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Abstract— Most coordinated tasks performed by teams of
mobile robots, require reliable communications between the
members of the team. Therefore, task accomplishment requires
that robots navigate their environment with their collective
movement restricted to formations that guarantee integrity of
the communication network. Maintaining this communication
capability induces physical constraints on trajectories but also
requires determination of communication variables like routes
and transmitted powers. In this paper, we propose a novel
framework to address this problem, in which continuous motion
controllers based on potential fields interact with discrete
optimization of the communication variables to result in a muti-
robot network that ensures integrity of communications. Our
definition of network integrity is defined as the ability of a
network to support desired communication rates.

I. INTRODUCTION

Mobile robot networks have recently emerged as an inex-

pensive and reliable way to address a wide variety of tasks

ranging from exploration, surveillance and reconnaissance, to

cooperative construction and manipulation. Successful com-

pletion of these tasks requires efficient information exchange

and coordination between members of the team.

Multi-hop communication in multi-robot systems has typ-

ically relied on constructs from graph theory, with proximity

graphs gaining the most popularity. This is consistent with

early approaches to wireless networking that used disk

models to abstract the physical layer [1]. In this context, com-

munication becomes equivalent to topological connectivity,

defined as the property of a graph to transmit information

between all pairs of its nodes. Preservation and control of

topological connectivity has been widely studied recently

with solutions ranging from maintaining all communication

links [2] to least restrictive that allow links to be lost [3].

Although graphs provide a simple abstraction of inter-

robot communications, it has long being recognized that

since links in a wireless network do not entail tangible

connections, associating links with arcs on a graph can

be somewhat arbitrary. Indeed, topological definitions of

connectivity start by setting target signal strengths to draw

the corresponding graph. Even small signal variations might

result in dramatic differences in network topology [4].
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In this paper, we employ a simple, yet effective, modi-

fication that relies on weighted graph models with weights

that capture the packet error probability of each link [5].

When using reliabilities as link metrics it is possible to model

routing and scheduling problems as optimization problems

that accept link reliabilities as inputs [6]. The key idea

proposed in this paper is to define connectivity in terms of

communication rates and to use optimization formulations to

describe optimal operating points of wireless networks [6].

Composition of discrete optimization of the communication

variables with continuous motion control via appropriate

barrier potentials that maintain desired communication rates,

results in a distributed multi-robot hybrid system for which

we show that desired communication rates are always guar-

anteed. We propose both a centralized and a distributed

solution to the problem, the latter based on separability

of the dual function and subgradient optimization. Since

subgradient optimization ensures feasibility of the primal

variables only asymptotically for static systems, it precludes

verbatim use of those variables in barrier potentials in the

physical domain. In fact, integration with node mobility gives

rise to an infeasibility gap, which results in approximate

communication guarantees that we explicitly analyze.

II. OPTIMAL WIRELESS COMMUNICATIONS

Consider a mobile network composed of J robots and

a fixed infrastructure with K access points (APs). The

robots move throughout an area of interest to accomplish an

assigned task for which it is necessary to maintain reliable

communications with the infrastructure. Due to, e.g., power

constraints or an adverse propagation environment, robots

collaborate to maintain a multihop network with the APs.

Denote as xj for j = 1, . . . , J the position of the robots and

xj for j = J+1, . . . , J+K the position of the APs. The set

of all positions x := {xi}J+K
i=1 is referred to as the spatial

configuration of the network. We model communication by

a link reliability metric R(x,y) denoting the probability that

a packet transmitted from a terminal located at position x is

correctly decoded by a terminal at position y. This function

determines the probability Rij � R(xi,xj) with which a

packet transmitted by node i is correctly decoded by node

j. Node j is a robot if j ≤ J or an AP otherwise.

We further denote as ri the average rate at which robot

i delivers information to the APs. If robot i can reach

some of the APs, packets are directly conveyed to the

corresponding AP. Otherwise, packets are routed to another

robot for subsequent transmission. We model this process

through the introduction of routing probabilities Tij denoting
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Fig. 1. Robotic network consisting of two access points (AP) and three
robots (R). Shown are the packet rates ri generated by every robot as well
as the rates TijR(xi,xj) sent from robot i and successfully decoded by
robot j, where Tij is the probability that robot i routes packets to robot j
and R(xi,xj) is the reliability of the channel between robots i and j.

the probability with which robot i selects node j, a robot or

an AP, as a destination of its transmitted packets; see Fig. 1.

Between the time of their generation or arrival from

another robot and their transmission packets are stored in

a queue. To ensure stability of these queues it suffices to

require the average rate at which packets arrive at the ith
queue to be smaller than the average rate at which packets

leave this queue. Thus, our interest is to determine routing

probabilities Tij and rates ri that satisfy the inequality

ri +
∑J

j=1
TjiR(xj ,xi) ≤

∑J+K

j=1
TijR(xi,xj). (1)

Any set of variables {ri}∀i and {Tij}∀i,j that satisfy the

inequalities in (1) ensures information delivery. A basic

requirement is that all robots can communicate with the

infrastructure APs at least at a basal rate of ri0 packets per

time unit. When this happens we say that we have network

integrity as we formally define next.

Definition 1 (Network integrity) For configuration x and
basal rates ri0, network integrity implies not only existence
but also availability of rates {ri}∀i and routing variables
{Tij}∀i,j for which the inequalities in (1) hold and ri ≥ ri0.

For a given spatial configuration {xi}J+K
i=1 there might be

various sets of variables that ensure network integrity. To

select an element of this set we introduce strictly concave

optimality criteria Ui(ri) and Vij(Tij) measuring the value

associated with variables ri and Tij respectively. The oper-

ating point is then selected as the solution of the problem

Px = max
Tij

∑J

i=1
Ui(ri) +

∑J

i=1

∑J+K

j=1
Vij(Tij) (2)

s.t ri +
∑J

j=1
TjiR(xj ,xi) ≤

∑J+K

j=1
TijR(xi,xj),

ri ≥ ri0,
∑J

j=1
Tij ≤ 1,

where the constraints are required for all i ∈ {1, . . . ,K}. To

ensure network integrity for configuration x, we need to find

optimal routing probabilities Tij that solve the optimization

problem in (2). This yields basal rates ri0 for all terminals,

while assigning the remaining resources in a manner that is

optimal in terms of utilities Ui(ri) and Vij(Tij).

Fig. 2. Communication links are solid or dashed depending on their quality
TijRij , with solid ones indicating higher quality. Packets flow to the APs.

III. INTEGRATING MOBILITY & COMMUNICATIONS

Since mobility introduces nonlinearities in (2), we first

propose a centralized hybrid control scheme consisting of

continuous-time motion controllers composed with periodic

re-optimization of the routing probabilities Tij according to

(2). The routing variables are the switching signal in the

motion controllers, which rely on artificial potential functions

φi = φi,b + φi,c + φi,t composed of a barrier potential

φi,b =

[(∑J+K

j=1
TijRij

)2

−
(∑J

j=1
TjiRji + ri0

)2
]−1

(3)

that ensures internal consistency of the routing variables Tij
at terminal i according to (2), a collision avoidance potential

φi,c =
∑

j �=i ‖xi−xj‖−2, and task potentials φi,t that can be

designed to model a variety of tasks, as it will be discussed

bellow. Under mild conditions on the functions R(xi,xj)
and φi,t, we can define a closed loop hybrid system by the

integration of the optimization (2) with the motion controllers

ẋi = −∇xi
φi, for all i = 1, . . . , J. (4)

Proposition 1 ( [7]) The closed loop system (2) – (4) guar-
antees that all robots can communicate with the infrastruc-
ture at a basal rate of ri0 packets per unit time. Moreover,
collisions between robots are avoided.

To illustrate the proposed framework we consider simple

models of channel reliabilities that are deterministic, decreas-

ing functions of the inter-robot distances ‖xij‖ = ‖xi−xj‖.

One possible choice is Rij = a‖xij‖3+b‖xij‖2+c‖xij‖+d
if l ≤ xij ≤ u, Rij = 1 if ‖xij‖ < l and Rij = 0 if

‖xij‖ > u, where 0 < l < u lower and upper bounds on

the inter-robot distances, respectively, and the constants a,

b, c and d chosen such that Rij = R(xi,xj) is a twice

differentiable function ranging from 0 to 1 [7]. We further

assume one robot is the leader that is responsible for serving

the SP and the other robots relay the information back to the

APs. We choose φi,t =
1
2‖xi − xi,t‖2 and ri0 = .8 for the

leader, and φi,t = 0 and ri0 = 0 for all relay robots, where

xi,t denotes the location of the service point. In this scenario,

the utilities Ui(ri) = 0 for all robots. Shown in Fig. 2 is the

evolution of the system under the influence of the leader.
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IV. DISTRIBUTED OPTIMAL COMMUNICATIONS

Solving (2) at a central designated node as in Section III

entails a large communication cost to convey the network’s

topology and disseminate the optimal operating point. This

cost can be avoided by devising a distributed solution based

on the separability of the Lagrangian dual of (2). To do so,

associate Lagrange multipliers λi with each of the routing

constraints in (1), and define the Lagrangian as

Lx(λ,T, r) =

J∑
i=1

Ui(ri) +

J∑
i=1

J+K∑
j=1

Vij(Tij) (5)

+

J∑
i=1

λi

[
J+K∑
j=1

TijR(xi,xj)−
J∑

j=1

TjiR(xj ,xi)− ri

]
.

where λ, r ∈ R
J are vectors of Lagrange multipliers and

rates and T ∈ R
J×J+K is a matrix of routing probabilities

Tij . The dual function is then defined as the maximum of

the Lagrangian with respect to primal variables, i.e.,

gx(λ) = max
ri≥ri0,

∑J+K
j=1 Tij≤1

Lx(λ,T, r). (6)

The dual problem is finally defined as the minimization of

the dual function, Dx = minλ≥0 gx(λ). Since for fixed

spatial configurations x, the problem in (2) is convex it holds

that Dx = Px implying that we can work with the dual

problem in lieu of the primal problem in (2). In particular,

a distributed algorithm can be obtained by implementing

gradient descent in the dual domain.

To implement dual gradient descent we compute the gradi-

ent of the dual function using primal Lagrangian maximizers,

see e.g., [8]. For given λ define the primal Lagrangian

maximizers as

{rx,i(λ)}∀i, {Tx,ij(λ)}∀i,j � argmax
ri≥ri0,∑J+K
j=1 Tij≤1

Lx(λ,T, r). (7)

The components of the dual function’s gradient are then

given by the constraint slack associated with {rx,i(λ)}∀i and

{Tx,ij(λ)}∀i,j , i.e.,

[∇gx(λ)]i =
∑J+K

j=1
Tx,ij(λ)R(xi,xj) (8)

−
∑J

j=1
Tx,ji(λ)R(xj ,xi)− rx,i(λ).

A key observation here is that the Lagrangian in (5) can be

written as a sum of local Lagrangians that depend only on

variables ri and {Tij}∀i. Indeed, it suffices to reorder terms

in (5) to realize that upon defining local Lagrangians

Lx,i(λ,T, r) = Ui(ri)− λiri

+
∑J

j=1

[
Vij(Tij) + TijR(xi,xj)

(
λi−λj

)]

+
∑J+K

j=J+1

[
Vij(Tij) + λiTijR(xi,xj)

]
(9)

it is possible to write

Lx(λ,T, r) =
∑J

i=1
Lx,i(λ,T, r). (10)

The local Lagrangian Lx,i(λ,T, r) is defined so that all

summands of the global Lagrangian Lx(λ,T, r) that involve

primal variables ri and {Tij}J+K
j=1 for given i appear in, and

only in, Lx,i(λ,T, r) [cf. (5) and (9)]. Therefore, to find

the variables rx,i(λ) and {Tx,ij(λ)}J+K
j=1 that maximize the

global Lagrangian as per (7) it suffices to find the arguments

that maximize the local Lagrangians in (9),

rx,i(λ), {Tx,ij(λ)}J+K
j=1 = argmax

ri≥ri0,∑J+K
j=1 Tij≤1

Lx,i(λ,T, r). (11)

where the constraints ri ≥ ri0 and
∑J+K

j=1 Tij ≤ 1 in (11)

are for the node i under consideration. Contrast (7) and (11)

to observe that in (7) we maximize the global Lagrangian

subject to global constraints, while in (11) we maximize local

Lagrangians with respect to local constraints.

Introduce now an index n and consider time instants

{tn}∞n=0 at which variables are updated. We can use the

observation in (11) to write the following distributed gradient

descent algorithm for the dual function:

Primal iteration For given Lagrange multipliers λ(tn) and

spatial configuration x(tn) compute Lagrangian maximizers

ri(tn) = rx(tn),i[λ(tn)] and Tij(tn) = Tx(tn),ij [λ(tn)],
defined as in (7), according to (11) as

ri(tn), {Tij(tn)}J+K
j=1 = argmax

ri≥ri0,∑J+K
j=1 Tij≤1

Lx(tn),i(λ(tn),T, r).

(12)

Dual Iteration. Use the primal variables ri(tn) and Tij(tn)
in (12) to update the dual variables as

λi(tn+1) =

[
λi(tn)− ε

(∑J+K

j=1
Tij(tn)R(xi(tn),xj(tn))

−
∑J

j=1
Tji(tn)R(xj(tn),xi(tn))− ri(tn)

)]+
. (13)

Letting variables ri(tn), {Tij(tn)}J+K
j=1 , and λi(tn) be as-

sociated with terminal i, the algorithm described by (12)

and (13) can be implemented in a distributed manner. The

maximization in (12) requires access to local multipliers

λi(tn) and multipliers λj(tn) from those terminals for which

R(xi(tn),xj(tn)) �= 0. Likewise, the dual update (13)

requires local primal variables ri(tn) and {Tij(tn)}J+K
j=1

as well as neighboring primal variables {Tji(tn)}Jj=1 from

terminals that communicate directly with i.

V. DISTRIBUTED CONTROL OF

MOBILITY & COMMUNICATIONS

Let ẋi(t) = ui(x(t);σi(tn)) for t ∈ [tn, tn+1), denote the

dynamics of robot i between times tn and tn+1, where the

function ui(x(t);σi(tn)) denotes the control signal of robot

i and σi(tn) denotes a switching signal that we define as

σi(tn) = {Tij(tn)}J+K
j=1 ∪ {Tji(tn)}Jj=1 . (14)

The switching signal σi(tn) contains the routing variables

{Tij(tn)}J+K
j=1 that are locally available at robot i and routing
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variables {Tji(tn)}Jj=1 are received through communication

with neighboring terminals. This information allows us to

compute the offered rate at time t which we define as

βi(x(t);σi(tn)) =
∑J+K

j=1
Tij(tn)R(xi(t),xj(t)) (15)

−
∑J

j=1
Tji(tn)R(xj(t),xi(t)).

The offered rate βi(x(t);σi(tn)) is an upper limit on the

rates that can be achieved by the system at time t using

available routing variables Tij(tn). In a static setting we

are guaranteed that for large enough time index tn, it holds

βi(x(tn);σi(tn)) ≥ ri(tn) ≥ ri0. In a dynamic setting this

is not necessarily true because routing variables Tij(tn) are

computed for configuration x(tn), not x(t). In this case

we want to monitor the offered rates βi(x(t);σi(tn)) to

ensure that they do exceed the basal requirements ri0. In

the language of Definition 1 we want to satisfy network

integrity at time t using routing variables Tij(tn) and rates

ri = βi(x(t);σi(tn)) ≥ ri0.

Since the distributed primal-dual iteration (12)-(13) devel-

oped in Section IV, only ensures feasibility of the primal

variables in the limit of a static system, for a given time tn,

primal iterates ri(tn) and Tij(tn) are close to feasible but

not necessarily so; i.e., there exists a small error term e for

which βi(x(tn);σi(tn)) ≥ ri(tn)−e ≥ ri0−e. As the system

moves from configuration x(tn) to x(t) for t > tn, this error

may get larger because routes Tij(tn) were computed for

configuration x(tn), not for the current spatial arrangement

x(t). This motivates controllers ui(x(t);σi(tn)) based on

potential functions

φ̂i(x(t);σi(tn)) =
γki (xi(t))

β̃2
i (x(t);σi(tn))

,

where k > 0 is a positive constant, γi : R
2 → R+ serves as

a goal potential that robot i strives to minimize, and

β̃i(x(t);σi(tn)) = βi(x(t);σi(tn))− ri0 + e. (16)

measures satisfaction of the approximate network integrity

constraint in βi(x(tn);σi(tn)) ≥ ri0 − e for the commu-

nication rate offered to robot i and serves as an obstacle

barrier potential that repels the robots from the obstacle set

β̃i(x(t);σi(tn)) < 0.

Since φ̂i can grow unbounded as the approximate network

integrity constraints tend to become violated, i.e., as β̃i → 0,

resulting in unbounded robot speeds, we further introduce

a diffeomorphism ψ(y) = y
1+y that squashes the image

of φ̂i from [0,∞] to [0, 1]. Moreover, define the function

χ(y) = y1/k to restrict the effect of the obstacles close

to the boundary of the free space β̃i(x(t);σi(tn)) = 0.

Composition of χ, ψ and φ̂i results in the artificial potential

φi = χ ◦ ψ ◦ φ̂i = γi

(γki + β̃2
i )

1/k
. (17)

The control law for every robot i can be defined by the

negative gradient of the potential φi in (17) resulting in

ẋi(t) = −α∇xiφi(x(t);σi(tn)), (18)

for all i = 1, . . . , J and all t ∈ [tn, tn+1), with α > 0 a speed

gain. The communication variables in σi(tn) are regulated

by the primal-dual iteration (12)–(13) at times {tn}∞n=0.

A. Algorithm Analysis

To simplify presentation introduce a vector t stacking the

rows of the transmission probability matrix T and a matrix

Ax with dimensions J × J(J + K) so as to write the

constraints in (1) as Axt − r ≥ 0. Using this definition

we can rewrite (2) as

Px = max f0(r, t), s.t. Axt− r ≥ 0, (19)

where the constraints ri ≥ ri0 and
∑J+K

j=1 Tij ≤ 1 were

left implicit. Similarly, we can use this shorthand notation to

rewrite the optimal distributed communication algorithm in

(12)-(13) as

t(tn), r(tn) = argmaxLx(tn),i(λ(tn), t, r), (20a)

λ(tn+1) =
[
λ(tn)− ε

(
Ax(tn)t(tn)− r(tn)

)]+
. (20b)

In a static setting, i.e., when the robot positions x(t) are

fixed, e.g., at x(tn), for all time t ≥ t0, it is known

that the dual variables λ (tn) approach the optimal multi-

pliers λ∗
x(tn). As we already observed, convergence of the

primal variables t(tn) and r(tn) to the optimal network

operating point t∗x(tn), r
∗
x(tn)

follows provided some tech-

nical conditions hold. However when terminals move as

per (18), the optimal operating point drifts away towards

t∗x(tn+1)
, r∗x(tn+1)

. Our goal in this section is to determine

the optimality of the operating point t(tn), r(tn) with respect

to the optimal operating point t∗x(tn), r
∗
x(tn)

for the current

team configuration x(tn).
Throughout the subsequent analysis we make the follow-

ing assumptions on the dual functions gx(λ): (A1) The dual

functions gx(λ) are strongly convex with common strong

convexity parameter m, i.e., gx(μ) ≥ gx(λ)+∇gx(λ)T (μ−
λ) + m

2 ‖λ− μ‖2; (A2) The gradients of the dual functions

gx(λ) are Lipschitz continuous with common Lipschitz

constant M , i.e., ‖∇gx(λ)−∇gx(μ)‖ ≤M‖λ− μ‖; (A3)

The 2-norm of the dual gradients ∇gx(λ) are uniformly

bounded for all λ and all x, i.e., ‖∇gx(λ)‖ ≤ Gmax;

(A4) The 1-norm of the optimal Lagrange multipliers λ∗
x

are uniformly bounded for all x, i.e., ‖λ∗
x‖1 ≤ λmax. These

assumptions are mild, technical, and commonly required in

the analysis of gradient descent algorithms. The following

result describes the distance between the current λ (tn) and

the current optimal λ∗
x(tn) Lagrange multipliers.

Theorem 1 ( [9, 10]) Let x(tn) denote the team config-
uration at iteration n, λ∗

x(tn) the corresponding optimal
dual variable and λ (tn) the dual iterate obtained through
iterative application of (20). Assume the step size in (20) is
bounded as ε ≤ 1/M and that the difference between relia-
bilities at subsequent configurations is absolutely bounded∣∣R(xi(tn+1),xj(tn+1))−R(xi(tn),xj(tn))

∣∣ ≤ δ (21)
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for δ > 0. If assumptions (A1), (A2), and (A4) hold, the
distance between the dual iterate λ (tn) and the optimal
multiplier λ∗

x(tn) satisfies

‖λ (tn)− λ∗
x(tn)‖ ≤ βn‖λ(t0)− λ∗

x(t0)‖+
√

2λmaxJ

m(1− β)2
δ,

(22)

where the constant β is defined as β �
√
1/(1 +mε).

Translating the result in Theorem 1 into results regarding

primal variables, we obtain the following Corollary.

Corollary 1 ( [9, 10]) With the same hypotheses and defi-
nitions of Theorem 1, the norm of the constraint violation
can be bounded as

‖(r(tn)−Ax(tn)t(tn))
+‖ ≤ Mβn‖λ(t0)− λ∗

x(t0)‖

+

√
2M2λmaxJ

m(1− β)2
δ. (23)

Corollary 1 implies that the constraint violation is es-

sentially uniformly bounded by a term that only de-

pends on problem specific parameters, i.e., the second

term on the right-hand-side of (23). Assume now that

the channel reliabilities R(xi(t),xj(t)) are purely func-

tions of the inter-robot distances ‖xij‖ = ‖xi(t) − xj(t)‖
so that maxi,j

{∣∣∣dR(xi,xj)
d‖xij‖

∣∣∣} ≤ MR < ∞. Let also

maxi {‖∇xi
φi‖} ≤ Mφ < ∞ denote an upper bound on

the maximum robot speed, which can be shown to exist for

the proposed artificial potential φi in (17) [9]. The following

result extends the feasibility guarantees of Theorem 1 and

Corollary 1 to all times t ≥ t0.

Theorem 2 ( [9, 10]) Define Δt = maxn{tn+1 − tn} and
let MR be the bound on the norm of the gradient of R(xi,xj)
and Mφ the bound on robots’ velocities. Assume the hypothe-
ses in Theorem 1 hold and that for time t0 the communication
variables are initialized at the optimal configuration, i.e.,
λ(t0) = λ∗, r(t0) = r∗x(t0), and T(t0) = T∗

x(t0)
. Then, for

any tolerance e satisfying

e >

√
2αΔtMRMφ

2MλmaxJ

m(1− β)2
, (24)

we have βi(x(t);σi(t)) > ri0 − e for all times t ≥ t0.

Performance of the proposed distributed algorithm, for

channel reliabilities similar the ones described in Section III,

is shown in Fig. 3. Here the goal potential is γi = ‖xi−xi,t‖2
for the leader and γi = 1 for the relays, with xi,t the location

of the service point.

VI. CONCLUSIONS

In this paper we considered the problem of ensuring com-

munication integrity in networks of mobile robots. Our ap-

proach relied on introducing weights on the communication

links to capture channel reliabilities, which then allowed to

model routing by means of optimization problems that accept

AP SP

AP SP

AP SP

Fig. 3. A mobile robot network consisting of 6 robots (dots) that need
to establish reliable communications between one service point (SP) and
one access point (AP). The red lines represent routing of information
TijR(xi,xj), between pairs of robots. The thickness of each line represents
the magnitude of these quantities. The network involves one leader (star),
labeled by the number 2, that moves towards the service point SP.

link reliabilities as inputs. The key idea proposed in this

work was the joint control of mobility and communications

in a hybrid scheme with the discrete-time routing variables

being the switching signal in the continuous-time motion

controllers. We developed both centralized and distributed

integration schemes, and for the latter case we provided com-

munication guarantees within a bounded error of optimality.
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