the
optimal solution. This is not immediate for ADD as defined
by (12) because the errors in the H̄(N)

k approximations to H†k
may be significant. Notwithstanding, it is possible to prove
that the H̄

(N)
k approximations are positive definite for all

N and from there to conclude that the λk iterates in (12)
eventually approach a neighborhood of the optimal λ∗. This
claim is stated in the next proposition1.

Proposition 1. Let λ∗ denote the optimal argument of the
dual function q(λ) of the optimization problem in (1) and
consider the ADD-N algorithm characterized by iteration
(12) with H̄(N)

k as in (11). Assume αk = α for all k and that
the network graph is not bipartite. Then, for all sufficiently
small α,

lim
k→∞

λk = λ∗ (13)

By continuity of (3), convergence of the dual variable to
an error neighborhood implies convergence of the primal
variables to an error neighborhood. Requiring the graph to
not be bipartite is a technical condition to avoid instabilities
created by Laplacian eigenvalues at −1. The restriction is not
significant in practice.

IV. CONVERGENCE RATE

The basic guarantee in Proposition 1 is not stronger than
convergence results for regular gradient descent. Our goal is
to show that the approximate Newton method in (12) exhibits
quadratic convergence in a sense similar to centralized (exact)
Newton algorithms. Specifically, we will show that selecting
N large enough, it is possible to find a neighborhood of λ∗

such that if the iteration is started within that neighborhood
iterates converge quadratically.

Before introducing this result let us define the Newton
approximation error εk as

εk = Hkd
(N)
k + gk. (14)

We further introduce the following standard assumptions to
bound the rate of change in the Hessian of the dual function.

Assumption 1. The Hessian H(λ) of the dual function q(λ)
satisfies the following conditions
(Lipschitz dual Hessian) There exists some constant L > 0

such that ‖H(λ)−H(λ̄)‖ ≤ L‖λ− λ̄‖ ∀λ, λ̄ ∈ Rn.
(Strictly convex dual function) There exists some constant
M > 0 such that ‖H(λ)−1‖ ≤M ∀λ ∈ Rn.

As is usual in second order optimization methods we use
the gradient norm ‖gk‖ = ‖g(λk)‖ to measure the progress
of the algorithm. The aforementioned quadratic convergence
result establishes that for any graph we can always select
N large enough so that if an iterate λk is sufficiently close
to the optimal λ∗, the gradient norm ‖gk+m‖ of subsequent
iterates λk+m decays like 22m

. This is formally stated in the
following.proposition

1Proofs are omitted for brevity and can be found in [20].

Proposition 2. Consider ADD-N algorithms characterized
by the iteration (12) with H̄

(N)
k as defined in (11). Let

Assumption 1 hold and further assume that the step size is
αk+m = 1 for all k ≥ m. Let ε be a uniform bound in the
norm of the Newton approximation error εk in (14) so that
‖εk‖ ≤ ε for all k. Define the constant

B = ε+M2Lε2. (15)

Further assume that at time k it holds ‖gk‖ ≤ 1/(2M2L)
and that N is chosen large enough to ensure that for some
δ ∈ (0, 1/2), B +M2LB2 ≤ δ/(4M2L). Then, for all m ≥
1,

‖gk+m‖ ≤
1

22mM2L
+B +

δ

M2L

(22m−1 − 1)
22m . (16)

In particular, as m→∞ it holds

lim sup
m→∞

‖gk+m‖ ≤ B +
δ

2M2L
. (17)

Proposition 2 has the same structure of local convergence
results for Newton’s method [5, Section 9.5]. In particular,
quadratic convergence follows from the term 1/

(
22m)

in
(16). The remaining terms in (16) are small constants that
account for the error in the approximation of the Newton
step.

Notice that Proposition 2 assumes that at some point in
the algorithm’s progression, ‖gk‖ ≤ 1/(2M2L). Quadratic
convergence is only guaranteed for subsequent iterates λk+m.
This is not a drawback of ADD, but a characteristic of all
second order descent algorithms. To ensure that some iterate
λk does come close to λ∗ so that ‖gk‖ ≤ 1/(2M2L) we use
a distributed adaptation of backtracking line search (Section
IV-A).

The proof of Proposition 2 relies on two lemmas which we
present for reference. The first result concerns the bound ε
which was required to hold uniformly for all iteration indexes
k. While it is clear that increasing N reduces ‖εk‖, it is not
immediate that a uniform bound should exist. The fact that a
uniform bound does exists is claimed in the following lemma.

Lemma 1. Given an arbitrary ε > 0, there exists an N such
that the Newton approximation errors εk as defined in (14)
have uniformly bounded norms ‖εk‖ ≤ ε for all iteration
indexes k.

The proof is omitted for brevity but the key step uses [11]
to uniformly bound the spectral gap away from one as follows

ρ
(
BkD

−1
k

)
≤ 1− 1

n∆(G)(diam(G) + 1)bmax
(18)

where ∆(G) is the maximum degree of any node in G,
diam(G) is the diameter of G and bmax is an upper bound
on dual off diagonal elements of the dual hessian: [Hk]ij ≤
bmax ∀i 6= j.

Another preliminary result necessary for the proof of
Proposition 2 is an iterative relationship between the gradient
norm ‖gk+1‖ at iteration k + 1 and the norm ‖gk‖ at iter-
ation k. This relationship follows from a multi-dimensional
extension of the descent lemma (see [4]) as we explain next.

2666

Lemma 2. Let Assumption 1 hold. Let {λk} be a sequence
generated by the method (6). For any stepsize rule αk, we
have ‖gk+1‖ ≤ (1 − αk)‖gk‖ + M2Lα2

k‖gk‖2 + αk‖εk‖ +
M2Lα2

k‖εk‖2.

The proof of Proposition 2 follows from recursive appli-
cation of the result in Lemma 2.

A. Distributed backtracking line search

Proposition 2 establishes local quadratic convergence for
properly selected members of the ADD family. To guarantee
global convergence we modify ADD to use time varying step
sizes αk selected through distributed backtracking line search
[5, Algorithm 9.2]. Line search implementation requires com-
putation of the gradient norm ‖gk‖ =

∑n
i=1 g

i
k
2. This can

be easily achieved using distributed consensus algorithms,
e.g., [7]. However, since these consensus algorithms are
iterative in nature, an approximate norm ηk is computed in
lieu of ‖gk‖. We assume that approximate gradient norms
are computed with an error not exceeding a given constant
γ/2 ≥ 0, ∣∣∣ηk − ‖gk‖∣∣∣ ≤ γ/2, (19)

For fixed scalars σ ∈ (0, 1/2) and β ∈ (0, 1), we set the
stepsize αk equal to αk = βmk , where mk is the smallest
nonnegative integer that satisfies

nk+1 ≤ (1− σβm)ηk +B + γ. (20)

The expression in (20) coincides with the regular (central-
ized) backtracking line search except for the use of the
approximate norm ηk instead of the actual norm ‖gk‖ and
the (small) additive constants B and γ respectively defined
in (15) and (19).

While we introduce line search to ensure global conver-
gence we start by noting that stepsizes selected according to
the rule in (20) do not affect local convergence. As we state
next, this is because if ‖gk‖ ≤ 1/(2M2L) as required in
Proposition 2 the rule in (20) selects stepsizes αk = 1.

Proposition 3. If at iteration k of ADD-N the gradient
norm satisfies ‖gk‖ ≤ 1/(2M2L), the inexact backtracking
stepsize rule in (19) selects αk = 1.

As per Proposition 3, if ADD-N with backtracking line
search is initialized at a point at which ‖g0‖ ≤ 1/(2M2L),
stepsizes αk = 1 are used. Therefore, Proposition 2 holds and
convergence to the optimum λ∗ is quadratic, which in prac-
tice implies convergence in a few steps. Otherwise, selecting
step sizes αk satisfying (20) ensures a strict decrease in the
norm of the residual function as claimed by the proposition
below.

Proposition 4. Consider ADD-N algorithms characterized
by the iteration (12) with H̄

(N)
k as defined in (11). Let

Assumption 1 hold and stepsizes αk being selected according
to the inexact backtracking rule in (20). Further assume that
‖gk‖ > 1/2M2L and that N is chosen large enough to

100 101 102 103 104 105102

103

104

local information exchanges

f(x
)

100 101 102 103 104 10510-15

10-10

10-5

100

105

local information exchanges

||A
x-

b|
|

Gradient
Consensus
ADD-0
ADD-1
ADD-2
ADD-3

Fig. 1. Primal objective (top), f(xk) and primal feasibility (bottom),
‖Axk − b‖ with respect to number of local information exchanges for a
sample network optimization problem with 25 nodes and 75 edges. ADD
converges an order of magnitude faster than consensus-based Newton and
two orders of magnitude faster than gradient descent.

ensure that the constants B and γ in (15) and (19) satisfy

B + 2γ ≤ β

16M2L
, (21)

where β is the backtracking rule constant and M and L are
defined in Assumption 1. Then, the gradient norm at iteration
k + 1 decreases by at least β/(16M2L),

‖gk+1‖ ≤ ‖gk‖ −
β

16M2L
. (22)

Proposition 4 shows that if ADD-N is initialized at a point
with gradient norm ‖g0‖ > 1/2M2L we obtain a decrease
in the norm of the gradient of at least β/16M2L. This holds
true for all iterations as long as ‖gk‖ > 1/2M2L. This
establishes that we need at most 16‖g0‖M2L/β iterations
until we obtain ‖gk‖ ≤ 1/2M2L. At this point the quadratic
convergence result in Proposition 2 comes in effect and ADD-
N converges in a few extra steps.

V. NUMERICAL RESULTS

Numerical experiments are undertaken to study ADD’s
performance with respect to the choice of the number of
approximating terms N . These experiments show that N = 1
or N = 2 work best in practice. ADD is also compared to
dual gradient descent [14] and the consensus-based Newton
method in [8].

Figure 1 shows convergence metrics for a randomly gen-
erated network. Edges in the network are selected uniformly
at random. The flow vector b is chosen to place sources and
sinks a full diam(G) away from each other. All figures show
results for ADD-0 through ADD-3, gradient descent, and
consensus-based Newton. In Fig. 1, objective value f [x(λk)]
and constraint violation ‖Ax(λk)−b‖ are shown as functions
of the number of local node to node communications which
have occurred. Observe that in terms of this metric all
versions of ADD are about an order of magnitude faster than
consensus-based Newton and two orders of magnitude faster
than gradient descent.

2667

160 180 200 220 240 260 280 300 320 340 3600

5

10

15

20

25

number of local information exchanges

fre
qu

en
cy

ADD-0
ADD-1
ADD-2
ADD-3

Fig. 2. Histogram of the number of local communications required to reach
‖g(λk)‖ ≤ 10−10 for ADD-N with respect to parameter N, for 50 trials of
the network optimization problem on random graphs with 25 nodes and 75
edges. ADD-2 is shown to be the best on average by about 10% indicating
that with respect to communication cost, larger N is not necessarily better.

1 2 30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log
10

 co
mm

un
cia

tio
n e

xc
ha

ng
es

minimum

1 2 30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
mean

log
10

 co
mm

un
cia

tio
n e

xc
ha

ng
es

1 2 30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
maximum

log
10

 co
mm

un
cia

tio
n e

xc
ha

ng
es

Gradient
Consensus
ADD-0
ADD-1
ADD-2
ADD-3

Fig. 3. Min (left), mean (center) and max (right) number of local
communications required to reach ‖g(λk)‖ ≤ 10−10 for gradient descent,
consensus-based Newton and ADD, computed for 35 trials each on random
graphs with 25 nodes and 75 edges(1), 50 nodes and 350 edges(2), and
100 nodes and 1000 edges (3). The min and max are on the same order of
magnitude for ADD, demonstrating small variance.

An important conclusion drawn from our simulations is
that even though increasing N in ADD decreases the number
of iterations required, there is not a strict decrease in the
number of communications. The parameter N demonstrates
an inherent trade off between spending communication in-
stances to refine the Newton step d(N)

k versus using them to
take a step. We examine this phenomenon in Fig. 2. These
experiments are on random graphs with 25 nodes and 75
edges chosen uniformly at random. The flow vector b places a
source diam(G) away from a sink. We consider an algorithm
to have converged when its residual ‖gk‖ ≤ 10−10.

The behavior of ADD is also explored for graphs of
varying size and degree in Fig. 3. As the graph size increases
the performance gap between ADD and competing methods
increases. Consistency of ADD is also apparent since the
maximum, minimum, and average information exchanges
required to solve (1) for different network realizations are
similar. This is not the case for neither consensus-based
Newton nor gradient descent. Further note that ADD’s com-
munication cost increases only slightly with network size.

VI. CONCLUSION

A family of accelerated dual descent (ADD) algorithms to
find optimal network flows in a distributed manner was intro-

duced. Members of this family are characterized by a single
parameter N determining the accuracy in the approximation
of the dual Newton step. This same parameter controls the
communication cost of individual algorithm iterations. It is
always possible to find members of this family for which
convergence to optimal operating points is quadratic.

Simulations demonstrated that N = 1 and N = 2,
respectively denoted as ADD-1 and ADD-2 perform best in
practice. ADD-1 corresponds to Newton step approximations
using information from neighboring nodes only, while ADD-
2 requires information from nodes two hops away. ADD-1
and ADD-2 outperform gradient descent by two orders of
magnitude and a related consensus-based Newton method by
one order of magnitude.

Possible extensions include applications to network utility
maximization [19], general wireless communication prob-
lems [17], and stochastic settings [16].

REFERENCES

[1] S. Authuraliya and S. H. Low, Optimization flow control with newton-
like algorithm, Telecommunications Systems 15 (2000), 345–358.

[2] Bertsekas and Gafni, Projected newton methods and optimization of
multi-commodity flow, 1983, pp. 1090–1096.

[3] D.P. Bertsekas, Nonlinear programming, Athena Scientific, Cambridge,
Massachusetts, 1999.

[4] D.P. Bertsekas, A. Nedić, and A.E. Ozdaglar, Convex analysis and
optimization, Athena Scientific, Cambridge, Massachusetts, 2003.

[5] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[6] M. Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle, Layering
as optimization decomposition: A mathematical theory of network
architectures, Proceedings of the IEEE 95 (2007), no. 1, 255–312.

[7] A. Jadbabaie, J. Lin, and S. Morse, Coordination of groups of mobile
autonomous agents using nearest neighbor rules, IEEE Transactions
on Automatic Control 48 (2003), no. 6, 988–1001.

[8] A. Jadbabaie, A. Ozdaglar, and M. Zargham, A distributed newton
method for network optimization, Proceedings of IEEE CDC, 2009.

[9] F.P. Kelly, A.K. Maulloo, and D.K. Tan, Rate control for communi-
cation networks: shadow prices, proportional fairness, and stability,
Journal of the Operational Research Society 49 (1998), 237–252.

[10] J. G. Klincewicz, A newton method for convex separable network flow
problems, Bell Laboratories (1983).

[11] H. J. Landau and A. M. Odlyzko, Bounds for eigenvalues of certain
stochastic matrices, Linear Algebra and its Applications 38 (1981),
5–15.

[12] S. Low and D.E. Lapsley, Optimization flow control, I: Basic algorithm
and convergence, IEEE/ACM Transactions on Networking 7 (1999),
no. 6, 861–874.

[13] A. Nedić and A. Ozdaglar, Approximate primal solutions and rate
analysis for dual subgradient methods, SIAM Journal on Optimization,
forthcoming (2008).

[14] , Distributed subradient methods for multi-agent optimization,
IEEE Transactions on Automatic Control, forthcoming (2008).

[15] , Subgradient methods in network resource allocation: Rate
analysis, Proc. of CISS, 2008.

[16] A. Ribeiro, Ergodic stochastic optimization algorithms for wireless
communication and networking, IEEE Transactions on Signal Process-
ing (2009).

[17] A. Ribeiro and G. B. Giannakis, Separation theorems of wireless
networking, IEEE Transactions on Information Theory (2007).

[18] R. Srikant, Mathematics of Internet congestion control, Birkhauser,
2004.

[19] E. Wei, A. Ozdaglar, and A. Jadbabaie, A distributed newton method
for network utility maximization, LIDS Technical Report 2832 (2010).

[20] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, Accelerated
dual descent for network optimization, arXiv.org (2011).

2668

