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Abstract— We consider a dynamic game over a network

with information externalities. Agents’ payoffs depend on an

unknown true state of the world and actions of everyone else

in the network; therefore, the interactions between agents are

strategic. Each agent has a private initial piece of information

about the underlying state and repeatedly observes actions of

her neighbors. We consider strictly concave and supermodular

utility functions that exhibit a quadratic form. We analyze the

asymptotic behavior of agents’ expected utilities in a connected

network when it is common knowledge that the agents are

myopic and rational. When utility functions are symmetric and

adhere to the diagonal dominance criterion, each agent believes

that the limit strategies of her neighbors yield the same payoff

as her own limit strategy. Given a connected network, this

yields a consensus in the actions of agents in the limit. We

demonstrate our results using examples from technological and

social settings.

I. INTRODUCTION

Players behaving strategically in uncertain environments
make decisions that are optimal given the information avail-
able to them while often trying to learn more about the
environment by observing the actions of the others. While
the trade decisions of players in a stock market depend on
their belief about the true value of the stock, traders also
tend to consider how the other traders will act as others’
actions could directly affect the gains from trade. When
buying certain products, consumers have the incentive to act
in coordination with the population while trying to get the
best product. In a case of cooperative robotic movement,
robots try to rendezvous at a point using only noisy private
observations of the coordinates of the target. In all of these
environments, interactions are strategic in the sense that
agents make decisions by considering the possible choices
made by the other agents in addition to trying to estimate
the value of an unknown (stock value, product quality, or
the location of a goal); furthermore, players oftentimes only
observe the actions of a handful of other players while
trying to coordinate with and learn from everybody else. In
this paper, we investigate the question of whether, in such
scenarios, players who act selfishly and myopically would
be able to aggregate the dispersed pieces of information and
coordinate on the optimal action.

We consider games with strategic complementarities that
have a linear best response and where players only have
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access to local information. Such games could be used to
model financial markets [1], consumption [2], cooperative
robotics [3], or organizational coordination [4]. The games
in this class have a common feature; that is, agents’ best
replies are linear functions of other agents’ play and the true
state of the world. Having strategic complementarity among
agents’ actions implies that an increase in an agent’s action
provides an incentive for the others to increase their actions
respectively, reminiscently of potential games [3]. A network
is a natural way to model agents’ access to information. The
neighborhood of a player could signify the subset of the
traders she interacts with in the stock market, the friends
who she observes the consumption behavior of, or the robots
that are moving in close proximity.

This paper analyzes the asymptotic behavior of agents’
actions in the class of repetitive linear games with strategic
complementarities given a connected network (Section II).
At each stage, agents observe actions of their neighbors
from the previous stage, infer about the true state of the
world in a rational way, and take an action synchronously
with everyone else. Rational inference corresponds to belief
updates according to the Bayes’ rule. Bayesian learning is
often computationally intractable due to the requirement that
agents infer about the inferences of other agents that are all
interconnected via the network. Consequently, our results are
asymptotic (Section III). We show that when agents play
according to a Bayesian Nash equilibrium strategy, their
expected utilities conditioned on their private observations
are equal in the limit (Theorem 1). This implies that eventu-
ally agents also reach consensus in the actions they choose
(Corollary 1). We provide examples of linear games based on
investment choice, multi-robot cooperative movement, and
product selection (Section IV). We further provide a numer-
ical example of the multi-robot movement given line and star
graph structures (Section V). The numerical results suggest
that agents’ actions converge in the number steps equal to
the diameter of the network and that the eventual actions
are optimal given agents’ private observations. Finally, we
conclude with a summary of our results in Section VI.

This paper is related to two lines of research. The first is
the economics literature that focuses on one-shot equilibrium
analysis of linear games [4], [5]. While some of these papers
characterize the equilibrium based on agents’ information
structure [4], [5], the others provide a characterization based
on network properties [2], [6]. The second line of research
relates to the social learning/distributed estimation literature
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where a canonical model consists of a set of connected agents
exchanging their estimates of an unknown state and using
this local information to update their estimates. Such papers
can be divided into two categories based on their modeling
approach: In rational learning models, agents incorporate
the information about the unknown state using the Bayes’
rule and are able to discard redundant information [7], [8].
However, due to the intractability of rational learning, the
results are asymptotic [8]. In bounded rational models, there
is a heuristic update rule that the agents follow [9]–[13].
These rules often help provide a complete characterization
of convergence properties based on the network structure
and information distribution. While the bounded rational
approach provides tangible results, the update rules used are
harder to justify. In this paper, we extend the rational learning
view of social learning with pure informational externalities
to the case of linear games where each agent’s payoff is
directly affected by the actions of other agents.

II. THE MODEL

We consider linear games with incomplete information,
in which identical agents in a network repeatedly choose an
action and receive a payoff that depends on their own action,
the underlying parameter, and actions of everyone else.

We use an undirected connected graph G = (V,E) with
node set V and edge set E to denote the network. Agents are
placed at the nodes of the graph belonging to the finite node
set V = 1, . . . , n. Set of links between agents is denoted by
E. Agent i can only observe neighboring agents n(i) = {j :
(j, i) 2 E} that form an edge with it. We use �i to denote
the set of agents in V except i; i.e., �i := {j : j 6= i, j 2 V }.

There exists an underlying parameter ✓ that belongs to
the measurable space ⇥ ✓ R. At the beginning of the game,
agent i receives a noisy private signal xi about underlying
state coming from some measurable signal set Xi. We use
X := X1 ⇥ · · · ⇥ Xn to denote the space of all agents’
signals. Let P be agents’ common prior over ⇥⇥X .

At each stage of the game, agents simultaneously take
actions. Time t ticks with each stage of the game and hence it
is discrete; i.e., t 2 N. At each stage t, each player i takes an
action ai,t from its compact measurable action space Ai ✓ R
and observes actions of its neighbors an(i),t. We assume that
the agents’ action spaces are the same; that is, Ai = Aj for
all agent pairs i 2 V and j 2 V . Furthermore, we assume
that agents’ payoffs could be represented by the following
quadratic function

ui(ai, a�i, ✓) = ↵ai�1

2

X

j2V

a2j+
X

j2V \{i}

�ijaiaj+�ai✓+c✓2,

(1)
where ↵, �ij , � and c are real valued constants. Note that
the payoff function is strictly concave in agents’ self-action;
that is, @2ui(·)/@a2i < 0.

In this paper, we consider supermodular games in which
agents’ strategies are complementary to each other. Strategic
complementarity means that the marginal utility of an agent’s
action increases with an increase in other agents’ actions.

More formally, the utility function ui(a, ✓) is supermodular
with respect to a 2 A := ⇥i2V

Ai if for a0i � ai and
a0�i � a�i, and for any ✓ 2 ⇥,

ui(a
0
i, a

0
�i, ✓)�ui(ai, a

0
�i, ✓) � ui(a

0
i, a�i, ✓)�ui(ai, a�i, ✓)

(2)
for all i 2 V . For the utility function in (1), the influence
of agent j’s action on i’s payoff is captured by the cross-
derivatives @2ui(·)/@ai@aj = �ij for all i 2 V and j 2
V \ {i}. When �ij � 0, the actions of i and j are strategic
complements. Hence, we assume that �ij � 0 for all i 2 V
and j 2 V \ {i}.

The past history at stage t is a complete list of the
parameter, agents’ private signals, and actions of all players
in all previous stages; i.e, it lies in Ht := ⇥ ⇥ X ⇥ At�1.
The space of plays is the measurable space (⌦,F), where
⌦ := H1 = ⇥⇥X ⇥AN and F is the Borel �-algebra. We
use hi,t(!) to denote the history observed by agent i up to
time t given that ! 2 ⌦ is realized. We let Hi,t to be the
set of all possible histories observed by agent i up to time t
and Hi,t the corresponding �-algebra over ⌦. Let Hi,1 be
the �-field generated by the union of all Hi,t for all t. This
represents agent i’s information at the end of the game.

A (pure behavior) strategy �i is the sequence of functions
(�i,⌧ )⌧=1,...,1 such that �i,t : Hi,t 7! Ai. We use � to
denote the strategy profile of all agents {�i}i2V .

Any strategy profile �, together with the common prior
P induces a probability distribution over ⌦. We denote the
probability distribution induced by � by P� , and let E� be
the corresponding expectation operator. For any �, let Ai

be the space consisting of P�-a.e. equivalence classes of
(bounded) Hi,1-measurable functions fi : ⌦ 7! Ai with the
norm1

kfik�,2 =

✓Z

⌦
f2
i dP�

◆ 1
2

. (3)

By the Riesz-Fischer theorem, Ai is complete. We also let
A :=⇥i2V

Ai and A�i :=⇥j2V \{i} Aj . With slight abuse
of notation, we use k·k�,2 to denote the norm on A defined
as

kfk�,2 = max

i2V
kfik�,2. (4)

Note that for any strategy profile �, since �i,t(hi,t(!)) is
Hi,t-measurable and Hi,t ⇢ Hi,1, �i,t(hi,t(!)) 2 Ai for
all t 2 N. Whenever there is no risk of confusion, we use
�i,t to mean both agent i’s strategy at time t and the Hi,t-
measurable random variable �i,t(hi,t(!)).

A belief µ is a probability distribution over the space of
plays ⌦. In particular, we let µi,t(�) denote the belief of
agent i at time t given strategy profile � and her information
Hi,t; that is, µi,t(�)[B] is the random variable that satisfies

µi,t(�)[B] = P�(B|Hi,t), (5)

for any measurable event B 2 F .2 We let Eµ denote the
expectation operator over ⌦ given belief µ.

1Ai is the L2(⌦) space of Ai valued functions over the probability triple
(⌦,Hi,1,P�).

2More formally, µi,t(�) : ⌦ ⇥ F 7! [0, 1] is a regular conditional
distribution of P� given Hi,t.
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Given strategy profile �, the best response of agent i at
time t to the strategies of other agents s�i 2 A�i is a random
function BRi,t(�) : A�i 7! Ai defined as

BRi,t(�; s�i) = argmax

ai2Ai

Eµi,t(�)[ui(ai, s�i, ✓)]

= argmax

ai2Ai

E�[ui(ai, s�i, ✓)|Hi,t]. (6)

Note that since ui(·) is continuous and Ai is compact, the
above function is always well-defined. Likewise, define

BRi,1(�; s�i) = argmax

ai2Ai

E�[ui(ai, s�i, ✓)|Hi,1] (7)

We also use BRt(�) : A 7! A to denote the vector function
whose ith component is given by BRi,t(�).

Assuming an interior solution, the best response function
for the payoff in (1) is obtained by taking the derivative
with respect to ai, equating the result to zero and solving
for ai. Agent i’s best response to any strategy s�i is a linear
function of strategies of other agents and the underlying
parameter; that is,

BRi,t(�; s�i) = ↵+

X

j2V \{i}

�ijE�[sj |Hi,t] + �E�[✓|Hi,t].

(8)
We consider games in which the network structure is

common knowledge. It is also common knowledge that
agents are rational and myopic. Common knowledge of ratio-
nal and myopic behavior means that everybody knows that
[everybody knows that... ] (repeated infinite times) agents
are rational and myopic. Rational agents follow Bayes’ rule
in updating their beliefs over ⌦. Myopic behavior implies
that agents do not account for the changes in future payoffs
when making decisions; rather, they only maximize the
expected utility for the current stage of the game. Given that
agents are myopic and rational, a Bayesian Nash Equilibrium
(henceforth, BNE) is a strategy profile � that satisfies

�i,t = BRi,t(�;��i,t) for all i 2 V, t 2 N, (9)

or equivalently

�t = BRt(�;�t) for all t 2 N. (10)

A BNE strategy is such that there is no other strategy that
agent i could unilaterally deviate to, that will provide a
higher payoff; i.e., it is the best that agent i can do given
other agents’ strategies and her own information.

III. ASYMPTOTIC PROPERTIES OF RATIONAL LEARNING

According to the setup in Section II, there is a new
game played at each stage t based on the new information
available. However, since agents accumulate information
about the unknown state over time, it is possible to show that
beliefs of agents converge asymptotically. Given this fact,
under Bayesian-Nash equilibrium concept, agents’ expected
utilities converge. By the same token, one expects that
agents’ equilibrium strategies converge as well, as we prove
in Lemma 1. Existence of limit strategies implies that the
agents can learn their neighbors’ limit strategies (Lemma 2).

We use these results to prove our main result: the conditional
expected utilities are equal for neighboring agents, if agents’
utility functions are symmetric (Theorem 1). This result, in
turn, implies that agents eventually play the same strategy.
Before we state and prove these results, we specify our
assumptions.

(A1) Symmetry. Utility functions are symmetric; that is,

ui(ai, aj , aV \{i,j}, ✓) = uj(ai, aj , aV \{i,j}, ✓) for all i, j 2 V,
(11)

for any ai, aj 2 Ai = Aj , where the first element of the
utility function ui is always the action of agent i. For the
utility function in (1), this is equivalent to requiring that
�ij = �ji for all i 2 V and j 2 V \ {i}.
(A2) Diagonal dominance. The Hessian matrices of
agents’ utility functions are strictly diagonally dominant.
For the utility function in (1), this is equivalent to requiring
that there exists ⇢ < 1 such that

X

j2V \{i}

�ij  ⇢, (12)

for all i 2 V .

(A1) implies that the utility of agent i, given that i plays
ai and j plays aj is equal to utility of agent j, given that j
plays ai and i plays aj .

(A2) implies that an agent’s utility is more sensitive to
changes in her own actions than to changes in the actions of
other agents.

Our first result shows that if the agents play according to
BNE strategies at all times, then agents’ strategies converge
as t goes to infinity.

Lemma 1: Let � be a BNE. If (A1) and (A2) hold, then
�t ! �1 with P�-probability one as t goes to infinity.

Proof: Let si,t = BRi,t(�;��i,1); that is,

si,t = ↵+

X

j2V \{i}

�ijE�[�j,1|Hi,t] + �E�[✓|Hi,t]. (13)

Taking limit of the above equation as t goes to infinity and
using Levy’s zero-one law implies that si,t ! si,1 with
P�-probability one, where

si,1 = BRi,1(�;��i,1)

= ↵+

X

j2V \{i}

�ijE�[�j,1|Hi,1] + �E�[✓|Hi,1]. (14)

By the triangle inequality,

k�t � �1k�,2  k�t � stk�,2 + kst � �1k�,2. (15)

Note that since � is a BNE, �i,t = BRi,t(�;��i,t) and using
the definition for si,t in (13), we have

k�i,t � si,tk�,2 =

������

X

j2V \{i}

�ijE�[�j,t � �j,1|Hi,t]

������
�,2


X

j2V \{i}

�ij kE�[�j,t � �j,1|Hi,t]k�,2


X

j2V \{i}

�ij k�j,t � �j,1k�,2 . (16)
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The first inequality is by the triangle inequality and the
second one holds since the conditional expectation is a
projection in L2

(⌦). Now, note that we can further upper
bound the left hand side of (16), when we replace, each
normed difference inside the sum, k�j,t � �j,1k�,2, by the
maximum difference,

k�i,t�si,tk�,2 
0

@
X

j2V \{i}

�ij

1

A
✓

max

j2V \{i}
k�j,t � �j,1k�,2

◆
.

(17)
The sum in parentheses in (17) can be bounded using (A2).
Furthermore, the right hand side only increases by including
i when taking the maximum. As a result,

k�i,t � si,tk�,2  ⇢

✓
max

j2V
k�j,t � �j,1k�,2

◆

= ⇢ k�t � �1k�,2 , (18)

for all i 2 V . The equality follows directly by using the
definition in (4). Now, consider the first term in (15). By the
definition in (4) and the upper bound in (18), we obtain the
following bound

k�t�stk�,2 = max

i2V
k�i,t�si,tk�,2  ⇢ k�t � �1k�,2 . (19)

On the other hand by (14), for any ✏ > 0, there exists t0
such that for all t > t0,

kst � �1k�,2 ✏ (1� ⇢). (20)

When we substitute the bounds in (19) and (20) for terms
in (15), we can conclude that k�t � �1k�,2 ✏ for t > t0.
Since ✏ > 0 can be chosen arbitrarily small, this implies
that each agent’s equilibrium strategy converges to a limit
strategy P�-almost surely.

This result implies that there is a limit strategy that the
agents play at infinity. The following lemma shows that the
limit strategies of agents can be identified by their neighbors.

Lemma 2: If i is a neighbor of j, then �i,1 is measurable
with respect to Hj,1.

Proof: Since j observes i, for all ! 2 ⌦,

�i,t�1(hi,t�1(!)) 2 hj,t(!). (21)

This implies that �i,t�1 is measurable with respect to Hj,t.
Therefore, since �i,t ! �i,1 with P�-probability one and
Hj,t " Hj,1 as t goes to infinity, �i,1 is measurable with
respect to Hj,1.

According to Lemma (2), agent j can imitate agent i’s
limit strategy and vice versa. We use this observation to prove
that if i and j are neighbors, then the limit strategy of agent
j is a best response strategy for agent i as well.

Theorem 1: Let � be a BNE strategy. If assumptions (A1)
and (A2) are satisfied, then

E�[ui(�i,1,��i, ✓)|Hi,1] = E�[ui(�j,1,��i, ✓)|Hi,1]

(22)
with P�-probability one for any i 2 V , j 2 n(i).

Proof: For any i 2 V , �i is measurable with respect
to Hi,1. We define �1 as the vector of limit equilibrium

strategy. Let �i
1 = (�j,1,��i,1) be the limit strategy when

i 2 V unilaterally deviates from equilibrium strategy to play
the limit strategy of j 2 n(i). This is possible since �j,1 is
measurable with respect to Hi,1 by Lemma 2. Since network
G is undirected, j can also deviate to limit the strategy of
i 2 n(j). Similarly, define �i,j

1 = (�j,1,�i,1,��i\j,1) as
the limit strategy when connected pairs i 2 V and j 2 n(i)
deviate from their equilibrium strategies by swapping their
strategies. By definition of BNE (9),

E�[ui(�
i
1, ✓)|Hi,1]  E�[ui(�1, ✓)|Hi,1] for all i 2 V.

(23)
When we take expectation of both sides of (23),

E�[ui(�
i
1, ✓)]  E�[ui(�1, ✓)] for all i 2 V. (24)

Let ! 2 ¯

⌦ be the set over which limit action of agent
i, �i,1(hi,1(w)) 2 Ai, is smaller than �j,1(hj,1(w)) 2
Aj ; i.e. �i,1  �j,1. Since ui(·, ✓) is supermodular,
the conditional expected utility function E�[u(·, ✓)|Hi,1] is
also supermodular. Using this fact, applying definition of
supermodularity (2) to limit strategies �1 and �i,j

1 for any
! 2 ¯

⌦, and rearranging terms,

E�[ui(�
i
1, ✓)|Hi,1] +E�[ui(�

j
1, ✓)|Hi,1] �

E�[ui(�1, ✓)|Hi,1] +E�[ui(�
i,j
1 , ✓)|Hi,1]. (25)

We obtain the same relation as in (25) for ! 2 ⌦ \ ¯

⌦ in
which �i,1 > �j,1. Hence, (25) holds for all ! 2 ⌦. We
take the expectation of both sides of (25) to get

E�[ui(�
i
1, ✓)]+E�[ui(�

j
1, ✓)] �

E�[ui(�1, ✓)] +E�[ui(�
i,j
1 , ✓)]. (26)

Notice that the second term on the right hand side is exactly
equal to the utility of agent j playing the BNE strategy
because the utility functions are symmetric; that is,

E�[ui(�
i,j
1 , ✓)] = E�[uj(�1, ✓)]. (27)

In the second term on the left hand side of (26), agent j
is deviating to agent i’s action E�[ui(�j

1, ✓)]; hence, both
agents are playing with the same strategy. By symmetry of
the utility functions,

E�[ui(�
j
1, ✓)] = E�[uj(�

j
1, ✓)]. (28)

Substituting (27) and (28) in (26), we can conclude that the
individual deviations of i and j provide higher payoff than
equilibrium actions; i.e.,

E�[ui(�
i
1, ✓)]+E�[uj(�

j
1, ✓)] �

E�[ui(�1, ✓)] +E�[uj(�1, ✓)]. (29)

On the other hand by inequality (24), the first and second
terms on the left hand side are less than or equal to the first
and second terms on the right hand side, respectively. Hence,
the inequalities in (24) must be equalities,

E�[ui(�j,1,��i,1, ✓)] = E�[ui(�i,1,��i,1, ✓)], (30)

for all i 2 V and j 2 n(i). By (23), we have that
E�[ui(�1, ✓)|Hi,1] � E�[ui(�i

1, ✓)|Hi,1] � 0 with P�-
probability one. This proves (22).
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According to Theorem 1, each agent expects that her limit
strategy results in a payoff no worse in expectation than
if she was to play according to the limit strategy of one
of her neighbors. The intuition behind this result is that
by the symmetry property of the utility function, strategic
complementarity yields that unilateral deviations by i and
j to each other’s actions are at least as good as playing
according to their limit strategy in expectation. However, by
the definition of BNE in (9), this behavior can actually never
yield strictly better payoffs. Hence, it must be that deviations
to neighbors limit strategy are result in equal payoffs in
expectation. More importantly, this is also true given the
information available to agents, i.e,. from the perspective
of agent i, j’s limit strategy is just as good as i’s limit
strategy. An immediate corollary of Theorem 1 is that for a
connected network agents reach consensus in their strategies.
We formally state and prove this result next.

Corollary 1: Let � be a BNE strategy. If (A1) and (A2)
hold, then

�i,1 = �j,1 for all i, j 2 V P�-a.s. (31)
Proof: By Theorem 1, the conditional expectations are

equal when agents deviate to their neighbors’ limit actions.
This means that the limit action of agent j is a maximizer of
the expected utility of agent i; i.e., �j,1 = BRi,1(�,��i,1).
Since agents’ best responses are essentially unique, it must be
the case that �i,1 = �j,1 for all i 2 V and j 2 n(i) with
P�-probability one. Given that the network is connected,
(31) is proven.
This results shows that actions of all agents are the same in
the limit given a connected network for the type of games
we consider.

IV. LINEAR GAMES

We now present two examples in which best replies are
linear and assumptions (A1) and (A2) hold.

A. Learning in coordination problems

Consider a network of mobile agents that want to align
themselves so that they move toward a finish line on a
straight path i.e. there exists a correct heading angle ✓ 2
[0, 2⇡] that is common for all agents. Each agent collects
an initial noisy measurement of ✓ that is denoted by xi.
Mobile agents also have the goal of maintaining the starting
formation while moving at equal speed by coordinating
their angle of movement with other agents. Agents need to
coordinate with the entire population while communication
is restricted to neighboring agents whose decisions they can
observe. In this context, agent i’s decision ai represents the
heading angle. It is possible to formulate the goals of agent
i as a maximization of the payoff given by

ui(a, ✓) = �1� �

2

(ai � ✓)2 � �

2(n� 1)

X

j2V \{i}

(ai � aj)
2,

(32)
where � 2 (0, 1) is a constant measuring the importance
of estimation vs. coordination. The first term in (32) is the
estimation error in the true heading angle. The second term

is the coordination component that weights the discrepancy
between self heading and headings of other agents. The
utility function is reminiscent of the one in a potential
game [3]. Note that the utility function is strictly concave
since its second derivative with respect to ai is negative.
Furthermore, it is supermodular since cross derivatives are
always positive; i.e., @2ui(·)/@ai@aj = �/n�1 > 0. Further,
for the payoff in (32) Assumptions (A1) and (A2) hold: First,
�ij = �/2(n � 1) for all i 2 V and j 2 V \ {i}; hence,
the utility function is symmetric. Second, the sum of the
constants that weight the disagreement amongst agents is
equal to �/2 < 1 hence diagonal dominance is satisfied.

Since the agents can only observe the actions of their
neighbors, each agent’s best response to the strategies of
others ��i given the information available to her at time
t is obtained by solving @E�[ui(ai,��i, ✓)|hi,t]/@ai = 0 as
postulated in (6),

BRi,t(�;��i,t) = (1� �)E�[✓|Hi,t]

+

�

n� 1

X

j2V \{i}

E�[�j,t|Hi,t]. (33)

The same payoff formulation can be motivated by looking
at learning in organizations [4]. In an organization, individu-
als share a common task and have the incentive to coordinate
with other units. Each individual receives a private piece of
information about the task that needs to be performed while
only being able to share her information with individuals
with whom she has a direct contact in the organization.

B. Bilateral influences

Consider the population of smoking individuals in a cer-
tain region. Smoking is a leading risk factor to human health.
One could model this by associating a marginal cost ✓ 2 [c, c̄]
with finite and positive bounds c̄ > c > 0 to smoking. Each
individual has a prior belief xi about the risk of smoking.
Furthermore, smoking habits are very much determined by
social interactions; that is, individuals value conforming to
society in the amount of cigarettes they smoke per week.
In other words, if the society has a lower rate of smoking,
individual i feels that if she smokes more, she would be
an outcast in the society. Based on the risks and societal
pressures, smokers decide on how many cigarettes they
smoke in a given period of time, ai 2 [0,M ]. Furthermore,
individuals only observe smoking behavior of their friends.
Given this setup, each individual has the following payoff
function,

ui(a, ✓) = �✓ai � 1

2

(ai � 1

n� 1

X

j2V \{i}

aj)
2. (34)

The first term captures the total risk associated with the
amount of cigarettes smoked that the individual wants to
minimize. It is proportional to the number of cigarettes
consumed. The second term is the utility gain by conforming
to the society in smoking behavior.

The payoff function (34) is strictly concave. It is also su-
permodular since cross derivatives are positive. Assumption
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(A1) holds since the utility is of the quadratic form postulated
in (1) with �ij = 1/2(n� 1) for all i 2 V and j 2 V \ {i}.
Further, (A2) is satisfied since the sum of bilateral constants
is equal to 1/2 < 1.

Based on this payoff function, we obtain a linear best
response for individual i in consumption of other agents and
risk factor ✓ when we take the derivative of (34) with respect
to ai, equate it to zero and solve for ai:

BRi,t(�;��i,t) = �E�[✓|Hi,t]+
1

n� 1

X

j2V \{i}

E�[�j,t|Hi,t].

(35)

V. NUMERICAL EXAMPLE

We consider the linear coordination game discussed in
Section IV-A with private signals that are normally dis-
tributed. Rational learning becomes tractable when private
signals are normally distributed and best response function
is linear.

Agents play according to BNE strategy where the equilib-
rium is determined by solving the set of equations determined
by definition of BNE (9) and the best response for the
linear coordination game (33). At time t = 0, agent i plays
its private signal xi since there is no other information
available to her. We define the vector of private signals
as x = [x1, . . . , xn]

T . At time t = 1, agents observe
the actions; i.e. the private signals, of their neighbors from
previous time, update their estimate for the parameter ✓.
Since private signals are normally distributed, the estimate
of ✓ will be a linear combination of private signals at all
times [14]. Furthermore, according to best response in (33),
agent i needs to estimate actions of other agents. Given this,
if the actions of all agents except i are linear functions of
the private signals, then i’s best response is also a linear
function of private signals. Let agent i’s estimate of ✓ at
time t be given by E�[✓|Hi,t] = d

T
i (t)x, where d

T
i (t) is the

vector that determines the weight i assigns to different private
signals at time t. At time t = 0, the ith element of dT

i (0) is
equal to one and the others are equal to zero. Further, define
agent i’s estimate of x at time t as E�[x|Hi,t] = Li(t)x
where Li(t) is the weight matrix for estimates of private
signals. At time t = 0, the ith column of Li(0) is equal to
the vector of ones and the rest of the elements are all equal
to zero. This is agent i’s estimate of j’s private signal xi for
j 2 V \{i} at time t = 0. Furthermore, suppose that agent i’s
action at time t will be a linear combination of private signals
ai(t) = v

T
i (t)x. Then, by (9), the equilibrium strategy is

obtained by solving the following set of linear equations for
v

T
i (t),

v

T
i (t)x = (1��)dT

i (t)x+
�

n� 1

X

j2V \{i}

v

T
j (t)Li(t)x (36)

for all i 2 V . Actions of agents are linear combinations
of private signals at all times, and hence remain normally
distributed. Given common knowledge of rational behavior
and network, agent i can efficiently calculate vj(t) for j 2
n(i), and hence know the weighting of private signals. Using
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Fig. 3. Values of actions over time for the line network in Fig. 1.

her knowledge of vj(t) for j 2 n(i), agent i can efficiently
update her belief on ✓ and her response for time t+ 1.

Here, we consider two types of networks, a line network
and a star network each with n = 5 agents (see Figs. 1 and 2,
respectively.) The correct movement angle is chosen to be
✓ = 5

�. Initially, agent i obtains a noisy private measurement
about the correct angle

xi = ✓ + wi, (37)

where wi ⇠ N (0, 1). We choose � = 0.5.
Figs. 3 and 4 show the evolution of actions corresponding

to networks in Figs. 1 and 2, respectively. The actions of
agents reach consensus at time t = 4 for the line network
(see Fig. 3.) For the star network, consensus happens in
t = 2 steps (see Fig. 4.) These results suggest that consensus
is achieved in O(d) steps where d is the diameter of the
graph. For the distributed estimation problems over tree
networks [14] convergence happens in O(d) steps as well.
Here, we observe the same result for learning in linear games.
Furthermore, the consensus action is optimal; that is, agents
converge to the mean of all the private signals which is the
optimal estimate of ✓ given all of the private signals.

VI. CONCLUSION

We considered learning in repetitive games with quadratic
payoff functions in which agents start with noisy private
signals. We assumed that the payoff function is symmetric
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and that agents discount the bilateral effects of actions of
other agents in the payoff. We looked at the case where agent
behavior is rational and myopic, i.e., when agents are able
to incorporate new information according to Bayes’ rule and
do not consider future plays in their current decision making.
Since Bayesian updates are intractable in the general case,
we performed an asymptotic analysis. We first showed that
there exists a limit strategy for each agent. This result is
used to show that the agents’ limit strategies are measurable
with respect to their neighbors’ information. Our main result
demonstrates that the agents are indifferent (in expectation)
between playing according to their own limit strategies and
those of their neighbors. Consequently, consensus is achieved
since agents’ best responses are essentially unique and the
network is connected. Simulations are used to confirm the
technical results. They also suggest that the convergence time
is equal to the diameter of the network.
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[4] A. Calvó-Armengol and J.M. Beltran. Information gathering in
organizations: Equilibrium, welfare and optimal network structure.
Journal of the European Economic Association, 7:116–161, 2009.

[5] S. Morris and H.S. Shin. The social value of public information.
American Economic Review, 92:1521–1534, 2002.
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